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ABSTRACT
We revisit the opinion susceptibility problem that was proposed by

Abebe et al. [1], in which agents influence one another’s opinions

through an iterative process. Each agent has some fixed innate opin-

ion. In each step, the opinion of an agent is updated to some convex

combination between its innate opinion and the weighted average

of its neighbors’ opinions in the previous step. The resistance of an

agent measures the importance it places on its innate opinion in

the above convex combination. Under non-trivial conditions, this

iterative process converges to some equilibrium opinion vector. For

the unbudgeted variant of the problem, the goal is to select the

resistance of each agent (from some given range) such that the sum

of the equilibrium opinions is minimized.

Contrary to the claim in the aforementioned KDD 2018 paper,

the objective function is in general non-convex. Hence, formulating

the problem as a convex program might have potential correctness

issues. We instead analyze the structure of the objective function,

and show that any local optimum is also a global optimum, which is

somehow surprising as the objective function might not be convex.

Furthermore, we combine the iterative process and the local search

paradigm to design very efficient algorithms that can solve the

unbudgeted variant of the problem optimally on large-scale graphs

containing millions of nodes.
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1 INTRODUCTION
We revisit the opinion susceptibility problem that was proposed

by Abebe et al. [1], in which agents in a network influence one

another’s opinions through an iterative process. In this model, the

opinion of an agent at each step is a function of its innate opinion
and its neighbors’ opinions in the previous step. The susceptibility

of an agent i to persuasion is measured by a resistance parame-

ter αi ∈ (0, 1), where a larger value of αi means that agent i places
more importance on its innate opinion. Under very mild conditions

(such as every αi > 0), the iterative process converges to a unique

equilibrium opinion vector.

As remarked in [1], opinion interference in social networks have

wide applications in product marketing and political campaigns.

While most previous works [6, 11, 16] investigatedmodels on chang-

ing the opinions directly, [1] is the first work that considered mod-

ifying the susceptibility of individual agents. Using a number in

[0, 1] to represent an agent’s opinion, they considered the prob-

lem of modifying the agents’ resistances such that the sum of the

equilibrium opinions is minimized (or equivalently maximized by

applying the transformation x 7→ 1 − x on each opinion).

Abebe et al. [1] pointed out several works in social psychology

that have investigated people’s susceptibility to persuasion, includ-

ing studies on how peer pressure can make adolescents exhibit

risky and antisocial behavior [2, 5, 7], and on the role of suscepti-

bility in politics [19]. Factors such as self-esteem, locus of control,

awareness of specific issues, as well as exposure to people in the

same network can contribute to an individual’s susceptibility to

persuasion. As a result, by affecting these factors or introducing

persuasive cues [15], one can make an individual more or less sus-

ceptible to persuasion, i.e., the resistance parameter can be lowered

or increased.

Observe that the problem is trivial if the resistance of each agent

can be picked from the closed interval [0, 1]. For minimizing the

equilibrium opinions, it suffices to make the agent with the min-

imum innate opinion the most resistant (setting its resistance to

1) and everyone else totally compliant (setting its resistance to 0).

The problem is non-trivial if the resistance αi of each agent i can
take value from some interval [li ,ui ], where 0 < li < ui < 1. Under

this restriction, Abebe et al. [1] showed that it suffices to consider

extreme points in the resistance vector space, i.e., for each agent i ,
one can pick αi ∈ {li ,ui }. Moreover, they attempt to model the

problem using a convex program. However, contrary to their claim,

we have discovered that the objective function is in general neither

convex nor concave (see Figure 1 in Section 2). Hence, there could

be potential correctness issues with their approach. Furthermore,

a general convex program is quite expensive to solve, and indeed,

the experiments in [1] were performed on networks with less than

1000 nodes, most likely because their approach is non-scalable to

large networks.
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This work resolves both the correctness and scalability issues

in [1]. We give a thorough analysis of the problem structure to de-

sign a provably correct local search framework, and further exploit

the properties of the iterative process to implement our algorithms

that are efficient enough to run on networks with millions of nodes.

Our Contributions.We study the structure of the opinion suscep-

tibility problem [1] in detail, and also make algorithmic contribu-

tions, which we describe as follows.

• Analysis of problem structure. Contrary to the claim in [1],

we discover that the objective function is in general neither

convex nor concave. However, we have also recovered (in

Corollary 3.4) that for each agent, it is sufficient to set its

resistance to either the lower or the upper bound, i.e., we

can search for an optimal resistance vector from the set of

extreme points of its feasible region.

We analyze the mathematical structure of the problem in

Section 3. Perhaps the most important technical insight in

this paper is that we show (in Lemma 3.9) that if the current

vector solution is not optimal, then there exists a coordinate

that can be flipped such that the objective will be strictly

improved. This shows that an optimal vector can be found

by a simple local search algorithm.

• Local search with irrevocable updates. In general, local search

could still take exponential time to find an optimal solution,

for instance, the simplex algorithm for linear programming.

For minimizing the sum of equilibrium opinions, we show

(in Lemma 4.1) that starting from the upper bound resistance

vector, then the local search algorithm will flip each coordi-

nate at most once, which implies that an optimal vector can

be found in polynomial time.

• Efficient Local Search on Large-Scale Graphs. Typically, in lo-

cal search, the objective function needs to be evaluated at the

current solution in each step. However, since the objective

function involves matrix inverse, its evaluation will be too

expensive when the dimension of the matrix is in the order

of millions. Instead, we use the iterative process of the opin-

ion dynamics model itself to approximate the equilibrium

vector. We have developed several update strategies for local

search. For conservative or opportunistic updates, one always
makes sure that the error of the estimated equilibrium vec-

tor is small enough before any coordinate of the resistance

vector is flipped. For optimistic update, one might flip a co-

ordinate of the resistance vector even before the estimated

equilibrium vector is accurate enough. However, this might

introduce mistakes which need to be corrected later. Nev-

ertheless, experiments show that mistakes are rarely made

by the optimistic update strategy. In any case, for all three

update strategies, an optimal vector will be returned when

the local search terminates.

