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Abstract

The current article presents a regularization procedure of the Lagrangian
point-force approach commonly used to account for the perturbation of a
fluid phase by a dispersed particle phase. The regularization procedure is
based on a nonlinear diffusion equation to naturally ensure parallel efficiency
when the regularization length scale extends over several grid cells. The dif-
fusion coefficient thus becomes a function of the particle source term gradient
and expressions allowing to approximately adjust the regularization length
scale according to the local particle to mesh size ratio are proposed, so that
mesh refinement or polydisperse sprays may be handled. Elementary nu-
merical test cases confirm the convergence of the present procedure under
mesh refinement and its ability to locally adapt the regularization length
scale. Furthermore, the chosen regularization length scale allows to match
the leading order term of the perturbation flow field set by the particle be-
yond approximately two particle diameters in the Stokes regime.

When applying the presented source term regularization procedure, the
terminal velocity of a particle settling under gravity in the Stokes regime
becomes relatively insensitive to mesh refinement. However, errors with re-
spect to the theoretical settling velocity remain substantial and removal of the
particle’s self induced velocity appears necessary to recover the undisturbed
fluid velocity at the particle location and correctly evaluate the drag force.
As the current regularization procedure yields source terms that are close to
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Gaussian, an analytic expression from the literature is used to estimate the
particle’s self induced velocity. When combining source term regularization
and removal of the particle’s self induced velocity, good results are obtained
for the terminal settling speed in the Stokes regime. Results obtained for hor-
izontally separated particle pairs settling under gravity in the Stokes regime
show equally good agreement with theoretical results. Because analytic ex-
pressions for the particle’s self-induced velocity are no longer available at
finite particle Reynolds numbers, correlations recently proposed in the liter-
ature are used to obtain correct settling velocities beyond the Stokes regime.

Keywords: Point-force approximation, regularization, dispersed phase,
Lagrangian particle tracking

1. Introduction

Dispersed two-phase flows are encountered in numerous natural phenom-
ena and industrial applications such as cloud formation, volcanic eruptions,
airframe icing, spray cooling, combustion chambers, fluidized beds, etc... Sig-
nificant research efforts have helped improve our understanding of these flows
via theoretical, experimental and numerical investigations. Accordingly, the
literature on the subject is extremely vast and the interested reader is re-
ferred to the reviews of Drew (1983), Balachandar and Eaton (2010), Jenny
et al. (2012) and Maxey (2017), among many others.

Due to the exponential increase of available computational resources in
the last decades, a variety of numerical approaches have emerged to simulate
dispersed two-phase flows. A major classification criterion pertains to the
evaluation of the hydrodynamic forces acting on the dispersed inclusions,
indifferently named particles in the following. These hydrodynamic forces
may be directly evaluated by more advanced numerical methods or only
approximately evaluated.

Arbitrary Lagrangian Eulerian (ALE) approaches deform the mesh of
the flow domain so as to conform to the instantaneous particle configura-
tion Hu et al. (2001). Direct numerical simulation (DNS) approaches for
solid particles are based on the extension of Cartesian single-fluid solvers by
the means of immersed boundary and penalty methods Peskin (1972); Ritz
and Caltagirone (1999); Mittal and Iaccarino (2005); Tenneti and Subrama-
niam (2014); Xu and Wang (2006). These methods are fundamental in that
they allow to increase the understanding of dispersed two-phase flow dynam-
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ics for configurations where analytic approaches currently fail. These ap-
proaches may therefore greatly help improve our understanding of two-phase
flows, but they are often not applicable to realistic configurations because
of the involved time and/ or length scale disparities. Therefore, simplified
approaches remain of great interest.

An important class of methods deals with dispersed two-phase flows in
the viscous Stokes regime. For such flow, the perturbation generated by an
arbitrary shaped particle may be approximated via a Taylor expansion of the
Green tensor, yielding the multipolar expansion Happel and Brenner (2012);
Kim and Karrila (2013). Due to the linear superposition principle applicable
in the Stokes regime, the perturbation flow resulting from a set of parti-
cles may then be obtained via a sum of multipolar expansions, one for each
particle. The problem then consists in finding the expansion coefficients
that match the boundary conditions on the particle surfaces while taking
into account the influence of a particle’s flow perturbation on its neighbors.
This may be done via methods that imply a resolution of the flow field at
the particle surface or within the volume occupied by the particles, such as
the Boundary Integral Method (BIM) Youngren and Acrivos (1975) or the
Force Coupling Method (FCM) Maxey and Patel (2001); Lomholt and Maxey
(2003). Although these methods are very useful, they do not easily account
for additional physical phenomena such as heating, melting, evaporation/
condensation, fragmentation, etc... at the particle scale. Additionally, dis-
persed two-phase flow approaches that may at least approximately reproduce
convection dominated flows at the particle scale without explicitly resolving
the latter are required for many practical applications Hervo et al. (2018).
Deterministic Lagrangian point-particle methods are an attractive choice to
handle such cases. They allow for a straightforward implementation of phys-
ical models since each particle is tracked individually so that dispersed phase
quantities are available at the particle scale. Moreover, the computational
cost associated with the numerical resolution of the Lagrangian equations is
moderate, although dependent on the number of particles to be simulated.
One important limitation of deterministic Lagrangian point-particle meth-
ods resides in their coupling with the carrier fluid, which is generally ensured
via the point-force (PF) approximation, also called Particle in Cell (PIC)
method Harlow (1962) Crowe et al. (1977). In this approach, the coupling
term is determined by its projection on the numerical grid, making the pro-
cedure non convergent under mesh refinement.

Different regularization techniques have been proposed in the literature
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to handle this issue. Maxey and Patel (2001) proposed the Force Coupled
Model (FCM), where the Dirac delta function is regularized as a Gaussian.
By appropriately setting the regularization length scale, particle velocities
may then be determined by a volumetric integral in the fictitious fluid vol-
ume occupied by the particle. Thus, the particle advancement step immedi-
ately follows from the fluid flow resolution step. However, this relation only
holds in the viscous Stokes regimes and it implies that the fictitious flow field
within the particle is at least approximately resolved. Thus, FCM may there-
fore be considered as a simplified immersed boundary/ penalization method.
Gualtieri et al. (2015) also used a Gaussian regularization in their Exact Reg-
ularized Point Particle (ERPP) method and applied it in the context of the
deterministic Lagrangian point particle approach. They related their length
scale to a characteristic diffusion time scale of vorticity. The authors split the
perturbation flow field in a regular and singular component and showed that
the contribution of the singular component could be neglected provided the
particle Reynolds number was sufficiently small. Capecelatro and Desjardins
(2013) derived and solved a filtered set of equations to explicitly account for
the volume occupied by the Lagrangian particles so as to handle fluid flows
in presence of a dense particle phase. Therefore, the regularization of the
Dirac delta function is implicit within Capecelatro and Desjardins’s model-
ing framework. As will be discussed shortly, the main concern then resides
in the correct evaluation of unperturbed quantities at the particle location.
This aspect was later addressed by Ireland and Desjardins (2017), who re-
ferred to their extended version of Capecelatro and Desjardins’s approach as
volume-filtered Euler-Lagrange (VFEL).
The motivation of the present work lies in an extension of the regularization
procedure proposed by Capecelatro and Desjardins (2013), albeit in the con-
text of deterministic Lagrangian point particle approaches where the global
volume fraction occupied by the particles is assumed negligible Saffman
(1973). In order to locally adjust the regularization length scale and thus
naturally handle varying particle to mesh size ratios, either due to polydis-
persity or spatial mesh size variations, the regularization is performed via
the numerical resolution of a nonlinear diffusion equation. Using a regular-
ization procedure based on the resolution of a transport equation allows to
naturally ensure parallel efficiency, contrary to explicit regularization proce-
dures which require great care in the parallel context Zwick and Balachandar
(2019). Moreover, the method appears general in the sense that it is equally
suited for structured or unstructured numerical solvers. Finally, it appears
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that such equations have been successfully applied in image processing Per-
ona and Malik (1990) and that conditions ensuring well-posedness and con-
vergence to a unique solution are available, both in the continuous Brezis
(1973); Walter (2012) and the discrete case Weickert (1997); Drbĺıková and
Mikula (2007).

Because the point force approximation also involves the hydrodynamic
force vector acting upon the particle, a regularization of the Dirac delta term
alone may prove insufficient to ensure accurate coupling of the dispersed par-
ticle phase with the fluid phase. This is because the evaluation of the force
terms acting on a given particle are based on the velocity field unperturbed
by the current particle, but accounting for the perturbations of all other par-
ticles, in virtue of the Maxey-Riley Gatignol (MRG) equation Maxey and
Riley (1983); Gatignol (1983). Errors associated with the evaluation of the
unperturbed velocity seen by the particle may accumulate over time via the
coupling term and yield substantial error levels. Current corrections are ei-
ther based on an estimate of the flow perturbation for steady or unsteady
viscous Stokes flows Maxey and Patel (2001); Gualtieri et al. (2015); Ireland
and Desjardins (2017) or a truncated Taylor expansion to locally recover the
unperturbed fluid velocity Horwitz and Mani (2016). In the present work,
the analytic solution derived by Maxey and Patel (2001) appears to yield a
reasonably accurate estimate of the self-induced perturbation generated by
the particle in the steady Stokes regime. At finite particle Reynolds number,
a set of corrections recently proposed by Balachandar et al. (2019) is used to
estimate the velocity perturbation set by the particle according to the reg-
ularization length scale and particle Reynolds number. These correlations
are compatible with the proposed methodology in a straightforward man-
ner, allowing to retrieve correct settling speeds at finite particle Reynolds
numbers.

