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Abstract 

Transport equations for (i) the rate   of product creation and (ii) its Favre-averaged value    are derived from the first 

principles by assuming that   depends solely on the temperature and mass fraction of a deficient reactant in a premixed 

turbulent flame characterized by the Lewis number    different from unity. The right hand side of the transport equation for 

   involves seven unclosed terms, with some of them having opposite signs and approximately equal large magnitudes when 

compared to the left-hand-side terms. Accordingly, separately closing each term does not seem to be a promising approach, 

but a joint closure relation for the sum   
    of the seven terms is sought. For this purpose, theoretical and numerical 

investigations of variously stretched laminar premixed flames characterized by      are performed and the linear relation 

between    integrated along the normal to a laminar flame and a product of (i) the consumption velocity    and (ii) the 

stretch rate     evaluated in the flame reaction zone is obtained. Based on this finding and simple physical reasoning, a joint 

closure relation of   
               is hypothesized, where   is the density and    is the stretch rate. The joint closure relation is 

tested against 3D DNS data obtained from three statistically 1D, planar, adiabatic, premixed turbulent flames in the case of a 

single-step chemistry and        , 0.6, or 0.8. In all three cases, agreement between   
    and            extracted from the DNS 

is good with exception of large (      ) values of the mean combustion progress variable    in the case of        . The 

developed linear relation between   
    and            helps to understand why the leading edge of a premixed turbulent flame brush 

can control its speed. 
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1. Introduction 

The most important peculiarity of turbulent combustion of lean hydrogen-air mixtures consists of an abnormally large 

(when compared to hydrocarbon-air mixtures burned under similar conditions) ratio of turbulent,   , and laminar,     flame 

speeds. This phenomenon is well documented in numerous experiments reviewed elsewhere [1-3], see also Refs. [4,5] as 

recent examples. The same phenomenon is also documented for lean turbulent flames of various H2/CO/CH4/O2/N2 mixtures 

[6-11], but the magnitude of the effect is decreased when the mole fraction of hydrogen in the fuel blend is decreased by 

retaining the same equivalence ratio.  
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In qualitative discussions, the considered phenomenon is commonly attributed to diffusive-thermal and preferential 

diffusion effects, which can strongly increase the local burning rate by significantly increasing the local temperature and 

equivalence ratio in highly curved and strained reaction zones, as discussed in details elsewhere [1-3]. The theory of such 

effects has yet been developed solely for the laminar premixed flames [12-14], with the focus of the theory being placed on 

the difference in the molecular diffusivity   of the deficient reactant (e.g., hydrogen in a lean hydrogen-air mixture) and the 

heat diffusivity   of the mixture. This difference is commonly characterized with the Lewis number       , which is 

about 0.3-0.4 for very lean hydrogen-air mixtures and is larger, but is less than unity for lean H2/CO/CH4/O2/N2 mixtures. 

Accordingly, the aforementioned abnormally large ratio of       in lean hydrogen-air or H2/CO/CH4/O2/N2 flames is 

typically discussed in terms of a strong increase in    with decreasing    [1-3].  

Although the aforementioned diffusive-thermal and preferential diffusion effects are widely recognized to be the 

governing physical mechanisms of the well-documented increase in    with decreasing   , the phenomenon remains to be 

one of the major poorly resolved fundamental issues in the combustion science. Indeed, quantitative prediction of a large 

ratio of       at a low    still challenges the combustion community and the vast majority of numerical models of premixed 

turbulent flames, reviewed elsewhere [15-19], either disregard the influence of Lewis number on turbulent burning rate or 

invoke highly empirical fits. 

The present work aims at filling this gap by (i) extending a recently introduced approach [20-22] to numerical modeling 

of premixed turbulent combustion to the case of      and (ii) validating the extended approach against Direct Numerical 

Simulation (DNS) data obtained from premixed turbulent flames characterized by     . The approach directly addresses 

transport equations for reaction rate   and its Favre-averaged value   , but has yet been restricted to the case of      [20-

22]. It is worth remembering that averaging reaction rates subject to fluctuations in the local temperature and concentrations 

is on the most critical issue of the turbulent combustion theory even in the case of      and the recently introduced 

transport equations for   and    offer new opportunities to make a progress in this area. 

The structure of the paper is as follows. In the next section, transport equations for   and    are derived in the case of 

    . In the third section, the former equation is applied to various stretched laminar premixed flames. In the fourth 

section, based on analytical and numerical results obtained for the laminar flames, a joint closure relation for all terms on the 

Right Hand Side (RHS) of the transport equation for    is proposed to be used. The joint closure relation is validated by 

analyzing DNS data in the fifth section, followed by conclusions. 