Our approaches are scalable and can run on networks with

millions of nodes. We report the experimental results in

Section 5. In particular, using multiple number of threads, the

optimistic update strategy can solve the problem optimally

on networks with up to around 65 million nodes.

1.1 Related Works
The most related work is the KDD 2018 paper [1] by Abebe et al.,

who gave a history of the problem and other related works, to

which the reader can refer. Here we just give a brief summary.

History of Model. As mentioned in [1], the opinion dynamics model

is inspired by theworks of DeGroot [4] and Friedkin and Johnsen [8].

DeGroot considered the special case where all resistance αi ’s equal

0, and the opinion vector update rule reduces to z(t ) := Pz(t−1) ∈

RV , for some row stochastic matrix P . This model is well understood

through the theory of Markov chains, which typically uses the

transpose of P in the update rule: z(t ) := PTz(t−1) ∈ RV . The
iterative process considered in this paper is exactly the model in [8],

which also investigated the conditions under which the process

converges to a unique equilibrium vector.

Budgeted Variant. We have so far discussed only the unbudgeted
variant of the opinion optimization problem, where the resistance

of every agent can be modified. The budgeted variant of the problem
has also been considered in [1], where some initial resistance vector

α ∈ (0, 1)V and some budget k ∈ Z are given, and the algorithm

is allowed to change at most k coordinates of α . It is shown that

the budgeted variant is NP-hard [1]. An obvious approach is to

use some greedy paradigm to pick k coordinates to modify one

by one, where the next coordinate is picked to have the largest

improvement in the objective function. However, no theoretical

guarantee was given for budgeted variant in [1]. Since our analysis

of the unbudgeted variant is already quite involved, this paper will

focus on the unbudgeted case. We will leave the analysis of the

greedy algorithm for the budgeted variant as future work, which

we briefly discuss in the conclusion section.

Non-Convex Optimization. In general, optimizing a non-convex

function under non-convex constraints is NP-hard. However, in

many cases, one can exploit the structure of the objective function

or constraints to devise polynomial-time algorithms; see the sur-

vey by Jain and Kar [13] on non-convex optimization algorithms

encountered in machine learning. Indeed, variants of the gradient

descent have been investigated to escape saddle points by Jin et

al. [14], who also gave examples of problems where all local optima

are also global optima; some examples are tensor decomposition [9],

dictionary learning [22], phase retrieval [21], matrix sensing [3, 20]

and matrix completion [10]. However, all these problems involve

some quadratic loss functions, whose structures are totally different

from our objective functions which involve matrix inverse.

Hartman [12] considered the special case that the objective func-

tion is the difference of two convex functions. Strekalovsky devised

a local search method to optimize such objective functions. Even

though the objective functions in our problem are somewhere con-

vex and somewhere concave (see Figure 1), it is not immediately

clear if they can be expressed as differences of convex functions.

2 PRELIMINARIES
We revisit the opinion susceptibility problem that was proposed by

Abebe et al. [1], which we rephrase using more general parameters.

In an opinion dynamics model, there is a set V of agents, whose

innate opinions are given by a vector s ∈ [0, 1]V . The interaction be-
tween agents are captured by a row stochastic matrix P ∈ [0, 1]V×V ,
i.e., each entry of P is non-negative and every row sums to 1. In



the rest of this paper, we always call P the interaction matrix. The

susceptibility of the agents is measured by the resistance vector

α ∈ (0, 1)V , where a higher αi value means that agent i is more

resistant.

As mentioned in [1], the opinion vector of agents evolves in

discrete time according to the equation z(t+1)
:= As + (I −A)Pz(t ),

where A = Diag(α) is the diagonal matrix with Aii = αi and I

is the identity matrix. Equating z(t ) with z(t+1)
, one can see that

the equilibrium opinion vector is given by z = [I − (I −A)P]−1As ,
which exists under non-trivial conditions such as every αi > 0. The

objective is to choose a resistance vector α to minimize the sum

of equilibrium opinions ⟨1, z⟩ = 1T z. Observe that one can also

consider maximizing the sum of equilibrium opinions; however,

since the techniques are essentially the same, we will focus on the

minimization variant of the problem.

Definition 2.1 (Opinion Susceptibility Problem). Given a set V
of agents with innate opinions s ∈ [0, 1]V and interaction matrix

P ∈ [0, 1]V×V , suppose for each i ∈ V , its resistance is restricted to

some interval Ii := [li ,ui ] ⊆ [0, 1] where we assume that 0 < li <
ui < 1.

The objective is to choose α ∈ IV := ×i ∈V Ii ⊆ [0, 1]
V
such that

the following objective function is minimized:

f (α) := 1T [I − (I −A)P]−1As,

where A = Diag(α) is the diagonal matrix with Aii = αi . Observe
that the assumption α > 0 ensures that the above inverse exists.

Unbudgeted vs Budgeted Variants. In Definition 2.1, we are allowed

to modify the resistance of any agent, and this is known as the

unbudgeted variant. However, in [1], the budgeted variant is also

considered: given some initial resistance vector and a budget k , the
resistance of at most k agents can be changed. In this paper, we

focus on efficient algorithms that optimally solve the unbudgeted

variant.

Technical Assumption. To simplify our proofs, we assume that

the interaction matrix P corresponds to an irreducible random walk.

Irreducibility is satisfied if P arises from a connected graph.