The article is organized as follows. The first part briefly summarizes some
fundamental results related to the point-force approximation and the FCM
approach of Maxey and coworkers Maxey and Patel (2001); Lomholt and
Maxey (2003), which will be used for validation and comparison purposes.
Then, the regularization procedure based on the resolution of an unsteady
nonlinear diffusion is presented. The third section discusses methods to ap-
proximate the unperturbed velocity field to improve the evaluation of the
hydrodynamic force term in the point-force expression. Then, numerical
results validating the proposed regularization procedure are presented. In
particular, it is shown that the regularization procedure is mesh convergent.
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The perturbation flow field resulting from the regularization procedure is also
examined. Following these validations, the settling of an isolated particle and
a pair of horizontally separated particles in presence of two-way coupling in
the Stokes regime may be examined. Finally, the settling problem is also
simulated at finite Reynolds numbers using the corrections proposed by Bal-
achandar et al. (2019). The main findings of the present work and possible
strategies to achieve further improvements are summarized in the conclusion.

2. Point-force approximation

The present section briefly summarizes fundamental theoretical results on
the point-force approximation. Although available in the classical textbooks
of Happel and Brenner (2012); Kim and Karrila (2013), they are rewritten
for self-sufficiency of the present paper, as they will be used for validation
and comparison in the forthcoming sections. In the Stokes regimes, the flow
response to the application of a punctual force vector F located at position
ξ:

−µ∇2u +∇p = Fδ(x− ξ) (1)

is given by:
u(x− ξ) = G(x− ξ)F (2)

where G is the Oseen tensor:

G(x− ξ) =
1

8πµr

(
I +

(x− ξ)⊗ (x− ξ)

r2

)
(3)

with r = |x − ξ| and x 6= ξ. Tensors will be written both in bold and
underlined, whereas vectors will be written in bold only. The point force
approximation correctly represents the leading order term of the perturba-
tion induced by a translating rigid sphere submitted to the hydrodynamic
force F, which decays proportionally to the distance from the sphere. Fur-
ther analysis shows that this results from Lorentz’s reciprocal theorem in
the Stokes regime, which builds the starting point for the multipole expan-
sion. Within this framework, the analytic solution for the flow field around
a translating sphere in the Stokes regime may be described by a monopole
and degenerate quadrupole. Because the degenerate quadrupole term is less
straightforward to impose in a Navier-Stokes solver and because it inversely
scales with the cube of the distance from the particle, the coupling term is
simply approximated as the leading order monopole. This approximation is
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named point-force (PF) or Particle in Cell (PIC) method and will be ab-
breviated PF-PIC in the following Harlow (1962) Crowe et al. (1977). The
projection P < . > of the Dirac delta term on the numerical grid leads to an
implicit regularization:

P < δ(x− xp) >=

{
1

VC,i
, if xp ∈ Ci

0, otherwise.
(4)

where VC,i is a measure for the volume of i−th computational cell contain-
ing the center of gravity of the particle xp. Therefore, the discrete source
term will become increasingly singular with mesh refinement. The source
term may be projected over a set of neighbouring cells via conservative poly-
nomial interpolations. Although such interpolations may efficiently remove
the initial singularity, they are not mesh independent since the source term
interpolation is generally based on a fixed set of neighbouring cells so that
the regularization length scale is still dependent on a local characteristic
mesh size. However, it is important to note that the stream function at
large distances should remain convergent regardless of the mesh dependent
regularization effect Batchelor (1967).

In most applications, drag is the predominant hydrodynamic force acting
upon the particle, and since it is proportional to the particle diameter dp
in the Stokes regime, the singularity of the full coupling term depends on a
ratio involving the particle diameter dp and the characteristic mesh length
scale ∆x. This ratio will be denoted with the symbol ∆ in the following:

∆ = dp/∆x (5)

In order to remove the particle source term singularity, Maxey and Patel
(2001) proposed the Force Coupling Model (FCM). In this approach, the
Dirac delta function is explicitly regularized as a Gaussian centered on each
particle:

δ(x− xp)→ δσ(x− xp) = (2πσ2)−n/2 exp

(
−(x− xp)2

2σ2

)
(6)

with n the number of spatial dimensions and σ the standard deviation.
Maxey and Patel (2001) then derived the fundamental solution of eq. 1Point-
force approximationequation.2.1 with the regularized source term of eq. 6Point-
force approximationequation.2.6. This solution is rewritten below because it
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will be used for comparison purposes in the following sections. The regular-
ized Oseen tensor reads:

Gδσ(x− ξ;σ) =
1

8πµ

[(
I

r
+

(x− ξ)⊗ (x− ξ)

r3

)
erf

(
r√
2σ

)
+(

I

r3
− 3(x− ξ)⊗ (x− ξ)

r5

)
σ2 erf

(
r√
2σ

)]
−

σ2

2µ

(
I− 3(x− ξ)⊗ (x− ξ)

r2

)(σ
r

)2

δσ(x− ξ) (7)

and the resulting flow field is given by eq. 2Point-force approximationequation.2.2
using relation ?? instead of 3Point-force approximationequation.2.3. Using σ
as a free parameter, the authors set the regularization length scale to match
the perturbation velocity at the particle’s center with the terminal velocity of
a particle settling under gravity in the Stokes regime. However, Lagrangian
particle tracking approaches determine the particle velocity by an approxi-
mate force balance so that directly imposing the correct settling velocity is
not viable for them, as will be further discussed in section 4Evaluation of the
unperturbed fluid velocitysection.4. Moreover, if the characteristic stencil of
the Gaussian function extends over several grid cells, great care is required
to ensure the parallel efficiency of explicit regularization procedures Zwick
and Balachandar (2019). Therefore, the regularization procedure proposed
in this paper is rather performed implicitly via the resolution of an unsteady
nonlinear diffusion equation.

3. Regularization procedure via an unsteady nonlinear diffusion
equation

In this section, an implicit source-term regularization procedure based on
the numerical resolution of a diffusion equation is described. Such procedure
should be inherently conservative and adapted to both structured as well as
unstructured solvers. When standard numerical approaches are used for the
resolution of such partial differential equation, only the first neighborhood
of a computational cell is involved, ensuring parallel efficiency. First, the
nonlinear diffusion equation will be presented. Then, the strategy to locally
control the regularization length scale via this equation and the expression
for the diffusion coefficient will be discussed.
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3.1. Nonlinear diffusion equation

It was shown in the previous section that the singularity resulting from the
PF-PIC source-term increases with the length scale ratio ∆ (see eq. 5Point-
force approximationequation.2.5). Thus, in Euler-Lagrange point-particle
simulations with varying values of ∆, source terms associated with the largest
values of ∆ may need to be regularized by spreading them over a finite and
mesh independent length scale. This may be achieved with a linear diffu-
sion equation and a constant diffusion coefficient Capecelatro and Desjardins
(2013). However, all source terms would then be regularized over the same
characteristic length scale, either leading to excessive smoothing for source
terms associated with smaller values of ∆ or insufficient smoothing of the
source terms exhibiting the largest values of ∆. While insufficient smoothing
may fail to efficiently remove the original singularity due to the point-force
approximation and trigger numerical instabilities, excessive smoothing may
result in poor prediction of the fluid flow perturbation induced by the par-
ticles. Therefore, the diffusion coefficient should be a function of space if
polydisperse sprays and/or mesh refinement are to be handled accurately.
In the present work, the diffusion coefficient is a function of the local source
term gradient, leading to a non-linear formulation. Denoting the source term
field to be regularized by φ, the problem to solve writes:

∂φ

∂τ
−∇.

(
D
(
|∇φ|2

)
∇φ
)

= 0,x ∈ Ω, τ ∈ [0; τmax] (8)

φ(0,x) = φ0(x),x ∈ Ω (9)

∂φ

∂n
= 0,x ∈ ∂Ω (10)

where Ω is the computational domain and τmax the final pseudo time of
the regularization procedure. The initial condition φ0(x) is the projection of
the Dirac delta functions related to the particle source terms on the numerical
grid and writes:

φ0(x) = −
∑
p

Fp P < δ(x− xp) > (11)

where xp and Fp denote the position of the p-th particle and the force
vector applied by the surrounding fluid to the particle p. The numerical
projection operator P <> leads to a mesh dependent regularization, see
eq. 4Point-force approximationequation.2.4. While eqs. 7Nonlinear diffusion
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equationequation.3.7-9Nonlinear diffusion equationequation.3.7 describe the
regularization of a scalar field, the particle source term given by eq. 10Non-
linear diffusion equationequation.3.10 is a vector. Although a direct vector
resolution with the definition of a proper tensor norm would have been pos-
sible, a component-wise resolution was chosen for simplicity. The problem
defined by eqs. 7Nonlinear diffusion equationequation.3.7-9Nonlinear diffu-
sion equationequation.3.7 is also known as Perona-Malik problem (Perona
and Malik (1990); Weickert (1997)) and has been widely used and analyzed
in the field of image processing.

The time variable τ and the diffusion coefficient D appearing in eq. 7Non-
linear diffusion equationequation.3.7 have no direct physical significance. For
this reason, the maximum of the diffusion coefficient D is arbitrarily nor-
malized to unity. However, both variables control the local regularization
length scale. In the linear case, the diffusion of a Dirac delta function yields
a Gaussian. From this analytic result, the diffusion length scale is found
proportional to the square-root of the product between diffusion time and
diffusion coefficient:

LD,s ≈ 10 σ (12)

with σ the standard deviation given by

σ =
√

2Dτmax (13)

Therefore, the time required to diffuse a a source term over the regularization
length scale LD,s writes:

τmax =
L2
D,s

200D
(14)

These relations are a priori not valid in the nonlinear case. However,
the nonlinear diffusion coefficient is designed in such way that it remains ap-
proximately constant in the vicinity of a given source term to be regularized.
This aspect will be further discussed in section 5Numerical resultssection.5.
For this reason, the above relations provide a sufficiently accurate estimate
of the regularization length scale, even in the nonlinear case.

