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Abstract 

Tidal bores may appear in some estuaries when the tides quickly reach a high level. This 

phenomenon is rare but has a strong impact during its short duration: i.e. the river bed is 

significantly eroded and sediments are then transported. In this paper, the trajectories of 

suspended particles induced by this flow are numerically studied. Four undular bores with 

Froude numbers between 1.1 and 1.2 are studied. Despite similar Froude numbers, various 

initial flow conditions were selected to produce or not an inversion of the flow direction 

during the bore passage. The particle trajectories associated with each distinct flow 

configuration are presented and analyzed. These trajectories, estimated by solving the Maxey-

Riley equation, appear to be very different even though the Froude numbers of flows are 

similar. These observations are important because the Froude number is often used to 

characterize a tidal bore as it describes well the free surface, however, it cannot describe the 

sediment transport. Finally, Chen’s model of wave-current interactions is adapted to fit the 

cases studied and is applied to the four bores simulated. The results highlight that this latter 

model can reproduce the observed trajectories and dissociate their different components. 

From this model, it is shown that the inertial and Basset history effects can be neglected 

compared to the gravity and flow entrainment effects due to the viscous drag when one wants 

to determine the long-term trajectories of suspended particles. 

Keywords: Tidal bores, Sediment transport, Trajectories, Physical modeling, Numerical 

modeling 
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1 Introduction 

 

A tidal bore is a kind of hydraulic jump in translation. If the tidal curve at a given position 

along a tidal river, namely the water elevation due to the tide as a function of time, is 

characterized by the presence of an inflexion point, then the tide features a tidal jump 

(Bonneton et al., 2015; Champion & Corkan, 1936; Rousseaux et al., 2016). As discussed by 

Bonneton et al. (2012), tidal jumps can be invisible to the eye, but they may be detected by 

sensors. When they become visible for higher tidal ranges, a tidal jump is then called a tidal 

bore. In France, tidal bores were formerly called "barres de flot" as in the Seine River because 

the bore crosses the river section and it happens during the flood phase ("flot") which is much 

shorter than the ebb phase ("jusant"). In the english-speaking countries, the bore comes from 

the Icelandic "bara" which means a billow or wave. The word appears in the Icelandic 

proverbial equivalent of the myth Scylla and Charybdis ("sigla milli skers og bàru", lit. "to 

sail between a rock and a wave") (Coates, 2007). In south-western France, near Bordeaux, a 

tidal bore is called "mascaret" in the local Gascon language, namely the "water rat", because 

on these rivers with inclined banks, the tidal wave has the appearance of a black rat running 

fast along the banks. Indeed, a turbid zone (with a dark color due to the turbulence and the 

mud) is seen on the banks with a jet-like shape similar to the face of a rat (de Lagrave-Sorbie, 

1806). 

In his seminal study on surges in an open water channel, Favre (1935) distinguished four 

types of surges ("intumescences") propagating on the top of the channel current: A- a 

downstream positive surge ("onde positive d’amont"), B- a downstream negative surge ("onde 

négative d’amont"), Can upstream negative surge ("onde négative d’aval"), and D- an 

upstream positive surge ("onde positive d’aval"). A tidal bore is an example of a positive 

surge propagating upstream. The surge is generated at the head of the tidal wave propagating 

upstream in a river, the river current being the sum of the current in the river coming from the 

river source and the current due to the previous tide leaving the river. Other cases of a positive 

surge propagating upstream can be experienced either in the laboratory; for example, one 

produces them, following Bidone (1825), by closing partially or totally a gate in a water 

channel at the downstream end of the channel: a surge is generated and propagates upstream; 

one may also produce an analogue of the tidal wave (Rousseaux et al., 2016) or in the field 

such as a plunging breaker on dissipative beach generates a beach bore in the surf region 

which propagates upstream in the run-up of the previous breaking wave in the swash zone 
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(Gaughan, 1976). Unfortunately, the term upstream positive surge is somehow incomplete 

since it does not express if the current in the river is reversed or not due to the passage of the 

bore. Hence, one should specify if the positive surge propagating upstream induces or not a 

flow reversal. Indeed, the tidal bore may induce a flow reversal or not, a partial flow reversal 

in time, a delayed flow reversal (a few minutes after the bore passage), or even a stratified 

reversal. Partiot (1858) reported a river current reversal close to the bed before seeing a 

reversal on the free surface using buoys. 

In this work, upstream positive surges with or without a flow reversal are studied during the 

flood phase of the tide (the typical time scale is a few minutes to neglect the temporal 

evolution of the tide vs. a corresponding time scale of the order of one hour: this hypothesis 

can be considered as a quasi-static approximation). Conversely, the typical length of stubbles 

(secondary waves in the undular case) or the bore front (of the order of a few meters) should 

be small with respect to the longitudinal variations of both the depth and width of the river: 

this hypothesis can be considered as a quasi-uniform approximation. Therefore, the system 

(bore+river) will be described by four variables namely h1, V1 for the depth and velocity 

respectively, on one side of the river and h2, V2 for the depth and velocity respectively, on the 

other side of the river with respect to the bore front. The velocity vector of the bore, Vb, is 

always opposite to V1 but V2 can initially be either positive or negative with respect to V1. h2 is 

always higher than h1 in order to have a positive surge. Within this hydrodynamic framework, 

the sediment transport induced by a tidal bore is studied by an upstream positive surge with or 

without a flow reversal in the river. 

Despite the fact a great deal of work has been devoted to these interactions, the complex 

phenomenon of sediment transport by a tidal bore still retains an unexplained part for which 

new insight and new tools may be of some interest. Although at early times interpretations 

made use of analogies with animals’ fights (lobster and eel in the Petitcodiac river 

(Sentinelles Petitcodiac Riverkeeper [SPR], 2001)), more recent mathematical tools are now 

available and even a complete Navier-Stokes simulation of bores with simplified geometry is 

possible (Lubin et al., 2010a; Lubin & Glockner, 2015). However, the velocity and pressure 

fields do not explain everything and further analysis is still required, especially regarding 

sediment dynamics. To the best of the authors’ knowledge, Chanson and Tan (2011) were the 

first to tackle the sediment transport locally with the help of experiments. They look to 

particle trajectories under undular and breaking bores trying to understand the dispersion 

induced by the flow. An interesting motivation for this work is to assess the spatio-temporal 
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distribution of fish eggs in a tidal bore. This is a subject of current interest for biologists, 

indeed, the concentration of fish eggs is intimately tied to the salinity along the river and 

varies during the ebb-flow period (MacInnis, 2012; Reesor, 2012; Tull, 1997). As a matter of 

fact, biologists have shown that the egg concentration was highest when the salt concentration 

was lowest. Knowledge of the sediment transport in the water column should be related to the 

egg concentration in order to better understand the mechanisms associated to the fish 

reproduction, which is of great environmental interest, especially for endangered species. 

Chanson and Tan (2011) observed both helicoidal trajectories under an undular bore and 

chaotic trajectories under a breaking bore. According to them, the orbital trajectories were 

somehow comparable to the particle motion beneath regular wave crests, but the entire 

trajectories were a combination of orbital paths superposed to a downstream advection. In the 

present study, four types of undular bores resulting from the wave-current interaction problem 

between the river flow and the tidal wave are introduced. It is shown that depending on the 

flow condition the river current does or does not outweigh the tidal wave even though a tidal 

bore is observed in both cases. In particular, the different flow configurations are displayed 

for very close values of the Froude number depending on the tidal bore as well as the river 

characteristics and conditions using the Computational Fluid Dynamics (CFD) code Thetis. 