Non-convex Objective. Contrary to the claim in [1], the objective

f in Definition 2.1 is in general not a convex function of α . In fact,

the following example shows that it might be neither convex nor

concave. Consider three vertices V = {1, 2, 3}, where the innate

vector s and the interaction matrix P are given by: s =


1

0.5

0

 and
P =


0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

 .
Suppose we fix α2 = α3 = 0.1 and consider the objective as

a function of α1 as д(α1) = 1T [I − (I − A)P]−1As , where A =
Diag(α1,α2,α3). Then, the plot of д in Figure 1 (a) shows that it is

not convex. Moreover, suppose this time we fix α1 = α2 = 0.1 and

consider the objective as a function of α3 as h(α3) = 1T [I − (I −
A)P]−1As . Then, the plot of h in Figure 1 (b) shows that it is not

concave.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

(b)

Figure 1: Cross-Sections of Objective Function

3 STRUCTURAL PROPERTIES OF OBJECTIVE
FUNCTION

In this section, we investigate the properties of the objective func-

tion f in Definition 2.1; we assume that the interaction matrix P
and the innate opinion vector s are fixed, and f is a function on

the resistance vector α . Contrary to the claim in [1], the objective

function is in general not convex. Fortunately, we can still exploit

some properties of the function. As we shall see, even when the

function is not convex, every local optimum (which will be defined

formally) is a global optimum. This enables us to use variants of

the local search method to solve the problem optimally.

3.1 Marginal Monotonicity
As in [1], we show that when one chooses the resistance αi for
each agent i ∈ V , it suffices to consider the extreme points {li ,ui }.

Our approach explicitly analyzes the partial derivative
∂f (α )
∂αi

which

plays amajor role in the local search algorithm that we later develop.

Intuition: Guidance by Current Equilibrium Vector. Observe
that given the innate opinion vector s and irreducible interaction

matrix P , for some resistance vector α ∈ (0, 1)V , the equilibrium
opinion vector is given by z(α) = [I − (I − A)P]−1As , where A =
Diag(α). For some i ∈ V , if the innate opinion si is larger than
its equilibrium zi (α), this suggests that by being more stubborn,

agent i should be able to increase its equilibrium opinion. In other

words, one would expect
∂zi (α )
∂αi

and si − zi (α) to have the same

sign. However, what is surprising is that in Lemma 3.2, we shall see

that even for any j ∈ V ,

∂zj (α )
∂αi

and si − zi (α) have the same sign.

Notation. For any α ∈ RV and K ⊆ V , let α−K ∈ R
V
denote the

vector such that α−K (i) = α(i) if i < K , and α−K (i) = 0 if i ∈ K , i.e.,
the coordinates K of α are replaced with 0. Similarly, given α ∈ RV ,
we denote A−K = Diag(α−K ).

In Definition 2.1, observe that the inverse [I − (I − A)P]−1
is

involved in the objective function f (α), where A = Diag(α). Since
we wish to analyze the effect on f (α) of changing only a subset

of coordinates in α , the next lemma will be used for simplifying

matrix arithmetic involving the computation of inverses. Its proof

is deferred to Section 6.

Lemma 3.1 (Inverse Arithmetic). GivenK ( V and α ∈ (0, 1)V ,
letA := Diag(α) and recall that P is the irreducible interaction matrix.
Then, the inverse M = [I − (I − A−K )P]−1 exists, and every entry



of M is positive. Moreover, for each k ∈ V , define ak = 0 if k ∈ K ,
otherwise ak = αk . Then, we have:

(1) (PM)kk =
Mkk−1

1−ak
> 0;

(2) (PM)k j =
Mk j
1−ak

> 0, for each j , k .

Lemma 3.2 (Sign of Partial Derivative). In the Opinion Suscep-
tibility Problem in Definition 2.1, given the innate opinion vector s and
irreducible interaction matrix P , recall that z(α) := [I −(I −A)P]−1As ,
where A = Diag(α). Then, for any α ∈ (0, 1)V and any i,k ∈ V ,
the two values ∂zk (α )

∂αi
and si − zi (α) have exactly the same sign in

{−, 0,+}.
In particular, this implies that ∂f (α )

∂αi
=
∑
k ∈V

∂zk (α )
∂αi

also has the
same sign as si − zi (α).

Proof. By the definition of the inverse of a matrix B, we have
BB−1 = I . The partial derivative with respect to a variable t is:
∂B
∂t B

−1 + B ∂B−1

∂t = 0. Hence, we have ∂B−1

∂t = −B
−1 ∂B

∂t B
−1. Apply-

ing the above result with B = I − (I −A)P and t = αi and denoting

M = [I − (I − A)P]−1
, we get

∂M
∂αi
= −MeieTi PM . Considering

z(α) = MAs , we have ∂z(α )
∂αi

= ∂M
∂αi

As + MeieTi s . Replacing
∂M
∂αi

,

we obtain for any i,k ∈ V :

∂zk (α)

∂αi
= −eTkMeieTi PMAs + eTkMeieTi s = Mki · [si − e

T
i Pz(α)].

By Lemma 3.1 with K = ∅, we know that every entry of M is

positive. Thus, the sign of
∂zk (α )
∂αi

is the same as that of the scalar

si − eTi Pz(α).
RecallingM = [I − (I −A)P]−1

, we have [I − (I −A)P]M = I ⇒
(I −A)PM = M − I ⇒ PM = (I −A)−1(M − I )where (I −A)−1

exists

since α j < 1 for each j ∈ V .

Next, since z(α) = MAs , we have:

Pz(α) = PMAs = (I −A)−1(M − I )As = (I −A)−1[z(α) −As].

Finally, replacing Pz(α), we have

si − eTi Pz(α) =si − e
T
i (I −A)

−1[z(α) −As]

=si −
1

1 − αi
[zi (α) − αisi ]

=
1

1 − αi
[si − zi (α)].

Since 1−αi > 0, it follows that
∂zk (α )
∂αi

and si −zi (α) have exactly

the same sign in {−, 0,+}, as required. �

The next lemma shows that the sign of the partial derivatives

with respect to coordinate i is actually independent of the current

value αi . Its proof is deferred to Section 6.