2. Derivation 

Let us assume that the state of the mixture is characterized with (i) the combustion progress variable          and 

(ii) the normalized temperature                 , i.e.,         ,         , etc. Here,   is the mass fraction of 

the deficient reactant,   is the temperature,    is the adiabatic combustion temperature (note that   may be greater than unity 

if     ),   is the mixture density, subscripts u and b designate unburned and burned mixture, respectively. The invoked 
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assumptions are typical, e.g., in theoretical studies of stretched laminar flames [12-14]. The assumptions hold, e.g., in the 

adiabatic, low-Mach-number, single-step-chemistry1 case.  

Applying a chain rule to express temporal and spatial derivatives of          as functions of temporal and spatial 

derivatives of   and   

                                         (1) 

and using the following transport equations 

                        (2) 

                         (3) 

to transform the terms in parentheses on the RHS of Eq. (1), we arrive at 

                                             

                                                        

(4) 

Here,    designates partial derivative with respect to time,   is the flow velocity vector,    and    are the first-order partial 

derivatives of the rate   with respect to   and  , respectively. Subsequently, application of a chain rule              

to          , and      yields 

                                                

                                                 

(5) 

where    ,    , and     are the second-order derivatives with respect to   and  ,   and  ,   and  , respectively. Finally, 

using the continuity equation 

              (6) 

we arrive at  

                                                    

                                             

(7) 

Ensemble averaging of Eq. (7) yields 

                                 
  

                       
  

                                        
  

                                       
  

 

                                                    
  

                                             
  

     
           

  

     
              

  

   
     

(8) 

If     , then, the rate   depends solely on  . Consequently,                           and Eqs. 

(7) and (8) reduce to transport equations derived and studied earlier [20-22]. In this case, terms   
  and   

    dominate in Eq. (8), 

i.e., their signs are opposite and their magnitudes are much larger than the magnitudes of other terms or    
    

    . 

                                                           
1 A set of transport equations for reaction rates can also be derived in the context of complex chemistry. Such a detailed and 

complex study will be undertaken after thorough investigation of relatively simple cases. 
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Accordingly, development of separate closure relations for   
  and   

    does not seem to be promising, because even small 

errors in evaluating any of the two terms may be large when compared to    
   or    

      To resolve the problem, a joint closure 

relation for   
      

    
    was developed [20,21] based on studies of stretched laminar premixed flames. In the present paper, 

the same approach is extended to flames characterized by     . For this purpose, behavior of    in stretched laminar 

premixed flames is analytically and numerically explored in Sect. 3. Then, results obtained from the laminar flames are 

utilized to develop a joint closure relation for the sum   
    of all terms on the RHS of Eq. (8) in turbulent flames. 

3. Stretched laminar premixed flames 

3.1. Statement of the problem 

Following [20,21], let us consider four simple problems widely used in studies of stretched laminar premixed flames. 

These are (1) an expanding spherical flame, (2) an expanding cylindrical flame, (3) a steady strained flame with a cylindrical 

surface, and (4) a steady strained planar flame. If, in cases (3) and (4), all flame and flow characteristics with exception of the 

transverse (parallel to the flame surface) velocity   are assumed to be constant in the transverse direction in the vicinity of the 

flow symmetry axis (normal to the flame surface), then, transport equations that model all four flame types can be written in 

the same form 

 

  
         

 

  

 

  
        

 

  

 

  
         

  

  
       

(9) 

e.g., see Ref. [23]. Here,            ,                  ,                     ,        is the 

normalized density,   is rate of strain,            for planar, cylindrical, and spherical flames, respectively (      if 

     ), and   is a power exponent of the temperature dependence of the diffusivity  . 

The boundary conditions read 

       
  

  
      

  

  
      

  

  
         

  

  
        

  

  
                      

(10) 

3.2. Theoretical study 

Application of a method used in Sect. 2 to Eq. (9) written for           yields 

 

  
         

 

  

 

  
            (11) 

where the term    is re-written in the spherical or cylindrical coordinate framework in cases (1) or (2) and (3), respectively. 

Multiplication of Eq. (11) with   , followed by integration from  =0 to   and multiplication with   
   results in 
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  (12) 

where 

   
 

    
 
       

 

 

 (13) 

is the consumption velocity and    is a flame coordinate associated, e.g., with the peak reaction rate [24]. 

Because the reaction zone is thin in a typical laminar flame, variations of the strain rate within the zone may be 

neglected to the leading order and, consequently,   may be moved outside the integral on the Left Hand Side (LHS) of Eq. 