Then, the trajectories of the suspended particles solving the modified Maxey and Riley (1983) 

equation are presented. From the Chen’s model of wave-current interaction (Chen et al., 1964, 

2010, 2012; Chen & Chen, 2014; Hsu, 2016), a hydrodynamic analysis is made for the four 

undular bores considered. Numerical results support the conclusions of this paper. 

2 Flows studied 

2.1 Description of the model of positive surges 

The first analytical studies of tidal bores were proposed by Barré de Saint Venant (1871) 

using a quasi-steady flow analogy. Figure 1 presents a sketch of the classical system used to 

model tidal bores and surges. For the non-moving frame of reference with respect to the river 

bottom, V1 is the initial flow velocity positive downstream, V2 is the flow velocity after the 

bore passage which can be positive or negative depending on the occurrence of the flow 

reversal or not, Vb is the bore velocity positive upstream. V1 and V2 are considered as the mean 

flow velocities integrated over the water column. h1 is the initial steady water depth and h2 is 

the water depth after the bore passage. During its propagation, a bore must satisfy the 

momentum and continuity principles (Chanson, 2011; Rayleigh, 1908; Stoker, 1957). 

Neglecting friction losses, assuming a hydrostatic pressure distribution and a constant velocity 
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distribution, the integral form of the equations for the conservation of mass and momentum 

gives a series of relations between the flow properties during the bore propagation: 

 (     )   (     )    (1) 

   (           )        (         ) (                 ) (2) 

where g is the gravitational acceleration. Eqs. 1 and 2 lead to the introduction of a 

dimensionless number: the Froude number, Fr. Within the previous hypotheses, it is defined 

by: 

         √    (3) 

which is often used to study tidal bores and surges (Chanson, 2011). In most cases, the Froude 

number indicates the bore intensity and shape. Four cases are distinguished: 

 For a Froude smaller than unity, no bore appears. 

 For Froude numbers greater than 1 and less than 1.25 – 1.5, the bore front consists of a 

smooth undulation followed by a series of other undulations with decreasing 

amplitude. The bore is then called an undular bore. 

 For Froude numbers greater than 1.5 – 1.7, a breaking roller appears on the bore front 

with secondary undulations which are small and hard to distinguish from the breaking 

roller turbulence. The bore is called a breaking bore. 

 The last type, sometimes classified as a breaking or undular bore, has a shape between 

undular and breaking bores. Its global shape resembles an undular bore but with 

foaming/breaking of the front and secondary undulations. The Froude number is 

approximately between 1.25 to 1.6. 

Note that this classification is qualitative. Undular bores have been observed for Froude 

numbers up to 2 (Ryabenko, 1998). Nonetheless, in most cases, the previous classification 

translates well from field studies into modeled studies, particularly when the effects of bed 

friction and cross-sectional shape are also taken into consideration (Chanson, 2012). 

2.2 Presentation of the study cases 

The flow hydrodynamics during undular bores was obtained by running four different cases of 

numerical simulations. All the numerical simulations are two dimensional (2D). Table 1 lists 

the initial flow conditions used to simulate the bore hydrodynamics with their expected 

Froude number resulting from the experimental measurements or the analytical formula. Two 
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cases (A and B) were based on experimental studies in a laboratory channel (Chanson, 2010a, 

2010b), whereas the other cases (C and D) were chosen for their flow conditions being 

solutions of Eqs. 1 and 2. The latter conditions were selected to model bore conditions where 

V1 and V2 are in opposite directions contrarily to the cases based on experiments (Table 1). 

The complete numerical domain consists in a vertical rectangle (Fig. 2) where the bore 

propagation takes place between x = 0 to x = 10 m. x is the longitudinal position along the 

channel, and z is the vertical position above the channel bottom. The domain was filled with 

water initialized with the depth, h1, and velocity, V1. Depending on the case, h1 and V1 were 

given by experimental studies or by solving Eqs. 1 and 2. A constant and uniform velocity 

profile is imposed at the inlet boundary, no attempt being made to match with any velocity 

profile corresponding to a natural river flow, this being out of the scope of the paper. The 

study is an idealized 2D numerical exercise showing the different characteristics which can be 

encountered depending on the boundary conditions. For Cases A and B, the bores were 

generated by the impact of the flow against a completely or partially closed vertical boundary, 

similar to the experiments. For Cases C and D, two rectangles of water with different heights, 

h1 and h2, were set with two flow velocities, V1 and V2, for x < 0 and x > 0, respectively 

2.3 Governing equations and numerical methods 

Positive surges were simulated using the CFD code Thetis (Lubin et al., 2010b; Lubin & 

Glockner, 2015) by solving the Navier-Stokes equations in their multiphase forms (Kataoka, 

1986). The governing equations for the Large Eddy Simulation (LES) are classically derived 

by applying a convolution filter to the unsteady Navier-Stokes equations (Sagaut, 2006). LES 

models have been developed as a function of the grid size, which can be 2D or three 

dimensional (3D). So, from a numerical point of view, LES can be used to run 2D or 3D 

simulations. It has been found that some 2D LES simulations can give very similar results 

when compared to very fine 3D LES simulations for some averaged quantities such as the 

energy dissipation (Lubin & Glockner, 2015; Marques Rosas Fernandes et al., 2016). As the 

Reynolds number is around 100,000 (based on a typical depth of the water, i.e. half a meter), 

the flow is turbulent which validates the use of a LES model. The interface air/water was 

tracked by a Volume Of Fluid method (VOF) using a piecewise linear interface construction 

model (Youngs, 1982). The system of equations yields: 

        (4) 

  (     (    ) )                  [(    )(      )]  (5) 
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             (6) 

where u(x,z,t) is the actual velocity at a point (x,z) and a time t, ρ(x,z,t) is the fluid density, 

p(x,z,t) is the pressure, Bu is a matrix penalizing the velocity components on the boundary, 

µ(x,z,t) is the fluid viscosity, K is a permeability coefficient, µ t is the turbulent viscosity, and 

C(x,z,t) is the phase function. These two latest quantities enable the setting of an absorption 

boundary condition at the upper limit of 2D numerical domains, as discussed in the next 

section. The turbulent viscosity, µ t = νtρ where νt is the Kinematic turbulent viscosity, is 

calculated with the Mixed Scale model (Sagaut, 2006). It is derived from a weighted 

geometric average of the Smagorinsky (1963) subgrid scale model and the Turbulent Kinetic 

Energy (TKE) subgrid scale model (Bardina et al., 1980) (νt=(νt,smago)
0.5-(νt,TKE)0.5). The 

magnitude of physical characteristics of fluids depends on the local phase. The physical 

characteristics are defined according to C as: 

       (   )   and       (   )   (7) 

where ρa, ρw, µa, and µw are the densities and viscosities of air and water, respectively. Time 

discretization of the momentum equation is implicit and an Euler scheme is used. The 

velocity/pressure coupling under the incompressible flow constraint is solved with the time 

splitting pressure correction method (Goda, 1979). The equations are discretized on a 

staggered grid by means of the finite volume method. The space derivatives of the inertial 

term are discretized by a hybrid upwind-centered scheme, whereas the viscous term is 

approximated by a second order centered scheme. The interface tracking is achieved by a 

VOF method and a Piecewise Linear Interface Calculation (PLIC) (Youngs, 1982). This 

method has the advantage of building a sharp interface between the air and the water. 