Lemma 3.3 (Sign of Partial Derivative Independent of Co-

ordinate Value). Referring to Lemma 3.2. For any α ∈ (0, 1)V and
any i ∈ V , denote M = [I − (I − A−{i })P]−1. Then, ∂f (α )

∂αi
has the

same sign in {−, 0,+} as si −
∑
j,i Mi jα jsj , which is independent of

αi .

Corollary 3.4 (Extreme Points are Sufficient). In Definition
2.1, for any i ∈ V , fixing the resistance values of all other agents except
i , the objective f (α) is a monotone function in αi . This implies that

to minimize f , it suffices to consider the extreme points αi ∈ {li ,ui },
for each i ∈ V .

3.2 Local vs Global Optimum
As shown in Corollary 3.4, it suffices to choose the resistance vector

α from the extreme points in Definition 2.1. Lemma 3.2 readily

gives a method to decide, given a current choice of α , whether the
objective f can be decreased by changing the resistance of some

agent. In Lemma 3.9, we show that if α is not a global minimum,

then such an agent must exist. As we shall see, this implies that a

local search method can find a global minimum.

Given α and α ′ ∈ RV , denote ∆(α ,α ′) := {i ∈ V : αi , α ′i } as
the set of coordinates at which the vectors differ.

Definition 3.5 (Local Minimizer). Given an objective function

f : IV → R, a vector α ∈ IV is a local minimizer of f , if for all
α ′ ∈ IV such that ∆(α ,α ′) = 1, f (α) ≤ f (α ′).

Notation. When we wish to consider the effect of changing the

resistance of only 2 agents i , k ∈ V , we write f (α) = f (αi ,αk ),
assuming that α−{i,k } is fixed.

Lemmas 3.6 and 3.7 give some technical results involving chang-

ing the resistance of two agents. Their proofs are deferred to Sec-

tion 6.

Lemma 3.6. For any i,k ∈ V such that i , k , let M = [I − (I −
A−{i })P]

−1 and R = [I − (I −A−{i,k })P]−1. Then for any j ∈ V , we
have

(1) Mjk =
Rjk

1+αkRkk−αk
,

(2) Mjh = Rjh −
αkRjkRkh

1+αkRkk−αk
, for h , k .

In particular, the quantity in Lemma 3.3 can be rewritten as follows:

si−
∑
j,i

Mi jα jsj = si−
∑
j,i,k

Ri jα jsj−
αkRik

1 + αkRkk − αk
(sk−

∑
j,i,k

Rk jα jsj ).

Lemma 3.7 (Diagonal Entry). Suppose α ∈ (0, 1)V , recall that
A−{i,k } := Diag(α−{i,k }), and P corresponds to an irreducible inter-
action matrix. For any i,k ∈ V such that i , k , let R = [I − (I −
A−{i,k })P]

−1, then Rii = maxj ∈V Rji . Moreover, Rii = Rki if and
only if Pkk + Pki = 1.

The following lemma gives the key insight for why local search

works. Intuitively, it shows that there does not exist any discrete

“saddle point”. Even though its proof is technical, we still include it

here because of its importance.

Lemma 3.8 (Switching Lemma). Recall that f is defined in Defini-
tion 2.1 with an irreducible interaction matrix P , and assume |V | ≥ 3.
Suppose α , β ∈ (0, 1)V such that ∆(α , β) = {i,k} for some i , k .
Moreover, suppose further that

min{ f (αi ,αk ), f (βi , βk )} < min{ f (αi , βk ), f (βi ,αk )}.

Then, we have

max{ f (αi ,αk ), f (βi , βk )} > min{ f (αi , βk ), f (βi ,αk )}.

Proof. We prove the lemma by contradiction. Suppose

max{ f (αi ,αk ), f (βi , βk )} ≤ min{ f (αi , βk ), f (βi ,αk )}.



Without loss of generality, suppose further that f (αi ,αk ) ≥ f (βi , βk ).
Then, we have

f (αi ,αk ) ≤

{
f (βi ,αk )

f (αi , βk )
and f (βi , βk ) <

{
f (βi ,αk )

f (αi , βk ).

We remark that it is important to distinguish between the strict

and non-strict inequality. We use the notation f ′i to denote the

partial derivative with respect to coordinate i .
From f (αi ,αk ) ≤ f (βi ,αk ) and the fact that f is marginally

monotone (Lemma 3.3) and f ′i (x ,αk ) has the same sign in {−, 0,+}

for x ∈ (0, 1), we have

f ′i (_,αk ) · (αi − βi ) ≤ 0. (1)

On the other hand, from the strict inequality f (βi , βk ) < f (βi ,αk ),
we know the partial derivative f ′k (βi ,y) must have the same non-

zero sign in {−,+}, again from Lemma 3.3. Therefore, we have:

f ′k (βi , _) · (αk − βk ) > 0. (2)

Similarly, f (αi ,αk ) ≤ f (αi , βk ) and f (βi , βk ) < f (αi , βk ) give
the following:

f ′k (αi , _) · (αk − βk ) ≤ 0, (3)

f ′i (_, βk ) · (αi − βi ) > 0. (4)

Next, using Lemma 3.3 and R as defined in Lemma 3.6, the above

inequalities (1) to (4) become:

[si −
∑
j,i,k

Ri jα jsj −
αkRik

1 + αkRkk − αk
(sk −

∑
j,i,k

Rk jα jsj )](αi − βi ) ≤ 0,

[sk −
∑
j,i,k

Rk jβjsj −
βiRki

1 + βiRii − βi
(si −

∑
j,i,k

Ri jβjsj )](αk − βk ) > 0,

[sk −
∑
j,i,k

Rk jα jsj −
αiRki

1 + αiRii − αi
(si −

∑
j,i,k

Ri jα jsj )](αk − βk ) ≤ 0,

[si −
∑
j,i,k

Ri jβjsj −
βkRik

1 + βkRkk − βk
(sk −

∑
j,i,k

Rk jβjsj )](αi − βi ) > 0.