In order to make the regularization mesh independent, the regularization
length scale LD,s is a function of the particle diameter. The choice for LD,s
is motivated by two constraints. First, the singularity of the fluid velocity in
the vicinity of the particle should be efficiently removed to ensure numerical
stability. Second, the regularization should not alter the perturbation field set
by the particle. As will be illustrated in section 5Numerical resultssection.5,
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an increase of the regularization length scale LD,s reduces the maximum fluid
velocity levels in the vicinity of the particle. However, it also increases the
distance at which the correct perturbation flow field is recovered, as may be
deduced from eq. ??. Therefore, despite there being no precise quantitative
criterion to define the regularization length scale LD,s, its value should result
from a compromise between these constraints. The value proposed in the
present work is:

LD,s = 6 dp (15)

Note that this value is comparable in magnitude to values proposed in
the literature Maxey and Patel (2001); Capecelatro and Desjardins (2013).

3.2. Expression of the diffusion coefficient

The current procedure aims at smoothing stiff source terms so that the
diffusion coefficient should always be positive. As the magnitude of the
source terms increases with the particle diameter to mesh size ratio, source
term gradients may be used to estimate the local magnitude of this ratio and
adjust the diffusion coefficient accordingly. Clearly, the diffusion coefficient
should become largest for high source term gradients while vanishing for suf-
ficiently low gradient values. Well-posedness of the initial value problem de-
scribed by eqs. 7Nonlinear diffusion equationequation.3.7, 9Nonlinear diffu-
sion equationequation.3.7 and 10Nonlinear diffusion equationequation.3.10 is
guaranteed provided the diffusion flux function is positive and monotonously
increasing. This condition is satisfied if the diffusion coefficient itself is de-
scribed by a monotonously increasing function, see AppendixAProperties of
the Perona-Malik equationappendix.A.

The constraints to be satisfied may be summarized as follows:

D(s) ≥ 0, ∀s ≥ 0 (16)

∂D(s)

∂s
≥ 0, ∀s ≥ 0 (17)

lim
s→0

D(s) = 0 (18)

lim
s→∞

D(s) = 1 (19)

It is easily verified that the following expression for the diffusion coefficient
satisfies all these constraints:

D(|∇φ|2) =
2

π
arctan

(
β

(
|∇φ|2

|∇φ|2max

)α)
(20)
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with (α, β) ∈ R∗+ two adjustable parameters. The reasons motivating the
choice for eq. 16Expression of the diffusion coefficientequation.3.16 and the
values suggested for the parameters α and β are detailed in the following.
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Figure 1: Evolution of the diffusion coefficient given by eq. 16Expression of the diffusion
coefficientequation.3.16 for several values of the parameter α (at constant β).

The aim of the current procedure is to significantly smooth the largest
source term gradients. The initial condition consists of a sum of Dirac delta
functions, so that the initial numerical gradient values scale as ∆x−(n+1),
with ∆x the characteristic mesh size and n the number of spatial dimensions.
Therefore, significant reductions of the largest gradient values, typically over
an order of magnitude or more may be observed. In order to ease the ad-
justment of the local diffusion coefficient magnitudes, the magnitude of the
diffusion coefficient is set via a normalization of the source term gradient by
its global maximal value |∇φ|max at each iteration.

The arctan function is chosen because it allows for a relatively sharp sep-
aration between low normalized gradient values for which little to no diffu-
sion should be applied and large values where the diffusion coefficient should
reach an asymptotic value close to unity. An additional adjustment of the
parameters α and β is necessary to control the magnitude of the diffusion
coefficient according to the normalized source term gradient, as illustrated
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Figure 2: Evolution of the diffusion coefficient given by eq. 16Expression of the diffusion
coefficientequation.3.16 for several values of the parameter β with ∆ = 1 (at constant α).

on figs. 1Evolution of the diffusion coefficient given by eq. 16Expression of
the diffusion coefficientequation.3.16 for several values of the parameter α (at
constant β).figure.caption.1 and 2Evolution of the diffusion coefficient given
by eq. 16Expression of the diffusion coefficientequation.3.16 for several values
of the parameter β with ∆ = 1 (at constant α).figure.caption.2.
Fig. 1Evolution of the diffusion coefficient given by eq. 16Expression of the
diffusion coefficientequation.3.16 for several values of the parameter α (at
constant β).figure.caption.1 shows how a variation of the exponent α at con-
stant β determines the abscissa at which asymptotic values close to unity
(for large normalized gradient values) and close to zero (for low normalized
gradient values) are obtained for the diffusion coefficient. Hence, choosing a
low value for α implies an early saturation of the diffusion coefficient. As a
consequence, significant smoothing would be applied even for relatively small
normalized source term gradients and results would not significantly differ
from those obtained with a linear diffusion equation. In combination with
the parameter β, α also influences the average slope between the asymp-
totic regimes. Precisely controlling this slope is fundamental since it sets
the magnitude of the diffusion coefficient, i.e. the length scale over which a
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source term is regularized. Furthermore, for the relations ??-?? to be ap-
proximately valid in the nonlinear context, the diffusion coefficient applied
to a given particle should not significantly vary when several iterations are
required to numerically solve the nonlinear diffusion equation. Therefore, the
diffusion coefficient should not be too sensitive to local source term gradi-
ent variations either. Finally, the present work indicates that α is linked to
the number of spatial dimensions. While preliminary one-dimensional tests
yielded satisfactory results with α = 2, it was found that α = 4 was nec-
essary to achieve equally good results in three dimensions. As previously
mentioned, the parameter β controls the average slope of the diffusion coef-
ficient in conjunction with the parameter α. Moreover, it also controls the
abscissa for which the diffusion coefficient reaches its asymptotic value for
large normalized gradient value. For this reason, this parameter is related to
a global particle to mesh size ratio:

β = k(n) max
Ω

∆ (21)

where k is the actual constant to be adjusted.
Setting the particle to mesh size ratio value to ∆ = 1, fig. 2Evolution of the
diffusion coefficient given by eq. 16Expression of the diffusion coefficientequation.3.16
for several values of the parameter β with ∆ = 1 (at constant α).figure.caption.2
shows diffusion coefficient profiles for different values of β obtained from vari-
ations of k. In order to obtain a pronounced upper asymptote, k must be
sufficiently large and k = 150 was used in the present work.

Note that a change in the value of the global particle to mesh size ratio
does not invalidate the choices made for these coefficients, as will be demon-
strated in section 5Numerical resultssection.5. However, while the results
obtained with the above formula and parameter values are satisfactory, they
are probably not unique. This is because the influence of the parameters α
and β on the diffusion coefficient profile is not clearly separable in the pro-
posed formulation, in particular with respect to the slope between the two
asymptotic regimes.

The present regularization procedure suffers from a lack of precision once
the regularized source term becomes underresolved on the numerical grid, i.e.
when it spans over a length scale comparable to the distance between the
neighbouring cell centers so that mesh projected and regularized source terms
become indistinguishable. Because of the normalization step by the largest
source term gradient, the current regularization procedure will necessarily
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report a small source term contribution to the first set of neighbouring cells.
Despite this contribution being small for low values of ∆, it results in a source
term that is spread over an effective length scale larger than the target value
LD,s. The regularized source term is underresolved for LD,s ≈ 2∆x, i.e.
∆ . 0.33 for the present value LD,s = 6 dp. However, it appears that the
effective regularization length scale tends to be overestimated starting from
∆ . 0.5. For this reason, an additional constraint is applied to suppress
diffusion when the effective regularization length scale LD,s is lower than
3∆x. This constraint is analogous to the one proposed by Capecelatro and
Desjardins (2013):

2Dτ =

{
L2
D,s, if L2

D,s > (3∆x)2

0, otherwise.

In the present work, eq. 7Nonlinear diffusion equationequation.3.7 was
implemented in a structured Navier-Stokes solver using a standard centered
spatial discretization of the diffusion operator. Time advancement is based
on an explicit scheme. The resulting discrete equation is stable under the
standard CFL condition:

δt ≤ ∆x2

2n
(22)

where δt is the time step used for time integration and n the number of
spatial dimensions. The properties of the fully discretized scheme are ref-
erenced in Weickert and Benhamouda (1997). The test cases indicate that
the explicit CFL condition may become too restrictive for ∆ > 2, as about
ten explicit iteration steps are required for ∆ = 2. Therefore, more efficient
numerical resolution methods appear necessary to make the present method-
ology affordable for realistic applications in presence of large particle to mesh
size ratios. Since the focus of the present work lies in methodological aspects,
such performance considerations are postponed to future work.

4. Evaluation of the unperturbed fluid velocity

An additional difficulty of the regularization procedure lies in the accu-
rate evaluation of the drag force, which sets the amplitude of the source
term to be regularized, see eq. 10Nonlinear diffusion equationequation.3.10.
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In virtue of the Maxey-Riley-Gatignol (MRG) equation Maxey and Riley
(1983); Gatignol (1983), the evaluation of the drag force of a given particle
requires knowledge of the relative velocity between that particle up and the
undisturbed fluid at the particle location ũf@p. The latter is defined as the
fluid velocity that would be seen in absence of the considered particle at the
same location but accounting for the fluid flow perturbations induced by all
other particles present in the flow. Clearly, the undisturbed fluid velocity
ũf@p is not directly available in numerical simulations and the explicit eval-
uation of each particle’s flow perturbation, also referred to as self-induced
velocity in the literature, would be prohibitively costly in realistic applica-
tions Boivin et al. (1998).

For this reason, ũf@p is often approximated by the perturbed fluid ve-
locity at the particle location uf@p. As may be seen from eqs. 2Point-force
approximationequation.2.2 and 3Point-force approximationequation.2.3, the
leading error term of this approximation scales as O(dp/∆x = ∆) in the
Stokes regime. This is consistent with previous findings: the fluid flow singu-
larity in the vicinity of the particle is implicitly regularized by the projection
of the particle source term on the numerical grid only as long as the ratio
between particle diameter and local mesh size is small compared to unity,
motivating the previously described source term regularization procedure.
The latter effectively removes the flow field singularity at the particle posi-
tion so that the particle’s self-induced velocity may be directly evaluated in
a closed form under simplifying assumptions. Assuming a Gaussian source
term regularization of variance σ, Maxey and Patel (2001) derived an an-
alytic expression for the particle’s self-induced velocity u∗,Stf@p in the steady
Stokes regime by evaluating eq. ?? at x = ξ:

u∗,Stf@p = uf@p − ũf@p =

(
2

π

)1/2(
dp
2σ

)
(up − uf@p) (23)

In the present case, the regularization length scale is set to σ = 0.6 dp in virtue
of eq. ??. Therefore, despite efficiently removing the initial singularity and
in turn mesh dependency of the point-force approximation, it appears from
eq. ?? that source term regularization must be combined with a correction
on the particle’s self-induced velocity to warrant accurate results. Note that
a simpler derivation of eq. ?? was recently proposed by Balachandar et al.
(2019). The latter derivation also accounts for the fluid volume occupied by
the particles, yielding a more general expression. However, it is important
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to note that volume fraction corrections are small compared to corrections
on the particle’s self-induced velocity Ireland and Desjardins (2017).