(12). Accordingly, 

 

  
 
       

 

 

   

   

  
  

 

  

   

  
           

   

  
         (14) 

where     is the local stretch rate at the reaction zone. In weakly stretched flames commonly addressed by the theory [12-14], 

      and, therefore, the time derivative on the RHS of Eq. (14) may be skipped. Consequently,  

 

  
 
       

 

 

          (15) 

Equation (15) was earlier derived and used to close the term   
    on the RHS of Eq. (8) in the case of      [20]. In Sect. 4, 

Eq. (15) will be adapted to close the sum   
    of all terms on the RHS of Eq. (8) in a turbulent flow.  

3.3. Numerical results 

To test the theoretical Eqs. (14) and (15), Eqs. (9) and (10) were numerically solved using an in-house code [23] applied 

earlier to various problems, e.g., see Refs. [20,21,23]. The initial conditions described a small pocket of adiabatic combustion 

products. The flame coordinate    was obtained from a constraint of                           at each instant   [24]. 

Because the laminar flame thickness was small and almost constant in the studied flames, computed results were weakly 

sensitive to the choice of   . 

In the laminar flame simulations, all thermo-chemical characteristics were set equal to values used in the DNS discussed 

in Sect. 5.1. In particular, the Lewis number was set equal to 0.34, 0.6, or 0.8, a ratio of                was set equal to 

1.75, and 

             
       

            
      (16) 

Here,             is the density ratio, and the rate constant   depends on    in order to obtain desired laminar flame 

speed and thermal flame thickness                . The numerical results were normalized using   ,   , and    , which 
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were independent of   , because   was tuned accordingly. The value of         is associated with very lean hydrogen-air 

flames, whereas the two other values of    are associated with lean H2/CO/CH4/O2/N2 mixtures. 

 

 

 

Fig. 1. The LHS of Eq. (14), see lines, and the term         , open circles and triangles, vs.         in cases of (a) 

       , (b)       , and (c)       . All quantities are normalized using   ,   , and    . 1 - expanding spherical flame 

(           ), 2 - expanding cylindrical flame (           ), 3 - steady strained cylindrical flame (       various  ), 4 

- steady strained planar flame (k = 0, various  ). 

Computed dependencies of the LHS of Eq. (14), see lines in Fig. 1, and the unsteady term         , see open circles 

and triangles, on         (i) validate the linear Eq. (15) for variously strained steady flames, see dotted-dashed and dotted 

lines, and for weakly stretched (        
     ) expanding flames, see solid and dashed lines, but (ii) show that the unsteady 

term          plays a role in highly stretched expanding flames, with the effect magnitude being increased with decreasing 

  . For the goals of the present work, the most important message from Fig. 1 consists of the linear relation between the 

integrated term   , i.e., the LHS of Eq. (14), and         in a wide range of stretch rates for different flame configurations. 

The coefficient of proportionality is very close to unity for the stationary flames, see dotted-dashed and dotted lines, but is 

slightly less than unity for expanding flames at high stretch rates, see solid and dashed lines, due to the unsteady term, see 

open circles and triangles, on the RHS of Eq. (14). 
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4. A joint closure relation 

In a recent paper [20], Eq. (15) was theoretically and numerically obtained for stretched laminar premixed flames 

characterized by      and a simple joint closure relation  

                          
                         (17) 

was proposed to be used. Here,                          is the stretch rate conditioned to reaction zones, 

                         is the displacement speed,            is the unit normal vector, and          

     in   
    in Eq. (8) in the earlier case of     . Subsequently, Eq. (15) was validated [20,21] against three sets of DNS 

data obtained earlier by two independent research groups under substantially different conditions associated either with the 

flamelet regime or with the thin reaction zone regime of premixed turbulent combustion [25]. All these data were computed 

at      . 

The physical reasoning for hypothesizing Eq. (15) at       were as follows [20]. As the analysis of stretched laminar 

flames shows that    in Eq. (7) yields         after integration along the normal to a laminar flame, one may assume that 

  
                , where    is the probability of finding reaction zones and the reaction zone thickness    is obtained from 

transformation of integration over   using a probability density function      to integration along local normal direction to 

the reaction zone [20]. Similarly,               , and, consequently,   
              .  

Equation (15) and almost straight lines shown in Fig. 1 allow us to extend the previous analysis [20,21] invoking 

basically the same physical reasoning. Accordingly, based on Eq. (15) and Fig. 1, the sum   
    of all terms on the RHS of Eq. 

(8) is hypothesized to be equal to a product           of the mean mass rate     , whose transport is modeled by Eq. (8), and 

the stretch rate       conditioned to the reaction zone, which characterizes the local flame turbulence-interaction. 