A phase function, C, is used to locate the different fluids. Since the phase function is not 

defined at each point where the viscosities and densities are needed for the Navier-Stokes 

discretization, the physical characteristics are interpolated on the staggered grid. Linear 

interpolation is used to calculate the density on the velocity nodes, whereas harmonic 

interpolation is used for the viscosity. The Message Passing Interface (MPI) library is used to 

parallelize the code, the mesh being partitioned into equal size subdomains to ensure load 

balancing. The HYPRE parallel solver and preconditioner library is used to solve the linear 

systems (Falgout et al., 2006). The numerical code has already been extensively verified and 

validated through numerous test-cases including mesh refinement analysis for coastal 

applications (Lubin et al., 2006, 2010a, 2010b; Lubin & Glockner, 2015; Simon, 2013). The 



8 

 

accuracy of numerical schemes and the conservation laws of mass and energy in the 

computational domain have been accurately verified. 

2.4 Initial conditions of the numerical simulations 

Two-dimensional numerical domains were used in this study and partitioned into 32 

subdomains (one processor per subdomain). For Cases A and B, the bore propagates in a 

domain similar to experimental conditions (Fig. 2). For Cases C and D, there is no 

experimental measurement where V1 and V2 are in opposite directions, therefore, the domains 

needed to be longer than for Cases A and B (Fig. 2). It was necessary for the simulation 

initialization as well as to increase the duration of the bore propagation in order to track the 

sediment particles during the complete bore passage. 

In each case, the domain was 0.5 m high to avoid water from leaving the numerical domain 

through the top boundary during the splash happening when the flow runs up the downstream 

boundary. The water and the air filled the domain (Fig. 2). The viscosities of air and water 

were set to µa = 1.85×10-5 kg/ms and µw = 10-3 kg/ms, respectively, and the densities of air 

and water were set to ρa = 1.176,8 kg/m3 and ρw = 1,000 kg/m3, respectively, under a gravity of 

9.80 m/s2. The channel bed was set with a no-slip boundary. The channel inflow (right side) 

continuously injected water between z = 0 and h1 at a velocity V1 for every simulation. This is 

done to satisfy Eqs. 1 and 2 on the right-hand side of the bore (Fig. 2) with the two 

components of the flow velocity, longitudinal ux = V1 and vertical uz = 0 m/s, on the right 

boundary. The top of the domain was set with a Neumann condition letting the air move freely 

in and out of the domain. Such a condition can induce non-physical velocities. This potential 

error was controlled using an absorption layer. The absorption layer was a 0.15 m zone located 

beneath the top boundary with a smaller permeability than the air set to K = 10-5 m2.  

For Cases A and B, the 2D numerical domains are discretized into 5,500×500 regular 

Cartesian cells. The grid is evenly distributed in longitudinal and vertical directions, giving a 

mesh grid resolution of ∆x = 2×10-3 m and ∆z = 10-4 m. In order to generate the bore for Cases 

A and B, the outflow boundary was closed between z = hg to 0.5 m with a no-slip boundary 

keeping a Neumann condition between z = 0 m to hg where hg is the opening of the gate. 

For Cases C and D, the 2D numerical domains are discretized into 7,500×500 non-regular 

Cartesian cells. In the longitudinal direction, the grid is clustered with a constant grid size 

∆x=2×10-3 m below z = 3×10-2 m from x = -1 m to x = 10 m, then increasing exponentially for 

x > 10 m. In the vertical direction, the smallest mesh grid resolution ∆zmin = 5×10-5 m is set at 
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the bottom, then the grid is clustered with a constant grid size ∆z = 5×10-4 m in the free-

surface region. A non-regular grid resolution is used here, with a maximum mesh grid size at 

the top of the numerical domain. The water was injected in the domain (x = -1 m) at a velocity 

V2 between z = 0 to h2 (ux = V2 and uz = 0 m/s on this part of the boundary).  

For both simulations, the rest of the inflow conditions were set with a no-slip boundary. The 

details of the computational properties are listed in Table 2. 

3 Flow hydrodynamic properties 

3.1 Case A: hydrodynamics dominated by undulations 

Case A started with the downstream boundary completely closed, hg = 0 m. The flow 

impacted the gate without splash but created an elevation of the water level propagating 

upstream. Figure 3 shows the dimensionless time evolution of the free surface at two locations 

from the gate, comparing numerical data and experimental measurements. The 2D numerical 

simulation reproduced the free surface evolution with good agreement. A direct comparison 

(the ratio of the numerical results over the experimental data) showed that the bore conjugated 

depth, the first undulation maximum height and the first undulation minimum depth were 

within 2% of the experimental data (Chanson, 2010a). The wavelength and amplitude were 

simulated within 9% of the experimental data, while the bore celerity was found to be within 

1% error. Figure 3 shows the velocity signals measured at x = 7.15 m away from the gate and z 

= 0.065,8 m deep. Both velocity components are compared to the experimental measurements, 

showing similar trends and evolutions as the bore propagates. 

Figure 4 shows the variation of the velocity magnitude ||u|| during the bore propagation (case 

A) at three different times with streamlines and black isolines of ux = 0 m/s. Within the first 

meter of propagation, the bore quickly took the form of an undular bore followed by 

secondary undulations (Fig. 4). As the bore propagated, the front amplitude increased, while 

smaller undulations appeared one after another at the wave train tail. The amplitude and 

wavelength of the secondary undulations decreased from the bore front towards the tail (Fig. 

4). Between the tail of the wave train and the gate (x = 0 m), the water level remained mostly 

unchanged for the entire bore propagation. The reached water level was equal to the bore 

conjugate depth, h2. 

Looking now at the flow velocity evolution, it evolved in synchronization with the free 

surface motion (Fig. 4). The longitudinal component, ux, of the flow velocity was completely 

positive and mostly negative beneath the crest and the trough, respectively, as shown by the 
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streamlines in Fig. 4. Beneath the first crest, the longitudinal component of the flow velocity 

changed direction flowing upstream along the entire water column (contour line in Fig. 4). 

Under the front and close to the bed, the flow reversal was particularly strong with an 

intensity of 1.1×V1 at z = 2 mm above the bed. Beneath the first wave trough, the flow 

direction changed again, flowing downstream except on a small zone near z = 0 m. This zone 

was detached from the bed and located between z ≈ 1 to 3 mm. As a consequence, a zone of 

the flow velocity reversal was observed close to the bed. 

Beneath the following secondary undulations, the longitudinal component of the flow velocity 

followed a similar pattern to the one observed beneath the first wave crest and the trough with 

a longitudinal component of the flow velocity flowing alternatively upstream and downstream 

but with a velocity range progressively decreasing (Fig. 4). Nonetheless, after the second or 

third wave trough, the longitudinal component of the flow velocity was oriented upstream a 

few millimeters beneath the free surface of the wave troughs (isoline ux = 0 m/s in Fig. 4). For 

this case, the flow mostly changed direction beneath each wave crest and trough. Moreover, 

the flow velocity was nearly zero after the bore passage, between the wave train tail and the 

gate. It was expected to be zero for the bore flow parameters to be the solution of Eqs. 1 and 2. 

A more detailed analysis was presented in Simon (2013). Here, the flow was dominated by the 

undulations (Berchet, 2014). 

3.2 Case B: hydrodynamics dominated by the initial current 

Case B started with the downstream boundary partially closed (hg = 0.1 m). As the flow 

impacted the gate, splashing occurred with some air bubbles entrained below the gate. The 

water accumulating against the gate remained chaotic and bubbly during the first meter of 

propagation (Fig. 5). Then, the unsteady free surface became smooth and propagated upstream 

as an undular bore. As it propagated, more secondary undulations appeared. The tail of 

secondary undulations never detached from the gate during the propagation of the bore in the 

10 m long domain, contrarily to the one observed in the simulation of Case A. Within 20 cm 

from the gate, the flow remained tumultuous with occasional splashing and air entrainment. 