As most practical applications involve moderate but finite particle Rey-
nolds numbers Hervo et al. (2018); Norde et al. (2019), the range of validity
of eq. ?? should be extended beyond the Stokes regime. Assuming a Gaus-
sian source term regularization, Balachandar et al. (2019) derived a set of
correlations from numerical simulations to estimate u∗f@p for particle Rey-
nolds numbers up to 200 as a function of the regularization length scale.
The previous expression of the particle’s self-induced velocity in the steady
Stokes regime is then multiplied by a corrective function Ψ:

u∗f@p = u∗,Stf@pΨ(Rep,σ, F̃ ) (24)

where Ψ is decomposed in a corrective function derived from Oseen’s lin-
earization Ψos and an empirical function χ:

Ψ(Rep,σ, F̃ ) = Ψos(Rep,σ).χ(Rep,σ, F̃ ) (25)

The Gaussian Reynolds number Rep,σ explicitly depends on the particle Rey-
nolds number Rep and on the regularization length scale through the Gaus-
sian variance σ:

Rep,σ = Rep

(
σ

dp

)
(26)

whereas F̃ represents an expression of the drag force non-dimensionalized
with the inertial scaling:

F̃ = 3π
Φ(Rep)

Rep

(
dp
σ

)2

(27)

Φ(Rep) denotes the corrective function for the particle drag at finite particle
Reynolds numbers. In the present case, the expression proposed by Schiller
and Nauman (1935) is used:

Φ(Rep) = (1 + 0.15Re0.687
p ) (28)

For more details on the expressions of the functions Ψos and χ, the reader is
referred to Balachandar et al. (2019).

For the present methodology, the evaluation of the equivalent Gaussian
variance σ appearing in eqs. ??-?? depends on the effective regularization
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length scale. If the regularized source term is sufficiently resolved on the
numerical grid, σ may be directly deduced from eqs. ?? and 11Nonlinear
diffusion equationequation.3.11. Once the regularized source term becomes
underresolved, it is assumed that the equivalent Gaussian spans over the first
neighbouring cell centers, i.e. LD,s = 2 ∆x. In the present case, source term
regularization is suppressed starting from ∆ = 0.5 so that the first method
is used for values of ∆ > 0.5 and the second for ∆ ≤ 0.5.

A different strategy to locally remove the particle’s self-induced velocity at
finite Reynolds number could consist in filtering the perturbed velocity field.
As demonstrated earlier, the present non-linear diffusion equation allows to
locally set a desired diffusion/ filtering length scale and could possibly serve
this purpose. However, an approach based on filtering may only be successful
if the resulting regularization length scale is similar in magnitude to the
particle diameter. This is because a significant scale separation between the
smallest fluid flow structures and the flow disturbances generated by the
particles cannot be invoked in the general case. In practice, it turns out that
the regularization length scale required to accurately predict the terminal
settling velocity of a particle submitted to gravity is only weakly dependent
on the particle Reynolds number and of the order of ten particle diameters,
which seems too large. In a similar spirit, a method based on the subtraction
of perturbed velocity fields filtered at two different scales, typically three
and four particle diameters, was also tested in the present work. While
this method yields excellent results for the settling of a single particle under
gravity regardless of the particle Reynolds number, it fails to predict the
settling of a pair of horizontally separated particles. This is because the
perturbation flow field set by the neighbouring particle becomes relatively
slowly decaying as the particles become separated by more than a few particle
diameters. Hence, subtraction of two perturbed velocity fields filtered at
similar length scales leads to a significant removal of the perturbation flow
field set by the neighbouring particle. In turn, significant errors on the final
settling speed are obtained. Therefore, our present numerical experiments
tend to indicate that procedures based on the filtering of the perturbed flow
field are not suited for the removal of the particle’s self-induced velocity.
Thus, the analytic expression originally proposed by Maxey and Patel (2001)
is combined with the corrections of Balachandar et al. (2019) at finite particle
Reynolds number to remove the particle’s self-induced velocity / retrieve the
undisturbed fluid velocity in the present work.
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5. Numerical results

In the present section, test cases validating the proposed methodology are
presented. First, elementary test cases related to the validation of the non-
linear diffusion equation for source term regularization are discussed. Then,
the coupling with the fluid phase via the regularized source terms is assessed.
Numerical results are compared to analytic solutions in the Stokes regime.
Because the adjustment of the parameters defining the diffusion coefficient
is more tedious as the number of dimensions increases, all results presented
in the current section are obtained from three-dimensional simulations.

The present code solves the unsteady incompressible Navier-Stokes equa-
tions on structured Cartesian grids with staggered variable storage. It is
is based on a Chorin projection method. First, the momentum equation is
solved without pressure term to obtain a first prediction of the velocity field.
The pressure field is then computed using a Poisson equation based on the
predicted velocity field. Finally, a divergence-free velocity field is obtained
by applying the pressure field correction to the predicted velocity field. Time
integration is performed via a second order Runge-Kutta scheme. More de-
tails about the resolution of the numerical methods used for the resolution
of the fluid phase may be found in Zuzio et al. (2016).

Regarding the Lagrangian particle solver, fluid properties are evaluated at
the particle position via a simple trilinear interpolation scheme. The source
term is fully reported to the velocity cell containing the particle’s center of
gravity in virtue of eq. 10Nonlinear diffusion equationequation.3.10. Finally,
the time integration scheme for the particles is identical to that of the fluid
solver.

5.1. Numerical resolution of the non-linear diffusion equation

The first numerical test case illustrates the source term regularization re-
sulting from the numerical resolution of the non-linear diffusion equation with
a single point-force term as initial condition, i.e. a Dirac delta function pro-
jected on the numerical grid, see eq. 4Point-force approximationequation.2.4.
The computational domain consists of a cubic box of size L = 10 dp. The
numerical resolution is performed for a broad range of particle to mesh size
ratios, namely ∆ = (1; 2; 4; 8; 16). Note that the largest values are not re-
alistic and that they are only used to demonstrate numerical convergence un-
der mesh refinement. Choosing the regularization length scale of LD,s = 6 dp,
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the diffusion time τmax is set according to eq. ??. The regularized source
terms are displayed on fig. 3Solution of the non-linear diffusion equation un-
der mesh refinement for particle to mesh size ratios ∆ ranging between 0.5
and 16. All source terms are normalized by Φ(0), the value of the Gaussian
at r = 0.figure.caption.3, along with the Gaussian curve spread over the same
characteristic length scale, i.e. σ = 0.6 dp.
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Figure 3: Solution of the non-linear diffusion equation under mesh refinement for particle
to mesh size ratios ∆ ranging between 0.5 and 16. All source terms are normalized by
Φ(0), the value of the Gaussian at r = 0.

It appears that the regularization length scale is properly imposed, re-
gardless of the value of ∆. Furthermore, the curves obtained for the largest
particle to mesh size ratios indicate that the present method yields regu-
larized source term distributions that closely match the Gaussian reference
curve. This result was unexpected since the Gaussian distribution is not a
solution of the present non-linear diffusion equation. However, the following
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test case will show that the diffusion coefficient prescribed via eq. 16Expres-
sion of the diffusion coefficientequation.3.16 yields approximately constant
diffusion values in the vicinity of a given source term. In order to ensure
that the current procedure is mesh convergent, L2 and L∞ errors of the dif-
ferent solutions are computed with respect to the numerical reference solution
obtained for the largest refinement ∆ = 16:

L2,∆ =

(∑
i

|φ∆(xi)− φ16(xi)|2 ∆Vi

)1/2

(29)

L∞,∆ = max (|φ∆(xi)− φ16(xi))|) (30)

with ∆Vi the volume of the i-th computational cell.
The results are shown in fig. 4L2 and L∞ errors of the regularized source

terms under mesh refinement with respect to the solution obtained on the
finest mesh, i. e. ∆ = 16.figure.caption.4. It appears that the error con-
verges with mesh refinement for both norms and that the present numerical
scheme is second-order accurate. Although the present implementation was
only performed in a Cartesian framework, it is expected that second-order
accuracy may be straightforwardly achieved in an unstructured finite-volume
solver Coudière et al. (1999); Drbĺıková and Mikula (2007).

In order to illustrate that the present methodology may naturally handle
particle to mesh size ratio variations (either due to local mesh refinement or
to polydispersion), the former test case is now performed for three point-force
source terms spread on the same mesh and corresponding to three distinct
particle to mesh size ratios, namely ∆ = 1, 2, 4 . Except for the largest
value ∆ = 4, this range is assumed representative of the largest particle to
mesh size ratios that may be encountered for dispersed two-phase flows in
realistic applications. The aim is to evaluate the regularization procedure
for particle to mesh size ratios where it will be active, i.e. ∆ > 0.5 and
in presence of significant variations of this parameter. The distance between
each particle is large enough to avoid interactions between the different source
terms. The computational domain consists of a cubic box of size L = 30 dp.
The regularized source term distributions are then compared to the respective
Gaussian reference curves.