Consequently, the simple joint closure relation given by Eq. (17) may be applied to flames characterized by     , with    

and   being eventually substituted with                              and            , respectively. It is 

worth stressing that the developed approach does not involve any tuning coefficient different from unity. Contrary to a usual 

flamelet approach, which is based on an assumption that the entire flamelets in a turbulent flow retain the structure of 

(stretched) laminar flames, the present approach invokes a similar hypothesis only for the reaction zone. Accordingly, the 

domain of validity of the present approach is expected to be wider when compared to a flamelet approach, because the 

reaction zone is typically thinner and is less perturbed by small-scale turbulent eddies when compared to the flamelet preheat 

zone. This hypothesis requires further validation in future analyses. 

It is also worth noting that Eq. (17) does not solve the problem of closing the RHS of Eq. (8), because the conditioned 

stretch rate       still requires a closure relation. Nevertheless, Eq. (17) appears to be the crucial step to solving the problem, 

as a sum of seven unclosed terms, which counterbalance one another almost completely, is reduced to a single term. The 

present approach follows the pioneering ideas by Kolmogorov [26], based on which a widely used closed transport equation 

for the mean rate    of the dissipation of turbulent kinetic energy    was developed [27]. Indeed, the exact transport equation 
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for    involves two unclosed dominating terms, which have opposite signs and whose magnitude is increased by     and is 

unbounded at       [28]. However, Kolmogorov [26] proposed to explore the two terms jointly and hypothesized that the 

sum of them was proportional to        and, therefore, was bounded at      . As stressed by Spalding [27], these 

pioneering ideas laid foundation of a family of two-equation models of turbulence. The joint closure relation given by Eq. 

(17) follows similar ideas by also utilizing results of laminar flame studies in Sect. 3. 

5. Validation 

5.1. DNS attributes 

Because DNS data analyzed in the following were discussed in details in various papers, e.g., see Refs. [29-33] and 

references quoted therein, we will restrict ourselves to a brief summary of the simulations. 

The cases considered here were simulated using a well-known DNS code SENGA [34], which solved the standard 

governing equations of mass, momentum, energy, and combustion progress variable written in a non-dimensional form. 

Combustion chemistry was reduced to a single reaction, with the used thermo-chemical parameters being specified in Sect. 

3.3, see Eq. (16). A cubic domain of                         was discretised by a uniform Cartesian grid of     

        points. The spatial discretisation and explicit time advancement were carried out by high-order finite-difference 

(10th order for internal points, with the order of differentiation gradually reducing to a one-sided 2nd order scheme at the non-

periodic boundaries) and Runge-Kutta (3rd order) schemes. The boundaries in the direction of mean flame propagation (here, 

 -direction) were non-reflecting and were specified according to the Navier-Stokes Characteristic Boundary Condition 

scheme [35]. The transverse boundaries were periodic. The initial turbulent field was generated using a pseudo-spectral 

method [36] which yielded a homogeneous isotropic distribution of velocity fluctuations. At    , this turbulence field was 

superimposed on a steady-state unstrained laminar-flame solution. The flame-turbulence interaction evolved under decaying 

turbulence. Three (           , and 0.8) flames were studied for the initial           and normalized longitudinal 

integral length scale          . The initial Damköhler number                    , Karlovitz number    

                        , and turbulent Reynolds number                , where            . The simulations 

were continued for 3.34 initial eddy turnover times     . At that time,       (or      ) decreased (increased) by 50% (70 %) 

of the initial value. 

These simulations yielded a strong increase in       with decreasing the Lewis number (         , 4.6, and 13.7 at 

        0.6, and 0.34, respectively [29]), in line with various experimental data reviewed elsewhere [1-3]. Accordingly, the 

DNS data are well appropriate for the major goal of the present study. 

 

5.2. Results and discussion 

Figure 2 shows that, as expected, terms   
       

   ,   
   , and    

    dominate in Eq. (8), i.e., (i) the magnitude of each of these 

terms is much larger than the magnitude of another term in Eq. (8) and (ii) the positive sign of terms    
    and    

    is opposite to 

the negative sign of terms   
    and   

    so that    
      

      
      

             
        

        
        

      in the largest part of the mean 
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flame brush. Thus, Fig. 2 implies that the use of a separate closure relation for each term on the RHS of Eq. (8) may result in 

a large error in   
    due to small errors inherent to any model closure relation. 

 

 

 
Fig. 2. Various terms on the RHS of Eq. (8), normalized using   ,   , and    . 

Figure 3 shows that the joint closure relation given by Eq. (17) yields encouraging results for all three Lewis numbers. 