The mean average water depth near the gate slightly increased by 2 - 3 cm as the bore 

propagated between 2 to 8 m from the gate. From one secondary undulation to another, both 

the wave amplitude and the wavelength decreased from the wave front to the wave tail (Fig. 

5). The flow velocity evolved in synchronization with the free surface. The longitudinal 

component of the flow velocity, ux, decelerated and re-accelerated beneath the wave crest and 

wave trough, respectively (Fig. 5) contrarily to Case A where ux changes direction. Beneath 
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the bore crest, the flow was oriented downstream except close to the bed at z < 2 cm for Case 

B (Fig. 5). The recirculation reached a value up to 0.84 × V1 (ux = 0.7 m/s). 

Downstream of the velocity reversal, spinning structures were ejected as the bore propagated 

(Fig. 6). The rotating structures appeared with a frequency of 10.5 Hz during the bore 

propagation and created local zones of low pressure (Fig. 6) as detailed in Simon (2013). The 

structures also had an effect on the vertical component of the flow velocity, uz, that did not 

undulate in synchronization with the increase and decrease of the water depth but rather 

fluctuated quickly with the generation and ejection of eddies. In addition to the flow reversal 

near the bed, a strong flow deceleration took place 1 cm beneath the free surface crest with the 

horizontal component of the flow velocity, ux, reaching -0.1 m/s. For this case, the flow 

mostly kept its initial direction beneath each crest and each trough except close to the bed 

beneath the crest where an intense flow reversal appeared. A more detailed analysis was 

presented in Simon (2013). Here, the flow was dominated by the initial current (Berchet, 

2014). 

3.3 Case C: hydrodynamics partially dominated by undulations and then bore flow 

Case C started by the collapse of the higher water domain (h2 > h1 at x = 0) over the initial 

flow. The bore front quickly appeared and propagated upstream as an undular bore. The free 

surface evolution during the undular bore propagation is similar to Case A (already discussed) 

and Case D (to be discussed), with secondary undulations appearing progressively and 

detaching from x=0 (Fig. 7). The conjugate height of the bore conjugate depth, h2, also 

remained unchanged after the bore propagation. The flow evolution in Case C was a 

combination of Cases A and D. 

Beneath the bore front and the first undulations, the flow was similar to Case A, with ux being 

positive beneath the crest and mostly negative beneath troughs (Fig. 7). As for Case A, under 

crests, ux was larger near the free surface and near the bed over the water column (1.6 × V1 

and 1.5 × V1, respectively, for the front at x = 5 m). Beneath the secondary undulations, the 

surface of areas where ux was negative beneath the trough progressively diminished until the 

areas disappeared. For example, at the time t = 8.037 s, the longitudinal component of the 

flow velocity is positive under the seventh trough in Fig. 7 whereas the sixth trough shows an 

area with ux < 0 (black isoline). In the following secondary undulations, the areas with ux < 0 

disappeared, the hydrodynamics of the flow were similar to those in Case D. The velocity was 
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undulating in synchronization with the free surface with larger values beneath crests than 

beneath troughs and remaining positive.  

Here, Case C was an intermediate case between a flow dominated by the undulations and 

dominated by the bore flow. 

3.4 Case D: hydrodynamics dominated by the bore flow 

Case D started with the collapse of the higher water domain (h2 > h1 at x = 0 m) over the 

initial flow. The bore front quickly appeared and propagated upstream as an undular bore. The 

water level evolution during the bore propagation was similar to Case A, with secondary 

undulations progressively appearing and detaching from x = 0 m (Fig. 8). The height of the 

bore conjugate depth, h2, remained unchanged after the bore propagation. In this case, the 

flow evolution was simpler than for the two previous cases. Looking at Fig. 8, a complete 

flow reversal over the complete water column is seen during the bore passage. However, by 

looking closely at the flow hydrodynamics near the bed, a change of direction of the velocity 

appears near the bed (z < 1 mm) under the first troughs. 

During the bore passage, the horizontal component of the flow velocity, ux, was larger beneath 

the crest than beneath the trough (Fig. 8). Beneath crests, the velocity was more intense both 

near the free surface and near the bed than in the rest of the water column, with values 

reaching 8.8 × V1 and 6.6 × V1 near the surface and the bed, respectively, for the front crest at 

x = 5 m. For the following secondary undulations, the longitudinal component of the flow 

velocity followed a similar pattern to the one observed beneath the first wave crest and trough 

with a stabilization of the flow velocity around V2. For this case, the flow suddenly changed 

direction beneath the bore front and undulated regularly after the bore front. Here, the flow 

was dominated by the bore flow.  

3.5 Summary 

Fig. 9 illustrates the flow hydrodynamics when the bore propagates as based on the results 

shown in Figs. 4, 5, 7 and 8. For Cases A and C, the direction of the longitudinal component 

of the flow velocity alternates under the crest and the trough. For Case B, no reversal of the 

longitudinal component of the flow velocity occurs in the water column, whereas for Case D, 

a complete flow reversal occurs under the bore front with exception near the bed for Cases B 

and D. This reversal near the bed can generate loops of streamtraces as shown in Fig. 5. Table 

3 lists a summary of the noticeable hydrodynamic flow properties.  
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Visual observations of tidal bores highlight the turbulent nature of the phenomenon. Some 

energetic turbulent events are observed in natural rivers due to the breaking bore front and to 

some forms of macro-turbulence likely induced by secondary motion. River morphologies are 

mostly irregular: meanders can be responsible for the generation of large macro-recirculation, 

which then propagate following the river stream, and the 3D bathymetry generates 

hydrodynamic structures at the bed, which can be related to kolk-boils or bursting events 

ejected upwards from the 3D river bed macro-irregularities. Many authors accounted for the 

violence of the tidal bore flows, where repeated field work accidents were reported in the 

literature with lost or damaged units and buried equipment (Chanson & Lubin, 2013).  

Some very unusual features have also been reported, like tidal bore collisions (Bonneton et 

al., 2011; Destriau & Destriau, 1951; Keevil et al., 2015; Reungoat et al., 2014) or delayed 

flow reversals (Bazin, 1865a, 1865b; Partiot, 1858, 1861; Reungoat et al., 2012). Reungoat et 

al. (2012, 2014) quantified and analyzed the flow reversal delay between the bore front 

passage and longitudinal flow reversal. The measurements showed the reversal in longitudinal 

flow direction to be about 50 s after the bore front, while the free-surface velocity next to the 

survey staff reversed direction about 6 s after the bore front. These recent studies confirm past 

observations in the Seine River (France), where some field observations were undertaken in 

the 1850’s by Partiot (1861):  Floats were introduced at several heights prior to the arrival of 

the tidal bore. The float direction was observed after the bore passage. In one case, the surface 

float continued to float downstream for about 120 s after the bore, while the bottom float 

flowed downstream only for 90 s. Afterwards the floats flowed upstream.  

In the Severn River (UK), some delayed flow reversal was also reported depending upon the 

relative water elevation and bore strength (Robowtham, 1964):  

The water near the bed still flowing downwards for up to ten minutes after the surface has 

been suddenly reversed by the passage of a fairly large bore, with small bores the normal 

downward flow comes gently to a standstill after the bore had gone by and it may be a minute 

before the upward stream gathers momentum.  