The result is displayed on fig. 5Regularized source term field and Gaus-
sian reference curves with the same regularization length scale for multiple
source terms. Both curves are normalized by the maximum of the Gaussian
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Figure 4: L2 and L∞ errors of the regularized source terms under mesh refinement with
respect to the solution obtained on the finest mesh, i. e. ∆ = 16.

reference curves.figure.caption.5 and shows that the present methodology al-
lows to locally adapt the regularization length scale. The adjustment of the
local regularization length scale via the variation of the diffusion coefficient is
illustrated in fig. 6Diffusion coefficient field for the multiple source term test
case at five different non-dimensional instants τ ∗ = τ/τmax.figure.caption.6,
which displays the diffusion coefficient profiles at different instants for the
multiple source term regularization problem. First, it appears that the diffu-
sion coefficient magnitudes do not vary significantly over time in the vicinity
of each source term, except in the computational cell where the source term
is applied and its direct neighbors. Here, the source term gradients nec-
essarily decrease as the source term gradient reaches a minimum. Due to
the chosen normalization procedure by the largest gradient at each iteration,
the source term corresponding to the largest value of ∆ displays a diffusion
coefficient close to unity over the entire diffusion time τmax. The diffusion
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coefficients are adjusted for the smaller source term gradients, reducing the
regularization length scale with respect to the source term with the largest
value of ∆. Therefore, although approximate, the proposed expression for
the non-linear diffusion coefficient allows to adjust the local regularization
length scale in combination with an appropriate diffusion time scale. As the
resulting diffusion coefficients are contained within a limited range in the
vicinity of a given source term and since locally they do not significantly
vary over time either, the resulting regularized source terms display shapes
that are close to Gaussian curves. Note that figs. 3Solution of the non-linear
diffusion equation under mesh refinement for particle to mesh size ratios ∆
ranging between 0.5 and 16. All source terms are normalized by Φ(0), the
value of the Gaussian at r = 0.figure.caption.3 and 5Regularized source term
field and Gaussian reference curves with the same regularization length scale
for multiple source terms. Both curves are normalized by the maximum
of the Gaussian reference curves.figure.caption.5 also indicate that for the
present regularization length scale LD,S = 6 dp, explicit regularizations only
involve the first set of neighbouring cells up to approximately ∆ = 1, thus in-
volving no communication overhead for parallel simulations up to this value.
However, several rows of neighbouring cells may be involved for ∆ values of
order unity when considering anisotropic structured grids and unstructured
grids. Moreover, wider regularization stencils, i.e. LD,s > 6 dp, may also be
necessary for stability reasons if the hydrodynamic forces acting on the par-
ticle are large. Thus, the present procedure may typically be recommended
for two-phase flow simulations involving important local refinements such as
reactive two-phase LES’s of aeronautic combustion chambers Hervo et al.
(2018) and dispersed two-phase flows in resolved turbulent boundary layers.

5.2. Coupling with the fluid phase

Now that the approximate regularization procedure for the point-force
source term is validated, the flow field perturbations resulting from these
regularized source terms will be examined. First, the flow field response
to the presence of a single point force written as a Dirac delta function in
a fluid initially at rest is examined. A source term corresponding to the
Stokes drag exerted upon a particle of diameter dp and moving with velocity
up,s = up,s y in a fluid at rest, i.e. F = 6πrpµfup,s, is imposed at the center
of a cubic domain of size L = 32 dp. For these simulations, the velocity
boundary conditions are set to match Stokes’s far field solution for the flow
around a sphere of the same diameter and whose center is located at the same

23



−15 −10 −5 0 5 10

r/dp

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Φ
∆
(r
)/
Φ
(0
)

Regularized Source Term

Gaussian Distributions

Figure 5: Regularized source term field and Gaussian reference curves with the same
regularization length scale for multiple source terms. Both curves are normalized by the
maximum of the Gaussian reference curves.

position Chatelin (2013) The Cartesian mesh is chosen such that the particle
to mesh size ratio ∆ is equal to 2. Results are displayed in a coordinate
system (x, y, z) whose origin x0 coincides with the source term position and
the fluid velocity vector is denoted u = (u, v, w).

The simulation is continued until a steady state is reached for the fluid
phase. The analytic solution of this problem corresponds to the well-known
Oseen tensor when the source term is expressed as the product of the force
vector with the Dirac delta function, see eq. 3Point-force approximationequation.2.3.
This solution correctly represents the leading order term for the flow field
around a rigid sphere in viscous uniform flow. In addition, Maxey and Patel
(2001) derived an analytic solution for this problem when the point force
is regularized as a Gaussian function. The latter appears particularly in-
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Figure 6: Diffusion coefficient field for the multiple source term test case at five different
non-dimensional instants τ∗ = τ/τmax.

teresting since the numerical results obtained in section 5.1Numerical res-
olution of the non-linear diffusion equationsubsection.5.1 confirm that the
present regularization procedure yields source terms whose shape is close
to Gaussian curves. Figs. 7Fluid perturbation in the direction of the force
for ∆ = 2. Perturbations resulting from different regularization length scales
LD,s = 4 dp, 6 dp, 8 dp are compared to Stokes’ analytic solution and the solu-
tion of Maxey and Patel (2001), corresponding to LD,s = 6 dp.figure.caption.7
and 8Fluid perturbation in the direction perpendicular to the force for ∆ = 2.
Perturbations resulting from different regularization length scales LD,s =
4 dp, 6 dp, 8 dp are compared to Stokes’ analytic solution and the solution
of Maxey and Patel (2001), corresponding to LD,s = 6 dp. figure.caption.8
assess the response of the fluid phase to the regularized source terms, re-
spectively in the direction of the force (y) and in a direction perpendicular
to the force (e.g. x). The flow field perturbations obtained with regulariza-
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Figure 7: Fluid perturbation in the direction of the force for ∆ = 2. Perturbations
resulting from different regularization length scales LD,s = 4 dp, 6 dp, 8 dp are compared
to Stokes’ analytic solution and the solution of Maxey and Patel (2001), corresponding to
LD,s = 6 dp.

tion length scales of respectively LD,s = 4 dp, 6 dp, 8 dp are compared on
figs. 7Fluid perturbation in the direction of the force for ∆ = 2. Perturbations
resulting from different regularization length scales LD,s = 4 dp, 6 dp, 8 dp are
compared to Stokes’ analytic solution and the solution of Maxey and Patel
(2001), corresponding to LD,s = 6 dp.figure.caption.7 and 8Fluid perturba-
tion in the direction perpendicular to the force for ∆ = 2. Perturbations
resulting from different regularization length scales LD,s = 4 dp, 6 dp, 8 dp are
compared to Stokes’ analytic solution and the solution of Maxey and Patel
(2001), corresponding to LD,s = 6 dp. figure.caption.8. For comparison pur-
poses, Stokes’ solution for the flow around a sphere of the same diameter is
displayed. Because it corresponds to the regularization length scale set for
the numerical resolution of the nonlinear diffusion equation in the present
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work, the analytic solution of Maxey and Patel (2001) is also plotted for a
regularization length scale set to LD,s = 6 dp.
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Figure 8: Fluid perturbation in the direction perpendicular to the force for ∆ = 2. Per-
turbations resulting from different regularization length scales LD,s = 4 dp, 6 dp, 8 dp
are compared to Stokes’ analytic solution and the solution of Maxey and Patel (2001),
corresponding to LD,s = 6 dp.

It appears that the analytic solution of Maxey and Patel (2001) and
the perturbation resulting from the present regularization procedure for the
same length scale LD,s = 6 dp are almost superimposed for ry/dp > 1 in
the direction of the force and rx/dp > 2 in the direction perpendicular
to the force. On the contrary, differences become more and more signifi-
cant close to the origin. This result is consistent with the regularization
curves obtained in section 5.1Numerical resolution of the non-linear diffusion
equationsubsection.5.1, which deviate most significantly from the Gaussian
reference curves in the vicinity of the origin because the diffusion coefficient
is necessarily lower in the cell where the source term is imposed. Therefore,
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errors are to be expected on the estimate of the particle’s self-induced veloc-
ity: the analytic value obtained from the evaluation of eq. ?? at the origin
deviates from the value obtained through the implicit numerical regulariza-
tion by approximately 8%. The associated error levels vary only slightly with
resolution as long as the regularized source term is discretized on at least 5
grid cells. Once the regularized source term becomes underresolved on the
numerical grid, i.e. indistinguishable from the mesh projected source term,
the regularization procedure is suppressed. In that case, the perturbation
velocity at the particle position is estimated by assuming that the source
term corresponds to a Gaussian spread over LD,s = 2 ∆x. This procedure
yields comparable error levels, i.e. 5% for ∆ = 0.5.

In addition, the magnitude of the perturbation velocity at the origin
decreases for increasing values of LD,s as the singularity originating from the
point-force term is more efficiently damped. On the contrary, the distance
at which the perturbation flow fields matches Stokes’s solution increases for
larger values of LD,s, in particular for the perturbation field in the direction of
the force, see fig. 7Fluid perturbation in the direction of the force for ∆ = 2.
Perturbations resulting from different regularization length scales LD,s =
4 dp, 6 dp, 8 dp are compared to Stokes’ analytic solution and the solution
of Maxey and Patel (2001), corresponding to LD,s = 6 dp.figure.caption.7.
For this reason, an increase of the regularization length scale is expected to
deteriorate the accuracy of the predicted fluid perturbation flow field while
it should alleviate numerical stability issues by reducing the peak of the
perturbation velocity at the particle position. Therefore, the best choice
for the regularization length scale seems to involve a compromise between
stability and accuracy. Furthermore, it depends on the range of values of ∆
that are expected to be encountered in a given application. Therefore, while
general recommendations on the best value for LD,s seem difficult, LD,s =
6 dp appears as a reasonable choice to validate the present methodology. In
particular, this length scale yields a perturbation velocity that lies below the
relative velocity between particle and fluid for the steady point-force problem,
in loose analogy with a maximum principle.