Recall that α j = βj for j , i,k . Hence, we denote:

ci := si −
∑
j,i,k

Ri jα jsj = si −
∑
j,i,k

Ri jβjsj ,

ck := sk −
∑
j,i,k

Rk jα jsj = sk −
∑
j,i,k

Rk jβjsj ,

дi (x) :=
xRki

1 + xRii − x
and дk (x) :=

xRik
1 + xRkk − x

.

Then, we have

[ci − дk (αk )ck ](αi − βi ) ≤0, (5)

[ck − дi (βi )ci ](αk − βk ) >0, (6)

[ck − дi (αi )ci ](αk − βk ) ≤0, (7)

[ci − дk (βk )ck ](αi − βi ) >0. (8)

Observe that ci , 0, otherwise (6) and (7) contradict each other.

Similarly, ck , 0, otherwise (5) and (8) contradict each other. We

next argue that cick > 0.

From (5) and (8) we have

[ci − дk (αk )ck ][ci − дk (βk )ck ] ≤ 0. (9)

If cick < 0, then the above expression will be positive, because

дk (·) ≥ 0 (we shall see that later). Hence, we conclude that ci and
ck have the same sign.

From (6) and (7) we have

[ck − дi (βi )ci ][ck − дi (αi )ci ] ≤ 0. (10)

Rearranging (9) and (10), we have:

[
ci
ck
− дk (αk )][

ci
ck
− дk (βk )] ≤ 0,

and

[
ck
ci
− дi (βi )][

ck
ci
− дi (αi )] ≤ 0.

Note that every entry of R is positive by Lemma 3.1 and we can

easily prove дi (·) and дk (·) are both strictly increasing functions in

[0, 1]. Since α , β ∈ (0, 1)V , the above two inequalities imply that

0 = дk (0) < дk (min{αk , βk }) ≤
ci
ck
,

ci
ck
≤ дk (max{αk , βk }) < дk (1) =

Rik
Rkk

≤ 1,

and

0 = дi (0) < дi (min{αi , βi }) ≤
ck
ci
,

ck
ci
≤ дi (max{αi , βi }) < дi (1) =

Rki
Rii
≤ 1,

where
Rik
Rkk
≤ 1 and

Rki
Rii ≤ 1 are from Lemma 3.7.

Notice that we get 0 < ci
ck
< 1 and 0 <

ck
ci < 1, which is a

contradiction. Hence, the proof is completed. �

Lemma 3.9 (Descending Coordinate). Let f be the function as
defined in Definition 2.1. Suppose α , β ∈ (0, 1)V such that f (α) >
f (β). Then, there exists some i ∈ ∆(α , β) and γ ∈ (0, 1)V such that
∆(α ,γ ) = {i}, ∆(γ , β) = ∆(α , β) \ {i}, and f (α) > f (γ ).

In other words, by switching one coordinate (corresponding to i) of
α to that of β , the objective function f decreases strictly.

Proof. We prove the lemma by induction on |∆(α , β)|. The base
case |∆(α , β)| = 1 is trivial.

We consider the inductive step with |∆(α , β)| = q, for someq ≥ 2.

Given a list S of coordinates from ∆(α , β), we use α[S ] to denote

the resulting vector obtained from switching coordinates S of α to

those of β .
For contradiction’s sake, we assume that for all j ∈ ∆(α , β),

f (α[j]) ≥ f (α); moreover, we pick i ∈ ∆(α , β) such that f (α[i]) is
minimized.

Observe that f (α[i]) ≥ f (α) > f (β) and |∆(α[i], β)| = q −
1. Therefore, by the induction hypothesis, there exists some k ∈
∆(α[i], β) such that f (α[i]) > f (α[i,k ]).

Next, starting from α , we shall fix all coordinates in V except

i and k , and we write the objective f (x ,y) as a function on only

these two coordinates.

Observe that we have already assumed that

f (αi ,αk ) ≤ min{ f (βi ,αk ), f (αi , βk )}. (11)

Moreover, from above, we have f (α[i]) > f (α[i,k]), which trans-

lates to f (βi ,αk ) > f (βi , βk ). Observe thatwemust have f (αi , βk ) ≤
f (βi , βk ); otherwise, we have f (βi , βk ) < min{ f (βi ,αk ), f (αi , βk )},
which, together with (11), will contradict Lemma 3.8.



Therefore, we have f (α[k ]) = f (αi , βk ) ≤ f (βi , βk ) < f (βi ,αk ) =
f (α[i]), which contradicts the choice of i ∈ ∆(α , β) to minimize

f (α[i]). This completes the inductive step and also the proof of the

lemma. �

Corollary 3.10. For the function f in Definition 2.1 every local
minimizer is a global minimizer.

Proof. Suppose that α is a local minimizer, but there is some β
with f (α) > f (β). Then, Lemma 3.9 implies there is some γ with

|∆(α ,γ )| = 1 such that f (α) > f (γ ), contradicting that α is a local

minimizer. �

4 EFFICIENT LOCAL SEARCH
In Section 3, we conclude in Corollary 3.4 that it suffices to consider

the extreme points of the search space of resistance vectors. More-

over, Corollary 3.10 states that every local minimizer is a global

minimizer. Since we know how to compute the sign of the partial

derivative with respect to each coordinate using Lemma 3.2, we can

design a simple local search algorithm to find a global minimizer.

However, it is possible thatO(2n ) extreme points are encountered

before a global minimizer is reached. Fortunately, in this section, we

will explore further properties of the objective function, and design

a local search algorithm that encounters at most O(n) extreme

points before finding a global minimizer.