An unusual flow reversal pattern also was reported in the Rio Mearim (Brazil) by Kjerfve and 

Ferreira (1993): At times, the downstream flow resumed after passage of the bore for another 

30 seconds before the flow again surged upstream. This observation was based upon 

measurements at 0.7 m above the bottom, whereas an early flow reversal was further reported: 

the current began changing directions 60 s ahead of arrival of the bore.  



14 

 

The foregoing observations confirm that very complicated and local features can be 

associated with tidal bore propagation. Thus, each tidal bore is almost unique and relevant to 

the place where it has been observed, even if some trends are common. The classification 

proposed in Table 3 can be related to the physical tidal bore observed in physical modelling 

(laboratory experiments) or in situ observations. Cases A and B can be related to laboratory 

experiments, where no flow reversal is usually observed. Most of the laboratory experiments 

with closing gate are related to Case B where the river current is dominant on the 

hydrodynamics. Cases C and D allow for flow reversal, as experienced in nature (Furgerot et 

al., 2016). Figure 5 presented by Rousseaux et al. (2016) highlights the flow dominated by 

undulations, where hydrodynamic structures can be seen below the stubbles’ troughs (Case 

C). 

4 Particle trajectories 

4.1 Presentation of the case studies 

In this section, the characteristic trajectories of suspended particles during the passage of the 

bore are studied. First, the dispersion of suspended particles due to the sub-grid turbulence 

briefly is assessed and then the trajectories of particles injected at different heights and with 

different densities will be characterized.  

In order to model the effect of small scale turbulence on the particles, a random velocity 

component usually is added to the deterministic velocity computed from the Maxey and Riley 

(1983) equation. The norm of this random component depends mainly on the mass of 

suspended particles and on the turbulent viscosity (Pozorski & Minier, 1998; Wang & Squires, 

1996). A test was conducted by injecting 10,000 suspended particles at (x = 4 m, z = 5 m) in 

order to quantify the effect of this random component on the global trajectories of particles. 

The simulated trajectories, affected or not by turbulent dispersion, are extremely close. This is 

the result of very low values of turbulent dispersion in the area where the suspended particles 

move. High values of turbulent dispersion are only observed near the free surface of the bore 

and very close to the river bed (for z ≤ 2 mm). In the worst case, the standard deviation of the 

suspended particle positions after 4 s of simulation is equal to 0.2 mm (obtained from the 

10,000 suspended trajectories). This deviation is negligible compared to the global movement. 

Therefore, the turbulent dispersion is neglected in the following analysis. The study of 

trajectories of suspended particles is, thus, done by removing the random part of motion due 

to the sub-grid turbulence, thus the analysis represents the average trajectories of each particle 

type, and the trajectories obey to the standard Maxey and Riley (1983) equation.  
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Also, it is assumed that the number of suspended particles per unit volume is small, so the 

fluid disturbance due to the particles is neglected in this study. In all cases (A, B, C, and D), 

the particles are injected at x = 4 m at heights z = 1, 3, 5, 7, 9, 11, and 13 cm. The choice of the 

abscissa x does not influence the form of particle trajectories. The densities of these particles 

range from 1,000 to 2,500 kg/m3. Typically, fluid particles and granular materials like sand 

can be modeled. As the Stokes number is around 10-3 (based on a typical length of stubbles, 

secondary waves on the order of half a meter), the particles behave as buoyant tracers. Figure 

10 (Top: Case A and Bottom: Case B) shows the trajectories of these particles in Cases A and 

B for different densities. 

4.2 Maxey and Riley (1983) equation 

In this study, the interactions particle/fluid and particle/particle are assumed to be negligible. 

Thus, the trajectory of each particle can be described by the fundamental principle dynamics 

as follows: 

         ( )  (8) 

         ∑    (9) 

where mi, xi, and vi are the mass, the position, and the velocity of each particle, respectively. 

In order to be close to reality, various forces, Fj, applied to the particle are considered here. 

The force FGB of gravity and buoyancy are introduced by: 

       (     )   (10) 

where ρp is the density of particles, Vi is the volume of each particle, and z is the vertical unit 

vector of the axis system.  

The added mass, FMA, reflects that the motion of one particle induces the motion of the fluid 

surrounding it (Bessel, 1826; Poisson, 1831). The added mass is described by: 

        (            ) with            (11) 

where ui and mw are the flow velocity of water at the location of each particle and the mass of 

water contained in the volume of each particle, respectively. In this expression, the last term 

of the second member was proposed by Auton et al. (1988) to take into account the effect of 

the velocity gradient around particles. Minier (1988) showed that this expression is valid for a 

particle size smaller than the Komolgorov scale (Davidson, 2015; Kolmogorov, 1961). 
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The viscous drag, FT, reflects the effect of the viscosity on the particles (Stokes, 1845), which 

makes the particle be entrained by the fluid. If the density of the particle is the same as the 

fluid, the drag makes the particle follow the streamlines. Otherwise, the trajectory of the 

particle separates from the streamlines because of inertia. The viscosity drag is given by 

Michaelides (1997) as follows:  

               ‖   ‖    with      (              )                          (12) 

where Rep and ri are the particle Reynolds number and the radius of each particle, 

respectively, and CD is the viscous drag coefficient. The expression for CD given by Clift et al. 

(1978) is valid for Rep < 3.105.  

The Basset (1888) history force, FH, reflects the effect of the settling time of the boundary 

layer around the particle on its dynamics, and is given by: 

            ∫     
 (             )   √   (   ) (13) 

where νw is the dynamic viscosity of water. The influence of this force can become very 

important when the density of particles, ρp, is close to the density of water, ρw. The term  2ui 

is a corrective term introduced by Faxen (1922) to take into account the non-uniformity of the 

velocity field around a particle. As the particle size is smaller than the Komolgorov scale, this 

term is negligible.  

Finally, the system of equations governing the trajectory of one particle is given by: 

         ( )  (14) 

               (     √   ∫        
   √     (     )                    ‖   ‖  )   (15) 

where τ is the integration variable taken in the range [0, t]. In the literature, the second 

equation is called the modified Maxey and Riley (1983) equation. The initial form of this 

equation was given by Maxey and Riley (1983). The system of equations is solved using a 

fourth-order Runge-Kutta scheme. A parameter study, not presented here, has allowed the 

time step δt to be fixed. A good compromise between the CPU time and accuracy is δt = 0.01 

s. As the code Thetis provides access to a discrete velocity field at a given time, temporal and 

spatial interpolations are used to evaluate the velocity at the location of the particles at any 
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time. A linear function and a B-spline function are used for the temporal and spatial 

interpolations, respectively (Deutsch, 1992). 

4.3 Numerical results 

4.3.1 Case A: trajectories dominated by undulations 

In the upper part of the flow (Fig. 10 - Top), above the boundary layer and the inversion 

region of the current, because of the sudden stop of the flow after the front, the particle 

trajectories form spirals whose center is in a translation partly due to the current and partly 

due to gravity. In this case, all the particle trajectories whose injection height is greater than or 

equal to z = 5 cm have the same shape and differ only by the magnitude of the spirals. Such 

paths are called ribbon-like trajectories. However, the particles injected at z = 1 and 3 cm 

interact with the boundary layer and the current inversion zone described above and the spirals 

are either strongly deformed or disappear completely.  

It is further noted that even in the case of particles of density equal to the fluid density (1,000 

kg/m3), a downward motion appears after the passage of the front, which is not the case in the 

upper region. It is, therefore, a downward movement which is not due to gravity. In this flow, 

in particular, the turning area where the fluid velocity is directed from downstream to 

upstream is always present between 0 and 0.5 cm from the bottom after the passage of the 

front, although the velocity magnitude is weak (≈ 0.035 m/s). This thin reversal layer induces 

a motion of suction on the particles between 0.5 and 2 cm above the bed, hence, the downward 

grain movement in this area. 