In order to illustrate the aforementioned stability issues, results for the
steady point-force problem without regularization are provided in AppendixB-
Necessity of the regularization procedureappendix.B. In addition, the set-
tling under gravity of an isolated particle in presence of two-way coupling de-
scribed in section 5.3.1Stokes regimesubsubsection.5.3.1 is performed without
regularization but with a correction on the perturbation velocity only in Ap-
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pendixBNecessity of the regularization procedureappendix.B. For ∆ = 1,
pronounced oscillations on the settling velocity become visible in fig. B.15Settling
velocity histories for ∆ = 1. Comparison of one-way (”1W”) and standard
PF-PIC two-way (”2W”) coupled simulations as well as two-way coupled sim-
ulations with regularized source terms without (”2W + RegST”) and with
removal (”2W + RegST + AC”) of the particle’s self-induced velocity. The
final simulation (”2W + AC”) concerns a PF-PIC two-way coupled simula-
tion without source term regularization but with the removal of the particle’s
self-induced velocity.figure.caption.19. Clearly the occurrence of these oscil-
lations depends on numerical details of the source term projection scheme
as well as details of the considered Navier-Stokes solver so that general rec-
ommendations seem difficult to make. Nevertheless, these results tend to
indicate that for large particle to mesh size ratios, source term regularization
may become mandatory to ensure numerical stability.

5.3. Particle settling under gravity

5.3.1. Stokes regime

The current section examines the elementary test case of a particle settling
under gravity. Despite its simplicity, this test case clearly demonstrates the
convergence issues inherent to the Lagrangian point-force approximation in
presence of two way-coupling Gualtieri et al. (2015); Zuzio et al. (2016);
Ireland and Desjardins (2017); Horwitz and Mani (2018). All forces except
drag and gravity are neglected so that particle dynamics are governed by the
following equations:

dxp

dt
= up (31)

dup

dt
=

ũf@p − up

τp
+

(
1− ρf

ρp

)
g (32)

with ũf@p is the fluid velocity at the particle position unperturbed by the
latter, but accounting for the perturbations of other particles. The settling
velocity of the isolated particle is simply obtained as:

up,s = τp

(
1− ρf

ρp

)
g (33)
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Assuming the particle Reynolds number Rep to be much smaller than unity,
the particle relaxation time is analytically known as:

τp =
ρpd

2
p

18µf
(34)

so that eq. 20Stokes regimeequation.5.20 may be evaluated explicitly. The
perturbation of the fluid phase induced by the particle is simulated using
the regularized source term (’2W + RegST’) and the standard PF-PIC ap-
proximation (’2W’) for comparison purposes. In both cases, the unperturbed
fluid velocity at the particle location ũf@p is approximated by its perturbed
counterpart uf@p. A simulation with one-way coupling (’1W’) is used as
reference. Three different particle to mesh size ratios ∆ = (0.5, 1, 2) are
simulated. The simulation domain is a cube of size L = 64 dp. In the
transverse directions, slip boundary conditions are enforced while a periodic
boundary condition is imposed in the direction of the gravitational force.
It was verified that doubling the size of the box did not affect results. All
relevant physical parameters are summarized in table 1Summary of numer-
ical and physical parameters for the particle settling under gravity in the
Stokes regime. The particle Reynolds number is based on the terminal set-
tling velocity.table.caption.9. Following Horwitz and Mani (2018), a Stokes
number St∆ based on the ratio τp/τvisc, with τvisc = ∆x2/νf is used.

∆ (0.5, 1, 2)
Rep 0.04
ρp/ρf 1000
St∆ (14, 55, 222)

Table 1: Summary of numerical and physical parameters for the particle settling under
gravity in the Stokes regime. The particle Reynolds number is based on the terminal
settling velocity.

The evolution of particle velocity over time is shown in fig. 9Comparison of
settling velocity histories in the Stokes regime for one-way (”1W”), standard
PF-PIC two-way (”2W”) coupled simulations and two-way coupled simu-
lations with source term regularization (”2W + RegST”).figure.caption.10.
Both variables are made non-dimensional by dividing them respectively by
the particle relaxation time τp and the final settling velocity up,s. It appears
that the particle’s settling velocity is much less sensitive to mesh refinement
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when the source term regularization is applied, although variations of about
10% are visible for the different values of ∆. Since the regularization proce-
dure itself was shown to be mesh convergent, the remaining spread observed
for the settling velocities is probably due to resolution effects. The residual
error on the settling velocity remains significant with respect to the refer-
ence solution, although significantly lower than the solution obtained with
the PF-PIC approach for the cases ∆ = 1 and ∆ = 2. It appears that
the error levels on the terminal settling velocity are comparable for the case
∆ = 0.5 without regularization and ∆ = 1 and ∆ = 2 with regularization,
which confirms that the regularization procedure should have little effect for
∆ ≤ 0.5.

0 2 4 6 8 10

t/τp

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

u
p
/u

p
,s

2W (∆=0.5)

2W (∆=1)

2W (∆=2)

1W

2W + RegST (∆=1)

2W + RegST (∆=2) 

8.0 8.5 9.0 9.5 10.0
1.5

1.6

1.7

1.8

1.9

Figure 9: Comparison of settling velocity histories in the Stokes regime for one-way
(”1W”), standard PF-PIC two-way (”2W”) coupled simulations and two-way coupled
simulations with source term regularization (”2W + RegST”).

These results highlight the necessity to remove the particle’s self-induced
velocity for a correct evaluation of the drag force. Therefore, the settling
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problem is simulated with the analytic correction given by eq. ?? for ∆ =
(0.5, 1, 2). Despite some discrepancies, the results displayed in fig. 10Settling
velocity histories in the Stokes regime for varying ∆. Comparison of one-way
(”1W”) with two-way coupled simulations with source term regularization
and with analytic removal (”2W + RegST + AC”) of the particle’s self-
induced velocity.figure.caption.11 indicate that the correction is effective as
error levels are significantly reduced compared to the results obtained with
source term regularization only. The relative errors for the terminal settling
velocities with respect to the reference solution amount to +0.8% for ∆ = 0.5,
+3% for ∆ = 1 and −2.5% for ∆ = 2. These orders of magnitude are close to
those reported by Zuzio et al. (2016); Ireland and Desjardins (2017); Horwitz
and Mani (2018).
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Figure 10: Settling velocity histories in the Stokes regime for varying ∆. Comparison of
one-way (”1W”) with two-way coupled simulations with source term regularization and
with analytic removal (”2W + RegST + AC”) of the particle’s self-induced velocity.
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5.3.2. Finite particle Reynolds number

The present section reproduces the same test case as described in the pre-
vious section, but at finite particle Reynolds numbers. The particle Reynolds
numbers based on the terminal settling velocity are respectively Rep = 10 and
Rep = 50. These Reynolds numbers are obtained by decreasing the particle
to fluid density ratio and adjusting the fluid viscosity, see table 2Summary
of numerical and physical parameters for the particle settling under gravity
at finite Reynolds number. The particle Reynolds numbers are based on
their respective terminal settling velocity.table.caption.12. The chosen par-
ticle to mesh size ratios are identical to those used in the Stokes regime, i.e.
∆ = (0.5, 1, 2).

∆ 0.5 1 2
Rep (10, 50)
ρp/ρf 85.33
µf (2.5 · 10−3, 8.9 · 10−4)
St∆ (0.69, 0.37) (2.70, 1.47) (11, 5.9)

Table 2: Summary of numerical and physical parameters for the particle settling under
gravity at finite Reynolds number. The particle Reynolds numbers are based on their
respective terminal settling velocity.

For finite Reynolds number, the particle relaxation time is evaluated with
the correlation of Schiller and Nauman (1935)

τp =
ρpd

2
p

18µf (1 + 0.15Re0.687
p )

(35)

While still involving a single unknown, eq. 20Stokes regimeequation.5.20 may
no longer be solved explicitly when using eq. 22Finite particle Reynolds
numberequation.5.22. As discussed in the previous section, the analytic cor-
rection given eq. ?? is no longer valid and the corrections for finite particle
Reynolds numbers proposed by Balachandar et al. (2019), summarized by
eqs. ??-??, must be used instead.

As may be seen from figs. 11Settling velocity histories at Rep = 10 for
∆ = (0.5, 1, 2) with source term regularization (”RegST”) and removal of
the particle’s self-induced velocity based on the corrections of Balachan-
dar et al. (2019) (”BC”). One-way (”1W”) and standard PF-PIC two-way
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Figure 11: Settling velocity histories at Rep = 10 for ∆ = (0.5, 1, 2) with source term
regularization (”RegST”) and removal of the particle’s self-induced velocity based on the
corrections of Balachandar et al. (2019) (”BC”). One-way (”1W”) and standard PF-PIC
two-way (”2W”) coupled simulations and two-way coupled simulations with regularized
source terms only (”2W + RegST”) for ∆ = 1 are also shown for comparison purposes.

(”2W”) coupled simulations and two-way coupled simulations with regular-
ized source terms only (”2W + RegST”) for ∆ = 1 are also shown for compar-
ison purposes.figure.caption.13 and 12Settling velocity histories at Rep = 50
for ∆ = (0.5, 1, 2) with source term regularization (”RegST”) and removal
of the particle’s self-induced velocity based on the corrections of Balachan-
dar et al. (2019) (”BC”). One-way (”1W”) and standard PF-PIC two-way
(”2W”) coupled simulations and two-way coupled simulations with regular-
ized source terms only (”2W + RegST”) for ∆ = 1 are also shown for com-
parison purposes.figure.caption.14, the corrections proposed by Balachandar
et al. (2019) seem fully compatible with the present methodology, despite a
slight increase of the maximum error on the terminal settling velocity to 6%
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for ∆ = 0.5 at Rep = 10. In particular, errors with respect to the theoret-
ical solution amount to only 0.6 % for Rep = 10 and 1.11% for Rep = 50
for ∆ = 1. Moreover, Horwitz and Mani (2018) also simulated the set-
tling problem under gravity at Rep = 10 with nondimensional parameter
values similar to those of table 2Summary of numerical and physical param-
eters for the particle settling under gravity at finite Reynolds number. The
particle Reynolds numbers are based on their respective terminal settling
velocity.table.caption.12 and their error levels are comparable to the present
ones. Therefore, while Balachandar et al. (2019) raised some concerns about
the compatibility of their corrections obtained from numerical simulations
with a highly accurate spectral element code to solvers with less accurate
and different numerical algorithms as used in the present tests, these differ-
ences do not seem to significantly affect the accuracy on the terminal settling
velocity. This effect could possibly be explained by the significant decrease of
the relative error levels on terminal settling velocities for the numerical sim-
ulations with source term regularization only as the problem becomes more
dominated by convective effects.