4.1 Irrevocable Updates
Local Search Strategy. We shall start with the upper bound resis-

tance vector, i.e., for each i ∈ V , αi = ui . This induces the corre-
sponding equilibrium opinion vector z(α). According to Lemma 3.2,

if there is some agent i such that αi = ui and si −zi (α) > 0, then we

should flip αi to the lower bound li . The following lemma shows

that each αi will be flipped at most once. Essentially, we show that

we will never encounter the situation that there is some agent k
such that αk = lk and sk −zk (α) < 0, in which case we would have

to switch αk back to uk .

Lemma 4.1 (Each Coordinate Flipped atMost Once). Starting
from the upper bound resistance vector, the above local search strategy
flips each αi at most once.

Proof. We first show that for each agent k ∈ V , the quantity
sk −zk (α) cannot decrease when α is modified according to the local

search strategy. According to the strategy, α is modified because

there is some agent i such that αi = ui and si − zi (α) > 0. By

Lemma 3.2,
∂zk
∂αi
> 0 for each k ∈ V . Hence, after αi is switched

from ui to li , zk (α) decreases, and the quantity sk −zk (α) increases.
Observe that if a coordinate αk is ever flipped from uk to lk , this

means that at that moment, we must have sk − zk (α) > 0, which,

as we have just shown, will stay positive after α is subsequently

updated. �

4.2 Approximating the Equilibrium Vector
Observe that in our local search algorithm, we need to compute the

equilibrium opinion vector z(α) = [I−(I−A)P)]−1As for the current
resistance vector α , where A = Diag(α). However, computing ma-

trix inverse is an expensive operation. Instead, we approximate z(α)

using the recurrence z(0) ∈ [0, 1]V and z(t+1)
:= As + (I −A)Pz(t ).

The following lemma gives an upper bound on the additive error

for each coordinate.

Lemma 4.2 (Approximation Error). Suppose for some ϵ > 0, for
all i ∈ V , αi ≥ ϵ . Then, for every t ≥ 0, ∥z(α) − z(t )∥∞ ≤

(1−ϵ )t
ϵ .

Proof. Using the Neumann series [I − (I −A)P)]−1 =
∑∞
j=0
[(I −

A)P]j , we have z(α) − z(t ) =
∑∞
j=t [(I −A)P]

jAs − [(I −A)P]tz(0).

We next prove, by induction, that for any x ∈ [0, 1]V , ∥[(I −
A)P]jx ∥∞ ≤ (1 − ϵ)

j
, for all j ≥ 0. The base case j = 0 is trivial

because every coordinate of x is between 0 and 1. For the inductive

step, assume that for some j ≥ 0, every coordinate of y = [(I −
A)P]jx has magnitude at most (1 − ϵ)i . Since P is a row stochastic

matrix, it follows that ∥Py∥∞ ≤ (1− ϵ)
j
; finally, since αi ≥ ϵ for all

i ∈ V , we have ∥(I −A)Py∥∞ ≤ (1−ϵ)
j+1

, completing the induction

proof.

Finally, observing that both

∑∞
j=t [(I −A)P]

jAs and [(I −A)P]tz(0)

have non-negative coordinates, we have

∥z(α) − z(t )∥∞ ≤ max{∥

∞∑
j=t
[(I −A)P]jAs∥, ∥[(I −A)P]tz(0)∥}

≤

∞∑
j=t
(1 − ϵ)j =

(1 − ϵ)t

ϵ

as required. �

4.3 Local Search Algorithm
Based on Lemmas 4.1 and 4.2, we give a local search framework in

Algorithm 1. Observe that in line 1, we perturb the innate opinions s
slightly to ensure that for each resistance vector α encountered, no

coordinate of s and z(α) would coincide.

The while loop in line 4 combines local search to update α
and estimation of the equilibrium vector z(α). Here are two general
update strategies, which are both captured by the non-deterministic

step in line 7:

• Conservative Update. The opinion vector z is iteratively
updated in line 5 until all coordinates of z and s are suffi-

ciently far apart. Then, for every coordinate αi such that

αi = ui and zi < si , we flip αi to the lower bound li .
After we update α , we reset t to 0, and continue to iteratively
update z. Whenever we update α and set t to 0, we say that

a new phase begins; we use the convention that the initial

phase is known as phase 0.

• Opportunistic Update. Instead of waiting for the approxi-

mation error of every coordinate of z to be small enough, we

can update some coordinatesαi , ifαi = ui and zi ≤ si−err(t)
is small enough. However, there is some tradeoff between

waiting for the errors of all coordinates to be small enough

and updating coordinates of α that are ready sooner. In Sec-

tion 5, we will evaluate empirically different update strate-

gies.

Optimistic Update. In both conservative and opportunistic up-

dates, a coordinate αi is flipped only when we know for sure that

the current estimate zi has small enough error with respect to the

equilibrium zi (α); hence, no mistake in flipping any αi is ever made.



Algorithm 1: Local Search Framework

Input: Innate opinions s ∈ [0, 1]V ; interaction matrix P ; for each
agent i ∈ V , upper ui and lower li bounds for resistance.

Output: Optimal resistance vector α ∈ ×i∈V {li , ui }.
1 (Technical step.) Randomly perturb each coordinate of s slightly.
2 Initially, for each agent i , set αi ← ui to its upper bound; denote

ϵα := mini∈V αi .
3 Pick arbitrary z ∈ [0, 1]V , and set t ← 0; denote err(t ) :=

(1−ϵα )t
ϵα .

4 while ∃i ∈ V : |si − zi | ≤ err(t ) ∨ (zi < si ∧ αi = ui ) do
5 z ← As + (I − A)Pz , where A = Diag(α )
6 t ← t + 1

7 (Non-deterministic step.) Pick arbitrary L ⊆ V (that can be empty)

such that for each i ∈ L, zi ≤ si − err(t ) and αi = ui .
8 if L , ∅ then
9 for each i ∈ L do

10 Set αi ← li to its lower bound (and update ϵα ).

11 t ← 0

12 return Resistance vector α .