4.3.2 Case B: trajectories dominated by the initial current 

On the contrary in Case B (Fig. 10 - Bottom), the mean flow velocity remains downstream 

and the particle trajectories do undulate while continuing downstream in the upper area. In 

this case, all the trajectories of particles have the same shape when the injection height is 

greater than or equal to z = 3 cm. Such paths are called undulating ribbon-like trajectories. 

For the particles injected at z = 1 cm, the trajectories are much more complex due to the strong 

interactions with recirculation zones. One observes that the particles whose density is between 

1,500 and 2,200 kg/m3 may have quasi-ballistic trajectories that go up to a height of 3 to 4 cm. 

These trajectories are very similar to those of saltating particles and are the result of the 

vertical drive of particles by successive recirculation zones which induce high vertical 

acceleration. When this recirculation zone moves simultaneously with the tidal jump, the 

particles maintain a significant vertical component due to their inertia, which induces the 
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quasi-ballistic trajectories observed. The light particles, whose density is less than 1,500 

kg/m3, do not have sufficient inertia and follow the flow again as soon as they go outside of 

the recirculation zone. On the contrary, heavy particles whose density is greater than 2,200 

kg/m3 are not sufficiently accelerated and continue their sedimentation even in these areas. 

4.3.3 Case C: trajectories partially dominated by the bore flow and then the initial current, 

and Case D: Trajectories dominated by the bore flow 

Compared to the two previous cases, the two cases denoted C and D present a different 

behavior for the trajectories of suspended particles. When the bore front passes, the direction 

of particle trajectories is inverted. This inversion of the direction of paths was observed for all 

densities tested, 1,000 < ρp < 2,500 kg/m3, and all injection heights tested, 1 < z < 13 cm 

(Figs. 11 and 12). The inversion is due to the flow reversal observed over the complete water 

column during the bore passage in both Cases C and D (Figs. 7 and 8). 

In Case C, during a short duration after the bore front passage, the trajectories of suspended 

particles form undulations similar to elongated trochoids oriented downwards (Fig. 11). A few 

moments after the bore passage, the form of these trajectories looks like the one for Case D. 

Case C is a combination of Cases A and D. The flow is partially dominated by the bore flow 

(Fig. 7). As in Case D, the magnitude of undulations is reduced with the time and the injection 

height of suspended particles. 

In Case D, after the bore passage, the trajectories form undulations similar to cycloids oriented 

downwards (Fig. 12 - top). Reducing the injection height of suspended particles yields a 

reduction of the magnitude of undulations (Fig. 12 - bottom). This observation highlights an 

attenuation of the influence of the bore flow on the water column induced by the boundary 

layer located at the bed of the channel. The magnitude of undulations also reduces with the 

time (Fig. 12). The secondary undulations of the free surface have a magnitude lower than that 

for the undular bore (Fig. 8). 

5 Modified Chen's model 

5.1 Description of the model 

The forms of particle trajectories observed in the upper part (z ≥ 5 cm) are very similar to 

those encountered in the framework of the wave-current interactions problem (Chen et al., 

1964, 2010, 2012; Chen & Chen, 2014; Hsu, 2016). In these studies, the current is assumed to 

be constant, the wave is established and these studies limit themselves to the monitoring of 

water particles, which, in the current study, is equivalent to particles of a density ρp = ρw = 
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1,000 kg/m3. The equations for the water particle trajectories resulting from the current study 

are complex and are given in the Appendix. To characterize these trajectories, U is the speed 

of a uniform steady flow, V is the wave propagation velocity, and Vp is the maximum speed of 

a particle induced by the same wave propagating in the fluid at rest. From these designations, 

five main regimes can be distinguished when: 

 the wave propagates in the same direction as the flow and ||V|| > ||U||, the trajectories 

form elongated trochoids oriented downwards (Fig. 13a). A trochoid is a curve of 

equations x(t) = a t - b sin(t) and z(t) = a - b cos(t). It is called extended when a < b 

and shortened when a > b. 

 the wave propagates in the same direction as the flow and ||V || = ||U||, the trajectories 

form cycloids oriented downwards (Fig. 13b). 

 the wave propagates in the direction opposite to the flow and ||V || > ||U||, the 

trajectories form elongated trochoids oriented upwards (Fig. 13c). 

 the wave propagates in the direction opposite to the flow and ||V|| = ||U||, the 

trajectories form cycloids oriented upwards (Fig. 13d). 

 when the wave propagates at a much lower speed than the flow, regardless of its 

direction, the wave effect is small and ||V ||< ||U||. The trajectories then form 

undulations (Fig. 13e). 

 

5.2 Application of the model 

The theories developed in this context are, therefore, unable to reproduce all the features of 

trajectories encountered in a bore. However, simple changes, applied to these theories, should 

allow to improve the conceptual modeling of simulated particles trajectories. The 

characteristics of simulated particle trajectories are the following: 

 a horizontal trajectory at a speed Vp without undulations before the jump passage. 

 an over-elevation of the mean height during the jump passage going from h1 to h2. 

 a velocity slow-down during the jump passage going from V1 to V2. 

 oscillations around the mean height during the passage of every stubble with a 

progressive attenuation. 

 a vertical downward drift due to gravity. 

These different elements are shown schematically in Fig. 14. Note that in both cases, all the 

elements are the same except the part on the wave-current interaction. 
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The equations proposed by Chen et al. (1964, 2012) can describe the wave-current interaction 

for both cases: only one equation is needed to describe the particle trajectories in the upper 

part of the undulating bore, regardless of the mode generation. All of these elements can be 

described individually by corresponding equations. The transition taking place at the front is 

represented by a hyperbolic tangent, which allows the computations to go from state 1, before 

the jump, to state 2 after the jump in a continuous manner. Here, it is proposed to separate the 

different contributions in order to quantify each of them, in Cases A and B. The model 

presented is not intended to accurately reproduce the trajectories of suspended particles but 

will help in understanding the different contributions to this phenomenon. The parameter 

values which are used during this decomposition are listed in Table 4. 

The first characteristic which is simple to isolate is the contribution due to gravity. 

Considering that the sedimentation velocity is constant, this contribution is of the form z(t) = -

ws(t - t0) where t0 is the initial time of the trajectory and ws = 0.007 m/s the sedimentation 

velocity for a particle density, ρp = 2,500 kg/m3 with a drag coefficient obeying the formula 

developed by Clift et al. (1978). By subtracting this contribution to the complete trajectory, a 

new path is obtained that is not affected by gravity, even for a particle whose density is 

different from the density of the fluid (Fig. 15). 

The second characteristic is the elevation as well as the current slowing down at the bore 

passage. They can be considered in the same equation in which the height changes from h1 to 

h2 and the current velocity changes from V1 to V2. The particles studied being small, their 

velocities remain very close to that of the flow, including the horizontal component, the 

current slowing down translates directly into a particle slowing down. The contribution due to 

elevation will have a hyperbolic tangent shape and the one due to slowing down will be 

described by the integral of a hyperbolic tangent: 

  ( )    (     )      ((     )    (    (     ))     (    (  (    ))))  
     ( )            (  (    )) 

(16) 

where tB is the time when the particle goes through the jump front, β1 is the parameter 

controlling the speed of the slowdown between the two states before and after the front, and β2 

is the parameter controlling the speed of the change in elevation between the two states. 