5.4. Particle Pair

The present section considers the settling under gravity of a pair of iden-
tical particles in the Stokes regime. The previous section showed that the
present approach is able to predict the terminal velocity of an isolated par-
ticle settling under gravity in the presence of two-way coupling, for particle
Reynolds numbers up to 50. When considering a pair of particles, each parti-
cle alters the motion of the other. Depending on the distance between particle
centers ls, both particles may experience reduced or increased drag, resulting
in an increase or decrease in terminal velocity with respect to the settling
of a single particle Akiki et al. (2017). The settling velocity of the particle
clearly also depends on the orientation of their separation, i.e. vertical or
horizontal. Theoretical results for the terminal settling velocities as a func-
tion of the separation distance are available in Batchelor (1972, 1976). They
are made non-dimensional by division through the settling speed of a single
particle of same size in the Stokes regime:

r2p
s =

u2p
p,s

up,s
(36)

Note that the settling velocities are assumed aligned with a component of the
coordinate system so that the previous relation involves only scalar quanti-
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Figure 12: Settling velocity histories at Rep = 50 for ∆ = (0.5, 1, 2) with source term
regularization (”RegST”) and removal of the particle’s self-induced velocity based on the
corrections of Balachandar et al. (2019) (”BC”). One-way (”1W”) and standard PF-PIC
two-way (”2W”) coupled simulations and two-way coupled simulations with regularized
source terms only (”2W + RegST”) for ∆ = 1 are also shown for comparison purposes.

ties. Only the configuration with horizontal particle separation is studied in
the present case. The simulation setup is exactly the same as for the settling
of an isolated particle, see section 5.3.1Stokes regimesubsubsection.5.3.1. The
simulations are performed for ∆ = (0.5, 1, 2). It is reminded that given the
present choice of the regularization length scale LD,s = 6 dp, the analytic
correction of the particle’s self-induced velocity is applied for all three values
of ∆ while the source term regularization is only enabled for ∆ = 1 and
∆ = 2.
When simulating the particle pair problem, each particle experiences a repul-
sive force that increases the separation length ls in time and in turn modifies
the terminal velocity Esmaily and Horwitz (2018). This increase in ls is not
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consistent with the analytic solution, which assumes fixed positions in the
transverse direction. Therefore, in the simulations presented here, the parti-
cle separation in the transverse direction is held fix so that the particles are
falling in straight lines.

Three different separation lengths ls/dp = 2, 3, 4 are simulated, dp being
the particle diameter. Simulation results are compared with theoretical re-
sults of the literature in table 3Settling velocity ratio of a pair of horizontally
separated identical particles with respect to the settling velocity of a single
isolated particle of the same diameter as a function of several nondimen-
sional separation distances ls/dp. Numerical simulations are compared to
theoretical results from Batchelor (1972, 1976) (second column). Numerical
simulation results are reported for ∆ = (0.5, 1, 2).table.caption.15.

ls/dp r2p
s , theo. ∆ = 0.5 ∆ = 1 ∆ = 2

2 1.1950 1.1974 (+0.2%) 1.2228 (+2.3%) 1.2303 (+2.9%)
3 1.1273 1.1526 (+2.2%) 1.1382 (+0.96%) 1.1540 (+2.4%)
4 1.0947 1.0788 (−1.5%) 1.1019 (+0.65%) 1.1204 (+2.3%)

Table 3: Settling velocity ratio of a pair of horizontally separated identical particles with
respect to the settling velocity of a single isolated particle of the same diameter as a
function of several nondimensional separation distances ls/dp. Numerical simulations are
compared to theoretical results from Batchelor (1972, 1976) (second column). Numerical
simulation results are reported for ∆ = (0.5, 1, 2).

For the chosen regularization length scale of LD,s = 6 dp, the numerical
perturbation flow field induced by the particle in the direction perpendicular
to the applied force approximately matches the analytic solution beyond 2
diameters from the particle center, see fig. 8Fluid perturbation in the di-
rection perpendicular to the force for ∆ = 2. Perturbations resulting from
different regularization length scales LD,s = 4 dp, 6 dp, 8 dp are compared to
Stokes’ analytic solution and the solution of Maxey and Patel (2001), corre-
sponding to LD,s = 6 dp. figure.caption.8. At ls/dp = 2, the perturbation
seems slightly overestimated in fig. 8Fluid perturbation in the direction per-
pendicular to the force for ∆ = 2. Perturbations resulting from different
regularization length scales LD,s = 4 dp, 6 dp, 8 dp are compared to Stokes’
analytic solution and the solution of Maxey and Patel (2001), corresponding
to LD,s = 6 dp. figure.caption.8, which seems consistent the overestimation of
the settling velocity in the numerical simulations for this separation length,
in particular for ∆ = 1 and ∆ = 2. However, when considering the evolution
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of error levels with respect to the theoretical solution for varying particle to
mesh size ratios ∆ at fixed separation length scales, no clear trend appears.
Also, error levels do not decrease uniformly with increasing separation length
scale for ∆ = 0.5. These effects may be partly explained by the varying grid
resolution of the perturbation flow field set by the particle. It is important
to note that the present results were obtained with Faxén’s corrective drag
term Maxey and Riley (1983); Gatignol (1983) based on the perturbed ve-
locity field. The latter was found to have a significant impact on error levels
for the largest particle to mesh size ratio ∆ = 2: while the average error
level amounted to about −4% without Faxén’s correction (not shown), it
decreased to +2.5% with it. On the other hand, Faxén’s correction did not
significantly affect average error levels for ∆ = 0.5 and ∆ = 1. Resolution
effects may again be partially invoked to explain this trend as curvature ef-
fects of the velocity field at the particle scale may only be captured with a
sufficiently refined grid. Esmaily and Horwitz (2018) also studied the settling
of a horizontally aligned particle pair. Two of their simulations, namely for
spherical particles with separation lengths ls/dp = (2, 4) with ∆ = 1 may
be directly compared to those reported in the present work. For these two
simulations, the error levels obtained in the present work are very similar to
those obtained by Esmaily and Horwitz (2018).

6. Conclusion

In the current work, a regularization procedure of the Lagrangian point-
force approach based on the numerical resolution of an unsteady nonlinear
diffusion equation was presented. The proposed expressions for the diffusion
coefficient allow to set the regularization length scale according to local par-
ticle diameter to mesh size ratios. Therefore, the present procedure may han-
dle practical applications involving mesh refinement and polydisperse sprays.
Moreover, it naturally ensures parallel efficiency when the particle source
term regularization length scale spans over more than a few grid cells, as
expected for anisotropic grids, particle to mesh size ratios of order unity and
above as well as large particle source terms for which larger regularization
length scales may be necessary to ensure numerical stability.

The regularization length scale is locally set by enforcing an approxi-
mately constant diffusion level in the vicinity of a considered particle / source
term. In turn, the characteristic diffusion time scale may be approximately
estimated from linear theory as the square root between diffusion coefficient
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and diffusion time. The proposed expression for the diffusion coefficient re-
spects all constraints ensuring well-posedness and convergence to a unique
solution of the partial differential equation. Using a standard centered dis-
cretization of the diffusion operator, convergence to second order accuracy
under mesh refinement was demonstrated on structured grids and should be
equally straightforward to obtain on unstructured grids.

Once implicitly regularized via the nonlinear diffusion equation, the source
terms displayed shapes that were close to Gaussian curves. Therefore, the
perturbation flow field obtained for the regularized source terms was close
to the analytic solution obtained for Gaussian source term regularization
by Maxey and Patel (2001) in the steady Stokes regime. Their analytic so-
lution was then used to retrieve the unperturbed fluid velocity by removal
of the particle’s self-induced velocity. Numerical simulations of the steady
point-force problem showed that error levels on the estimate of this quan-
tity due to deviation of the regularized source term from a Gaussian shape
amounted to about 8%. Moreover, the leading fluid flow perturbation term
was recovered beyond approximately two particle diameters from the parti-
cle’s center of gravity for the chosen regularization length scale LD,s = 6 dp.

The source term regularization procedure and the removal of the parti-
cle’s self-induced velocity were then used to simulate the settling of a particle
under gravity in the Stokes regimes with two-way coupling enabled and par-
ticle diameter to mesh size ratios up to two. Using both ingredients, results
appeared in good agreement for the terminal settling velocity, with error lev-
els of about 3%. Note that source term regularization is disabled once the
regularized source term becomes underresolved on the numerical grid, i.e.
when it spans over a region comparable to the first neighbourhood of a com-
putational cell, so that only removal of the particle’s self-induced velocity is
applied. This is because of a lack of precision to impose the regularization
length scale in the context of underresolution. The settling problem was then
also simulated for a pair of horizontally separated particles for three different
particle to mesh size ratios, i.e. 0.5, 1 and 2. Even for the shortest separation
length of two diameters between the particles centers of gravity, the resulting
settling velocities were found in very good agreement with theoretical results
of the literature Batchelor (1972, 1976), regardless of the particle to mesh
size ratio. For the largest value of the particle to mesh size ratio considered
in the present work, i.e. 2, inclusion of Faxén’s drag correction (based on
the perturbed velocity field) lead to a reduction of error levels for the nu-
merical simulations. On the other hand, the influence appeared much less

39



pronounced for the two lower ratios, i.e. 0.5 and 1.
Although no precise quantitative recommendations can be given regard-

ing the best choice of the regularization length scale, its value seems to involve
a compromise between two opposing constraints. On the one hand, larger
regularization length scales will decrease the magnitude of the perturbation
velocity at the particle position, favoring numerical stability. On the other
hand, the distance from the particle center at which the correct perturbation
flow field is recovered will increase, particularly in the direction perpendic-
ular to the force exerted upon the particle, deteriorating the prediction of
neighbouring particle interactions or increasing the amount of unresolved in-
teractions between particles that need to be modeled in turn. In the present
work, the regularization length scale was then chosen as the smallest value
which yielded a perturbation velocity at the particle position that lied be-
low the relative velocity between fluid and particle for the steady point force
problem, in loose analogy with a maximum principle.