However, our insight is that as the algorithm proceeds, the general

trend is for every zi to decrease.

The first intuition is that if we start with some z(0) such that

every coordinate of z(0) is at least its equilibrium coordinate of

z(α), then z(t ) should converge to z(α) from above. The second

observation is that every time we flip some αi , this will not increase
any coordinate of the equilibrium vector z(α), thereby preserving

the condition that the current estimate z(t ) ≥ z(α). Hence, without
worrying about the accuracy of the current estimate z, we will

simply flip coordinate αi to li when zi drops below si . However, it
is possible that we might need to flip αi back to ui , if zi increases in
the next iteration and becomes larger than si again. We shall see in

Section 5 that this scenario is extremely rare. Specifically, in line 8

of Algorithm 2, the set J is (almost) always empty.

5 EXPERIMENTS
Experimental setup. Our experiments run on a server with 2.1

GHz Intel Xeon Gold 6152 CPU and 64GB of main memory. The

server is limited to activate at most 24 threads by the administrator.

The real network topologies we use in our experiment are shown

in Table 1; we interpret each network as an undirected graph. The

number n of nodes in the dataset networks ranges from about 1

million to 65 million; in each network, the numberm of edges is

around 2n to 30n.
Input Generation. For each dataset, we utilize the network topol-

ogy and generate the input parameters as follows. The innate opin-

ion si of each agent i is independently generated uniformly at

random from [0, 1]. For each edge {i, j} in the network, we inde-

pendently pickwi j uniformly at random from [0, 1]; otherwise, we

setwi j = 0. For (i, j) ∈ V ×V , we normalize Pi j :=
wi j∑

k∈V wik
. From

Lemma 4.2, one can see that approximating the equilibrium opin-

ions is more difficult when the resistance is low. However, since

we still want to demonstrate that the resistance for each agent can

have varied lower and upper bounds, we set the lower bound li of
each agent i independently such that with probability 0.99, li equals
0.001, and with probability 0.01, it is picked uniformly at random

Algorithm 2: Optimistic Local Search

Input: Innate opinions s ∈ [0, 1]V ; interaction matrix P ; for each
agent i ∈ V , upper ui and lower li bounds for resistance.

Output: Optimal resistance vector α ∈ ×i∈V {li , ui }.
1 (Technical step.) Randomly perturb each coordinate of s slightly.
2 Initially, for each agent i , set αi ← ui to its upper bound; denote

ϵα := mini∈V αi .
3 Pick z = (1, 1, . . . , 1), and set t ← 0; denote err(t ) :=

(1−ϵα )t
ϵα .

4 while ∃i ∈ V : |si − zi | ≤ err(t ) do
5 z ← As + (I − A)Pz , where A = Diag(α )
6 t ← t + 1

7 (Optimistic Candidates.) Set L ← {i ∈ V : zi ≤ si ∧ αi = ui }.
8 (Rare Mistakes.) Set J ← {i ∈ V : zi > si ∧ αi = li }.
9 if L ∪ J , ∅ then

10 for each i ∈ L do
11 Set αi ← li to its lower bound (and update ϵα ).

12 for each i ∈ J do
13 Set αi ← ui to its upper bound (and update ϵα ).

14 t ← 0

15 return Resistance vector α .

from [0.001, 0.1]. Similarly, each upper bound ui is independently
selected such that with probability 0.99, it equals to 0.999, and with

probability 0.01, it is chosen uniformly at random from [0.9, 0.999].

5.1 Update Strategies Comparison
We compare the following three update strategies described in

Section 4: conservative, opportunistic and optimistic. For the three

smaller networks (com-Youtube, com-LiveJournal, LiveJournal), we

apply all three update strategies. For the largest network (com-

Friendster), we only report the performance of the optimistic update

strategy, as the other two update strategies are not efficient enough

for such a large dataset.

Experimental Setup. For fair comparison among the update strate-

gies, we always initialize z = (1, 1, ..., 1). To compare their per-

formances, we plot a curve for each strategy. The curves have a

common x-axis, which corresponds to the number of times that the

vector z has been updated so far, i.e., the number of times line 5

(in both Algorithms 1 and 2) has been executed. Since line 5 is the

most time-consuming part of the algorithms, it will be a suitable

common reference. We use the term iteration to refer to each time

z is updated. For each update strategy, we explain what is plotted

for the y-axis.

• Conservative Strategy. We run Algorithm 1 such that in

line 7, L is non-empty only if for all i ∈ V , |si − zi | > err(t),
in which case, we pick L to be the collection of all i’s such
that αi = ui and zi ≤ si − err(t).
For the y-axis, we plot the ratio of agents i for which cur-

rently αi = li , or we know definitely that αi should be

switched to li , i.e., currently αi = ui and zi ≤ si − err(t).
In Algorithm 1, the iterations (referring to each time z is

updated) are grouped into phases, where a non-empty L in

an iteration marks the end of a phase. Observe that at the

end of a phase, for all i ∈ L, αi is set to li and t is reset to 0.



Table 1: Datasets Information

Name Number n of Nodes Numberm of Edges Description Source

com-Youtube 1,134,890 2,987,624 Youtube online social network [18]

com-LiveJournal 3,997,962 34,681,189 LiveJournal online social network [18]

LiveJournal 10,690,276 112,307,385 LiveJournal user and group membership network [17]

com-Friendster 65,608,366 1,806,067,135 Friendster online social network [18]

Hence, in the next iteration, no coordinate αi is certain to

be switched. Hence, the curve has a step-like shape, where

each plateau occurs after the end of each phase.

Observer that initially ϵα = mini ui ≥ 0.9. Hence, it takes

very few number of iterations to satisfy ∀i ∈ V : |si − zi | >
err(t); we call this the phase 0. At the end of the phase 0,

we set some αi = li and ϵα decreases significantly. Hence,

subsequent phases have many more iterations.