Figure 16 shows the new trajectory when this contribution is subtracted and compared to the 
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previous one for which the gravity has already been removed. This new trajectory is very 

similar to the trajectories observed by Scott Russell (1845) in the case where he called the 

negative solitary wave of first order (Figs. 7 to 10 of Scott Russell (1845)). 

Finally, the oscillations represented by a trajectory featuring the wave-current interaction and 

the gradual attenuation can be put in the form: 

  ( )       ( )    (   ( ))  and   ( )       ( )    (   ( )) (17) 

where β3 is the attenuation parameter and (xChen, zChen) are the solutions proposed by Chen et 

al. (1964, 2012) and given in the Appendix. The parameters used in these equations are those 

of the flow after passage of the jump front. The trajectory determined from these equations is 

compared with the one of the particle after the passage of the jump front in Fig. 17. This 

simple model can reproduce the shape of particle trajectories as they pass under the stubbles 

but is less valid near the front. This poorer agreement near the front is explained by the 

peculiar hydrodynamic effects associated with the front propagation that are not represented in 

this model and also because the model is supposed to represent the trajectories of water 

particles and not of suspended particles whose density is different from that of water. These 

equations are a good approximation of the trajectory after the passage of the jump when the 

contribution of gravity has been withdrawn. However, they cannot give precise solutions since 

the inertia of particles and several terms of hydrodynamic forces, such as the drag, the added 

mass, and the Basset history force were implicitly neglected. Nevertheless, this decomposition 

allows the different contributions to be distinguished. 

The same operations applied to Case B also help to decompose the suspended particles 

trajectory. The steps are shown in Figs. 18 - 20 whose parameters are listed in Table 4. In this 

case too, the proposed model allows the different components to be separated satisfactorily. 

Further studies would be required, however, because here the number of stubbles passed 

through by the particles is too small (only 3) in order to draw a generalized conclusion. 

6 Conclusions 

The tracking of individual trajectories of suspended particles enabled simulation of the 

trajectories of these particles for different densities and to propose a model to decompose 

these observed trajectories as long as they do not fall within the area of the influence of the 

boundary layer. This model allows the importance of certain aspects of tidal bores to be 

highlighted. Four types of trajectories were observed (see Table 5). Without reversal, the 

trajectories are upwards enrolled ribbon-like in the case dominated by the flood (Case A) and 
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ribbon-like undulating in the case dominated by the stream (Case B). With reversal, the 

trajectories are downwards enrolled ribbon-like in the case dominated by the flood (Case C) 

and ribbon-like undulating in the case dominated by the stream (Case D). In the tested surges, 

supposedly close to an undular tidal bore, the effect of gravity seems constant. Furthermore, 

the inertial and Basset history effects are almost negligible in the long term, i.e. for a time t ≥ 

0.5 s, even though they have a major impact on the short-term sedimentation. Moreover, the 

proposed model suggests that the effect of the transition that occurs at the front on the 

trajectory of a suspended particle is highly localized and its path can ultimately be divided 

into three parts: 

 before the jump front, the particle is advected horizontally by the constant flow and 

slowly settles because of its density that is higher than the density of the fluid.  

 at the front jump, the jump transition from the speed V1 to the speed V2 and from the 

height h1 to the height h2 induces an uprising and a slowing of the particles. 

 after the jump front, the particle trajectory takes a form known as part of the 

underlying wave-current interactions problem (Chen et al., 1964, 2012) which differs 

from a usual case only by the gradual attenuation of the secondary waves. 

This intuitive decomposition, although probably invalid from a hydrodynamic point of view 

due to the very pronounced non-linearity of the phenomenon gives a good description of 

trajectories of suspended particles. It also suggests a modelling track of an undular tidal bore 

as the superposition of a current that slows down at the jump front, a heightening of the 

average level, and a negative solitary wave described by Scott Russell (1845). This type of the 

flow was also studied by Bazin (1865a, 1865b), and Bazin and Darcy (1865), but Scott 

Russell (1845) gave a more detailed description and was also interested in the trajectories of 

tracers subject to this flow. As a perspective, the authors are currently studying the 

dependence of three βi coefficients in Chen’s model with the Froude number, Fr. 
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Figures 

 

Fig. 1 Definition sketch of a surge propagating from the left to the right for an observer standing still within the hypotheses of 
Eqs. 1 and 2. 

 

Fig. 2 Definition sketch of numerical domains used for the simulations with a bore propagating in the domain. 



30 

 

 

 
Fig. 3 Comparison between numerical simulations and experimental (exp) data. Top figure: time evolution of the free surface 
d/d0 of undular bores where d0 is the initial water depth. Bottom figure: time evolution of horizontal and vertical components 
of the flow velocity, ux/V0 and uz/V0, at z/d0 = 0.18 with V0 the initial velocity (where mov. av. = moving average and N = 
number of measured data). 
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Fig. 4 Case A: dominated by undulations, mapping of the velocity magnitude ||u|| in the water during the bore propagation at 
3 different times with velocity streamlines (lines with arrows) and the isoline ux = 0 (black lines). Axis scales are 
independent. 
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Fig. 5 Case B: dominated by the initial current, mapping of the velocity magnitude ||u|| in the water during the bore 
propagation at 3 different times with velocity streamlines (lines with arrows) and the isoline ux = 0 (black lines). Axis scales 
are independent. 
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Fig. 6 Case B: vorticity field, ωy, beneath the bore with pressure isolines every 150 Pa (black lines). 

  



34 

 

 

 

 
Fig. 7 Case C: partially dominated by undulations and then the bore flow, mapping of the velocity magnitude ||u|| in the 
water during the bore propagation at 3 different times with velocity streamlines (lines with arrows) and the isoline of ux = 0 
(black lines). Axis scales are independent. 
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Fig. 8 Case D: dominated by bore flow, mapping of the velocity magnitude ||u|| in the water during bore propagation at 3 
different times with velocity streamlines (lines with arrows) and the isoline of ux = 0 (black lines). Axis scales are 
independent. 
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Fig. 9 Simplified schemes of the longitudinal component of the flow velocity when the bore is developed. Focus on the bore 
front and its first stubbles. The dark gray area represents a region with ux > 0 and the light gray area represents ux < 0. The 
black lines are for ux = 0. 
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Fig. 10 Trajectories of suspended particles during the passage of the bore at different injection heights and different densities 
(Top: Case A and Bottom: Case B). 
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Fig. 11 Case C, trajectories of suspended particles at z = 0.01 cm (bottom) and 0.1 cm (top) during the bore passage for 
different densities. 

 

 

 
Fig. 12 Case D, trajectories of suspended particles at z = 0.01 cm (bottom) and 0.1 cm (top) during the bore passage for 
different densities. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 13 Different types of fluid particles trajectories for several flows in presence of the wave-current interaction (after Chen 
et al., 1964, 2010, 2012; Chen & Chen, 2014; Hsu, 2016). 
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Fig. 14 The features of trajectories encountered in the two cases studied without reversal (Top: Case A and Bottom: Case B). 
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Fig. 15 Comparison of the full trajectory to the one whose contribution due to gravity was removed (Case A). 

 

Fig. 16 Comparison of the trajectory without the contribution of gravity to the trajectory where the contributions of gravity, 
elevation, and the slowing down have been removed (Case A). 

 

Fig. 17 Comparison of the trajectory without the contribution of gravity in the area following the passage of the bore front to 
the trajectory deduced from the wave-current interaction model including attenuation (Case A). 
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Fig. 18 Comparison of the full particle trajectory to the one with the contribution of gravity removed (Case B). 