In particular, at low values of   , the approach predicts a significant increase in   
    with decreasing   . Moreover, the 

approach  predicts   
        at        and 0.6, as well as at        and        . At larger values of    and        , the 

joint closure relation overestimates   
       , probably, due to the neglect of the unsteady term on the RHS of Eq. (14) or an 

increase in the probability of finding negatively curved (and negatively stretched) reaction zones with increasing   . Since the 

present analysis of stretched laminar flames has yet been restricted to planar or positively curved flames, the linear relation 

given by Eq. (15) may not hold if the flame is negatively curved. This issue will be addressed in future work. Nevertheless, 

results reported in Fig. 3 appear to be promising bearing in mind the lack of any tuning parameter in Eq. (17). It is also worth 

remembering that Eq. (17) was earlier validated [20,21] against three other DNS databases computed by two independent 

research groups under substantially different conditions, but at     . 

Figure 4 shows normalized profiles of                           , obtained for various    using     . This figure implies that 

the increase in   
    at low    with decreasing   , shown in Fig. 3, stems from an increase in the conditioned stretch rate. The 
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increase in              stems from the fact that a flame characterized by a lower    can survive under the influence of a 

higher stretch rate, with all other things being equal, e.g., cf. numbers on the abscissa axes in Figs. 1a, 1b, and 1c. For purely 

geometrical reasoning, positively curved reaction zones dominate at low   , with the highest possible value of the local 

curvature being increased with decreasing   , thus, making        larger. 

 

 

 
Fig. 3. Validation of Eq. (17). Dashed and dotted-dashed lines show results obtained using    and      when evaluating the 

stretch rate. 

 

Fig. 4. Profiles of the conditioned stretch rates, obtained for various    and normalized using    and    . 

Moreover, Eq. (17) and Fig. 4 provide a clue to understanding why the leading edge of a premixed turbulent flame brush 

can control the flame speed   , as hypothesized within the framework of the leading point concept put forward by Zeldovich 
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[12]. The concept is discussed in details elsewhere [1-3], with the body of evidences in favor of it has been growing over the 

past years [9-11,37-40]. Indeed, if the turbulent flux                is weak when compared to the mean flux       , as shown 

recently [22], then, for qualitative discussion, Eq. (17) may be simplified as follows 

    

   

  
           (18) 

for a flame that moves from right to left in a statistically 1D planar fully-developed case. The form of this equation and Fig. 4 

implies that the mean rate    is increased with   at low   , where        , but is decreased with   at large   , where       

 . Accordingly,             
 

  
, i.e., the area under a curve of        , is strongly affected by the slope        at low   .  

The larger the slope, the larger the area and, hence, the larger   . Consequently,    is increased by the conditioned stretch rate 

      evaluated near the leading edge. 

For instance, if (i) the dependence of      on    has a dome-like shape, e.g.,                 [41], and (ii)    is 

approximated as                     [3,42,43], where    is the mean flame brush thickness, then,            

                                                            and Eq. (18) implies that                 , 

i.e., the turbulent flame speed is controlled by the conditioned stretch rate at the flame leading edge. Thus, Fig. 4 and Eq. (18) 

explain the aforementioned strong increase in the computed values of       with decreasing    (         , 4.6, and 13.7 

at         0.6, and 0.34, respectively [29]). Moreover, Eq. (18) implies that modeling of the behavior of the product 

          at low    is of paramount fundamental importance and this will be a subject for future study. 

6. Conclusions 

Transport equations for the rate   of product creation and its Favre-averaged value    were derived by considering a 

premixed turbulent flame characterized by the Lewis number different from unity. Subsequently, based on theoretical and 

numerical investigations of variously stretched laminar flames characterized by     , a simple joint closure relation for the 

sum of all seven unclosed terms on the RHS of the equation for    was developed, see Eq. (17). While Eq. (17) does not 

solve the problem of closing the RHS of the transport equation for   , as the conditioned stretch rate        still requires 

modeling, the proposed joint closure relation appears to be the key step to solve the problem, as a sum of seven unclosed 

terms, which counterbalance one another almost completely, is reduced to a single term. 

The joint closure relation was assessed by analysing 3D DNS data obtained from three statistically 1D, planar, adiabatic, 

premixed turbulent flames in the case of a single-step chemistry and        , 0.6, or 0.8. The obtained agreement 

between the model and DNS results is promising, thus, indicating that the sum     of seven unclosed terms on the RHS of Eq. 

(8), some of them counterbalance one another almost completely, may be modelled with a single term          . Assessment 

of this hypothesis at various     or    and for different flame configurations is necessary for further validation.  
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