Since the analytic correction of Maxey and Patel (2001) is no longer valid
at finite particle Reynolds numbers, corrections proposed by Balachandar
et al. (2019) were used to simulate the settling problem at finite particle
Reynolds number. The aforementioned corrections appeared compatible with
the proposed methodology as very good agreement was observed for settling
problems simulated at particle Reynolds number 10 and 50 for three different
particle to mesh size ratios.

While these results seem encouraging, many issues need to be adressed.
In order to make the present methodology affordable for realistic applica-
tions in the presence of large particle to mesh size ratios, typically larger
than two, a more efficient and scalable resolution technique of the nonlinear
diffusion equation needs to be found. However, it is unclear whether this
equation may be solved more efficiently with implicit iterative methods. If
no efficient means to solve this equation is found, it could be reformulated
by decomposing the regularization procedure into two distinctive substeps:
the first substep would be used to set the field of spatially varying diffusion
coefficients, while the second would perform the actual regularization based
on this diffusion coefficient field. While the first substep could be handled
with a more general, not necessarily conservative transport equation, the
second substep could be solved with standard implicit iterative schemes. In
this context, a comparison of implementation efforts, accuracy and compu-
tational cost of the methodology in its present formulation with respect to
a scalable explicit regularization procedure as proposed by Zwick and Bal-
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achandar (2019) on a case of intermediate complexity would certainly be of
interest. From a general perspective, it appears that the present method
solves a Eulerian conservation equation to perform the regularization step
and that particle positions are only used to provide the initial conditions
for the regularization problem. Therefore, the cost of the present procedure
should not be significantly affected by the number of particles in the simula-
tion, but only the maximum particle to mesh size ratio, contrary to explicit
scalable regularization methods which are however computationally cheap
at the particle scale Zwick and Balachandar (2019). Therefore, similarly
to Eulerian and Lagrangian approaches for dispersed phase modeling, both
methods display somewhat complementary advantages.
In addition to performance considerations, the accuracy of the present method
should also be assessed on test cases of intermediate complexity such as homo-
geneous isotropic turbulence laden with particles. Changes in both particle
and turbulence dynamics were reported in the literature for this test case,
for instance regarding the rate of energy dissipation Esmaily and Horwitz
(2018), particle settling velocities Ireland and Desjardins (2017) and particle
preferential concentration Horwitz and Mani (2018) when including correc-
tions to recover the undisturbed fluid velocity at the particle position. It
would be interesting to confirm some of these observations using the present
approach.
The final aim is to implement the proposed methodology in an unstruc-
tured Navier-Stokes solver. In such context, the accuracy levels than can
be achieved with the proposed methodology on anisotropic grids need to be
considered. Furthermore, performing numerical simulations of realistic gas
particle systems such as solid propulsion rockets and aeronautic combustion
chambers will require extending the regularization procedure to account for
mass and energy source terms Rangel and Sirignano (1989); Liu et al. (2019).
Finally, the regularization procedure also seems applicable to stochastic point
particle simulations. In the latter, the regularization length scale is no longer
imposed by physical but statistical considerations, typically the innerparti-
cle distance set by the initial sampling of the spray and the evolution of this
quantity during particle transport Norde et al. (2019). With some modifi-
cations, the proposed regularization procedure should also be applicable in
the statistical context, where it could possibly alleviate convergence issues
of point-particle approaches Garg et al. (2009) at a reduced computational
cost.
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AppendixA. Properties of the Perona-Malik equation

The nonlinear diffusion problem proposed by Perona and Malik (1990)
writes:

∂φ

∂t
−∇.

(
D
(
|∇φ|2

)
∇φ
)

= 0 (A.1)

φ(0,x) = φ0(x) (A.2)

∂φ

∂n
= 0 (A.3)

with the corresponding flux function:

Φ(s) = D(|s|2)s (A.4)

Well-posedness of this initial value problem is ensured if the flux function
is monotonously increasing in s Brezis (1973) Walter (2012).

Considering s to be a scalar quantity, the derivative of the flux function
writes:

Φ′(s) = D(s2) + 2s2D′(s2) (A.5)

Therefore, well-posedness is ensured if the diffusion coefficient and its first
order derivative need to be strictly positive functions. Note that proofs of ex-
istence and uniqueness for eqs. A.1Properties of the Perona-Malik equationequation.A.1-
A.3Properties of the Perona-Malik equationequation.A.1 were even estab-
lished for nonmonotone but regularized flux functions Catté et al. (1992);
Alvarez et al. (1992).
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AppendixB. Necessity of the regularization procedure

The present appendix provides a few more details regarding stability is-
sues of the standard PF-PIC approximation.

This first test case simulates the flow field response to the application of a
punctual force described in section 5.2Coupling with the fluid phasesubsection.5.2.
All numerical parameters are identical except that no regularization is per-
formed. Instead, the standard PF-PIC approximation, where the entire
source term is reported to the cell containing the particle’s center, is used.
The simulation is performed for the particle to mesh size ratios ∆ = (0.5, 1, 2).
The flow field perturbations in the directions of the force and perpendicu-
lar to the force are respectively plotted on figs. B.13Fluid perturbation in
the direction of the force for the steady point-force problem using the stan-
dard PF-PIC approximation with ∆ = (0.5, 1, 2). Stokes’ analytic solution
for the equivalent drag force is also plotted for comparison.figure.caption.17
and B.14Fluid perturbation in the direction perpendicular to the force for
the steady point-force problem using the standard PF-PIC approximation
with ∆ = (0.5, 1, 2). Stokes’ analytic solution for the equivalent drag force
is also plotted for comparison.figure.caption.18. Stokes’ analytic solution is
also shown for comparison.

As expected, the magnitude of the fluid velocity perturbation at the par-
ticle center r = 0 significantly increases with ∆ and exceeds three times the
equivalent relative particle to fluid velocity for ∆ = 2. On the other hand,
the far field solution is not affected by the divergence occurring at the origin,
which is consistent with theoretical findings indicating that the convergence
of the stream function at large distances should not be affected by the sin-
gularity at the origin Batchelor (1967). In particular, the fluid perturbations
obtained with the standard PF-PIC approximation seem to yield accurate
solutions beyond approximately ry > 2dp in the direction of the force and
rx > dp in the direction perpendicular to the force. Since regularization
was shown to increase the distance from the particle for which the correct
fluid perturbation flow field is recovered, this confirms that only the minimal
amount of regularization ensuring stability should be applied.

In order to asses the influence of the increasing velocity perturbation at
the particle position, results obtained for the single particle settling problem
under gravity in section 5.3.1Stokes regimesubsubsection.5.3.1 are reported
in fig. B.15Settling velocity histories for ∆ = 1. Comparison of one-way
(”1W”) and standard PF-PIC two-way (”2W”) coupled simulations as well
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Figure B.13: Fluid perturbation in the direction of the force for the steady point-force
problem using the standard PF-PIC approximation with ∆ = (0.5, 1, 2). Stokes’ analytic
solution for the equivalent drag force is also plotted for comparison.

as two-way coupled simulations with regularized source terms without (”2W
+ RegST”) and with removal (”2W + RegST + AC”) of the particle’s self-
induced velocity. The final simulation (”2W + AC”) concerns a PF-PIC
two-way coupled simulation without source term regularization but with the
removal of the particle’s self-induced velocity.figure.caption.19 with an addi-
tional test case. The latter consists in a standard PF-PIC two-way coupled
simulation for ∆ = 1 with application of the velocity correction procedure.
Again, the regularization length scale of the Gaussian projection is obtained
assuming that the associated regularization length scale is LD,s = 2∆x. As
may be seen from fig. B.15Settling velocity histories for ∆ = 1. Comparison
of one-way (”1W”) and standard PF-PIC two-way (”2W”) coupled simula-
tions as well as two-way coupled simulations with regularized source terms
without (”2W + RegST”) and with removal (”2W + RegST + AC”) of the
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Figure B.14: Fluid perturbation in the direction perpendicular to the force for the steady
point-force problem using the standard PF-PIC approximation with ∆ = (0.5, 1, 2).
Stokes’ analytic solution for the equivalent drag force is also plotted for comparison.

particle’s self-induced velocity. The final simulation (”2W + AC”) concerns
a PF-PIC two-way coupled simulation without source term regularization
but with the removal of the particle’s self-induced velocity.figure.caption.19,
pronounced oscillations on the settling velocity are visible for this test case.
Moreover, the average error level on the settling velocity seems significant.
Adjustments on the velocity correction were tested to reduce the error level,
but they appeared to magnify the oscillations (not shown). Therefore, the
main issue seems to lie in the increased sensitivity of the particle to the
applied fluid velocity correction as the latter exceeds the relative velocity
between fluid and particle in magnitude. Clearly, the occurrence of these os-
cillations depends on numerical details of the considered Navier-Stokes solver
and employed particle source term projection scheme. Therefore, while quan-
titative recommendations on the best choice of the regularization length scale
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seem difficult to make, the latter may be mandatory for reasons of numerical
stability.
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Figure B.15: Settling velocity histories for ∆ = 1. Comparison of one-way (”1W”) and
standard PF-PIC two-way (”2W”) coupled simulations as well as two-way coupled simu-
lations with regularized source terms without (”2W + RegST”) and with removal (”2W +
RegST + AC”) of the particle’s self-induced velocity. The final simulation (”2W + AC”)
concerns a PF-PIC two-way coupled simulation without source term regularization but
with the removal of the particle’s self-induced velocity.
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