 

Fig. 19 Comparison of the trajectory without the contribution of gravity to the trajectory where the contributions of gravity, 
elevation, and the slowing down have been removed (Case B). 
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Fig. 20 Comparison of the trajectory without the contribution of gravity in the area following the passage of the bore front to 
the trajectory deduced from the wave-current interaction model including attenuation (Case B). 

Tables 

Table 1 Conditions used for the numerical simulations with Froude number Fr = (V1 + Vb)/(gh1)
0.5 and Bore Reynolds 

number Reb= ρh1(V1 + Vb)/µ. 

Case h1 V1 h2 V2 Fr Reb Notes 

 
m m/s m m/s 

   
A 0.165 -0.23 0.199 0 1.13 2.39E+05 Based on Chanson (2010a) 

B 0.1385 -0.83 0.183 <0 1.17 2.02E+05 Based on Chanson (2010b) 

C 0.1 -0.202 0.127 0.05 1.2 1.21E+05 Solve Eqs. 1 and 2 

D 0.1 -0.05 0.127 0.202 1.2 1.20E+05 Solve Eqs. 1 and 2 

 

Table 2 Details of domain meshes (Mesh), processor numbers (Proc), iteration numbers (Iter), Central Processing Unit time 
(CPU) and Real time (Time) for the simulations. 

Case Mesh Proc Iter CPU (h) Time (s) 

A 5,000×500 32 30,000 4,400 9 

B 5,000×500 32 440,000 9,500 15.1 

C 7,500×500 32 22,300 360 20.1 

D 7,500×500 32 22,600 540 18.2 
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Table 3 Summary of the bore hydrodynamic properties as seen in Fig. 9. Based on computational results obtained at x=6.15 
m, aw is the wave amplitude calculated as half the vertical distance between the crest and the trough of the bore front. 

Case Vb (m/s) h1/d2 aw/h1 Key properties 

A 1.22 1.206 0.115 Inversion beneath crests and troughs, strong shear near the bed, incomplete 

inversion near the bed beneath the trough. Effects dominated by undulations. 

B 0.625 1.314 0.181 Flow with mostly no change in direction, strong inversion (ux > 0) near the bed 

beneath the crest, ejections of eddies. Effects dominated by the initial current. 

C 1.003 1.269 0.209 Flow inversion with the bore passage, with flow reversal beneath the wave trough 

(same direction as V1). Mix of A and D. Effects dominated by undulations then 

by the bore flow. 

D 1.152 1.269 0.204 Complete change of the current direction, strong shear near the bed, small area of 

flow inversion (ux < 0) near the bed beneath first troughs. Effects dominated by 

the bore flow. 

 

Table 4 Parameters used for the decomposition of particle trajectories. 

Parameter  Definition Case A Case B 

tB  Time when the particle goes through the jump front 3 s 5.5 s 

ws  Sedimentation velocity of suspended particles 7.1e-3 m/s 7.1e-3 m/s 

β1  Parameter controlling the speed of the slowdown between 

the two states before and after the front 

1.1 1.5 

β2  Parameter controlling the speed of the change in elevation 

between the two states before and after the front 

9.37 4.87 

β3  Attenuation parameter 0.605 0.63 

 

Table 5 Proposed classification of trajectories 

 Without global reversal (counter-flowing)  With global reversal (co-flowing) 

Flood 

dominated 

 Case A: upwards enrolled ribbon-like trajectories, 

Chen’s model: (c) + (d) 

 Case C: downwards enrolled ribbon-like trajectories, 

Chen’s model: (a) + (b) 

Stream 

dominated 

 Case B: undulating ribbon-like trajectories, Chen’s 

model: (e) + (d) 

 Case D: undulating ribbon-like trajectories, Chen’s 

model: (e) + (b) 
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Appendix A. Trajectory modeling of fluid particles within a wave-current interaction 

approach 

Chen et al. (1964, 2012) proposed an analytical solution for the estimation of Lagrangian 

trajectories of fluid particles in the context of the wave-current interaction. For this, they 

considered a monochromatic wave propagating on a uniform steady flow over a horizontal 

impermeable bottom. The movement of the fluid is considered 2D and irrotational, and the 

wave propagates from the left to the right (Fig. A.21). The authors suggest the problem in 

terms of Lagrangian variables a and b that define the original position of the fluid particle. For 

every time, t, the position b = 0 corresponds to the free surface and b = -d is the channel 

bottom with d the rest fluid depth. The unknowns of the problem are the Cartesian locations 

of a fluid particle (x(a,b,t), z(a,b,t)) and the fluid pressure p(a,b,t). Thus, the problem is 

described by the system: 

                                 with     (   ) (   )     (A.1a) 

                          , (A.1b) 

                 and   
              , (A.1c) 

               [(    )  (    ) ], (A.1d) 

     and     (A.1e) 

         and         (A.1f) 

where the indices a, b, and t represent the partial derivatives according to these variables, 

φ(a,b,t) is the velocity potential function in a Lagrangian representation, and g is the 

acceleration of gravity. 

 

Fig. 21 Diagram showing a continuous wave train propagating on a uniform current. 
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A Lagrangian angular frequency, σ, of fluid particle motions is introduced to avoid the 

appearance of a secular term. The system is then solved by perturbation theory by introducing 

a term ε to identify the order of the related term: 

        ∑   [  (      )     (       )] 

     (A.2a) 

     ∑   [  (      )     (       )] 

     (A.2b) 

            ∑   [  (      )     (       )] 

     (A.2c) 

        ∑     (      ) 

     (A.2d) 

        ∑     (   ) 

         (A.2e) 

where U is the speed of a uniform steady flow, and ρ is the density of the fluid. In these 

expressions, fn, gn, φn, pn, and σn are assumed to be associated with the harmonic of order n. 

f’n, g’n, φ’n, and p’n are non-periodic functions that increase linearly with the time t. TL is the 

period corresponding to the angular frequency. By introducing Eqs. A.2 in the system of Eqs. 

A.1, Chen et al. (1964, 2012) obtained a series of non-homogeneous differential equations 

that can be solved successively. The solution of this system for the variables x, z, and σ is then 

up to the third order. At the first order:  

          ( )    ( )    ( )  (A.3a) 

         ( )    ( )    ( )  (A.3b) 

            (A.3c) 

          ( )  (A.3d) 

       (A.3e) 

            (A.3f) 

    (   ) (A.3g) 

where the parameter α represents the amplitude function of fluid particle motions. The wave 

amplitude is a0 = α tanh(kd) where k = 2π/L is the wave number and L the wavelength. At the 

second order: 
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          (      ( )       ( ))     (  )    (  )    (  )
      (       ( ))    (  )  (A.4a) 

          (       ( ))     (  )    (  )     (A.4b) 

         (      ( )       ( ))     (  )    (  )    (  )
      (       ( ))     (  )    (  )  (A.4c) 

           (A.4d) 

At the third order:  

    [       (  )     ( )      (        )     ( )     ( )]    (  )
 [    (       )     (  )     ( )        ( )     ( )]    ( )  (A.5a) 

    [      (  )     ( )            ( )     ( )]    (  )
 [    (       )     (  )     ( )        ( )     ( )]    ( )  (A.5b) 

            (A.5c) 

                 (  )     ( )         (       ( )           ( ))   (A.5d) 

where 

         (      ( )   )  (A.6a) 

           (       ( )          ( )    )  (A.6b) 

These equations are used to model the trajectories of suspended particles within the secondary 

waves of bores. An envelope must, however, be added in order to represent the decay of the 

amplitude of stubbles. In this study, a simple exponential decay function was chosen. 