Observe that we can stop the iterative process, when for all

i ∈ V , |si −zi | > err(t), but there is no i ∈ V such that zi < si
and αi = ui . This marks the end of the curve.

In each phase, we pick L of line 7 as the collection of all i’s
such that zi ≤ si −err(t) only when ∀i ∈ V : |si −zi | > err(t)
(otherwise, we pick L = ∅). Then, we set αi = li for each
i ∈ L and t = 0. We call such a phase a conservative phase.
• Opportunistic Strategy.We run Algorithm 1 similarly as

before. Phase 0 is the same as the conservative strategy; we

call a phase conservative, if it follows the conservative update
strategy.

Starting from phase 1, we can perform it in an opportunistic

manner as follows. Recall that at the beginning of a phase, t
has just been reset to 0. At the t-th iteration of that phase,

we use L(t) to denote the collection of i’s such that zi ≤
si −err(t). For every 1000 iterations, we compute an estimate

slope(k) :=
|L(1000k ) |− |L(1000(k−1)) |

1000
of the slope; we keep

track km of the maximum slope computed so far. After some

iteration, if the estimated slope drops below some factor

(we use 0.1 in our experiments) of km , then we end this

phase. Intuitively, each additional iteration flips only a small

number of coordinates αi , and hence, one would like to end

this phase. We call such a phase opportunistic.
Since typically the total number of phases is around 8, we

run phase 1 to 6 opportunistically, after which we run the

remaining phases conservatively to make sure that all coor-

dinates αi that need to be changed will be flipped.

As in the conservative update strategy, for the y-axis, we

plot the ratio of coordinates αi that currently αi = li , or
we know for sure should be switched to li , i.e. αi = ui and
zi ≤ si − err(t).
• Optimistic Strategy.We implement Algorithm 2, where in

each iteration after z is updated, a coordinate αi is (re)set
to li if zi < si , and (re)set to ui if zi > si . For the y-axis,

we plot the ratio of coordinates that currently take their

lower bounds. The curve ends when enough iterations are

performed after some coordinate of α is last updated, in

order to ensure that the estimate z is close enough to the

equilibrium vector according to Lemma 4.2.
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Figure 2: Update Strategies Comparison on com-Youtube.

Experiment Results. Each of Figures 2, 3 and 4 shows the plots

for the three strategies in the corresponding network (com-Youtube,

com-LiveJournal or LiveJournal). Figure 5 shows the plot of the

optimistic strategy in the com-Friendster network, where the other

two strategies are not efficient enough for such a large network.

As expected, the opportunistic strategy is slightly better than the

conservative strategy. From the positions of the plateaus, we can

see that the initial opportunistic phases end sooner than their con-

servative counterparts. Hence, overall the opportunistic strategy

performs slightly better than the conservative strategy; in increas-

ing sizes of the three tested networks, the numbers of iterations

taken by the opportunistic strategy are 79.2%, 77.9% and 71.5%,

respectively, of those taken by the conservative strategy.

On the other hand, the optimistic strategy can achieve the opti-

mal resistance vector with much fewer number of iterations than

the other two strategies. In increasing sizes of the three smaller

networks, the numbers of iterations taken by the optimistic strategy

are only 12.8%, 13.4% and 12.4%, respectively, of those taken by the

conservative strategy. Moreover, the optimistic strategy makes very

few mistakes; in increasing sizes of the four networks, the numbers

of times coordinates are flipped from lower bounds back to upper

bounds are 1, 0, 13 and 168, which are negligible for networks with

millions of nodes.

5.2 Running Time with Multiple Threads
We compare the actual running time using different number of

threads for the optimistic strategy on only the three smaller net-

works, since the largest network takes too long using only one

thread. Using all 24 available threads, running the optimistic strat-

egy on the com-Friendster network already takes around 50 hours.

The three bar graphs in Figure 6 show the running time (mea-

sured in minutes) for running the optimistic strategy with different
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Figure 3: Update Strategies Comparison on com-
LiveJournal.
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Figure 4: Update Strategies Comparison on LiveJournal.

0 50 100 150 200 35k
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimistic

Figure 5: Optimistic Strategy on com-Friendster.

number of threads on the com-Youtube, com-LiveJournal and Live-

Journal networks. Since updating z (line 5 of Algorithm 2) is the

most time-consuming part of the algorithm, the fact that it is read-

ily parallelizable supports the empirical results that using multiple

threads can greatly reduce the running time, where the effect is

more prominent for larger networks.

6 TECHNICAL PROOFS
Lemma 6.1. (Lemma 3.1 restated) Given K ( V and α ∈ (0, 1)V ,

letA := Diag(α) and recall that P is the irreducible interaction matrix.
Then, the inverse M = [I − (I − A−K )P]−1 exists, and every entry
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Figure 6: Running Time with Different Number of Threads
on com-Youtube, com-LiveJournal and LiveJournal

of M is positive. Moreover, for each k ∈ V , define ak = 0 if k ∈ K ,
otherwise ak = αk . Then, we have:

(1) (PM)kk =
Mkk−1

1−ak
> 0;

(2) (PM)k j =
Mk j
1−ak

> 0, for each j , k .

Proof. Observe that P corresponds to an irreducible random

walk. Hence, (I −A−K )P represents a diluted random walk, where

at the beginning of each step, the measure at nodes i < K will

suffer a factor of 1 − αi ∈ (0, 1). The irreducibility of the random

walk P means that every state is reachable from any state. Hence,

starting from any measure vector, eventually the measure at every

node will tend to 0. This means that (I − A−K )P has eigenvalues

with magnitude strictly less than 1. Therefore, we can consider the

following Neumann series of a matrix:

M = [I − (I −A−K )P]
−1 = I +

∞∑
k=1

[(I −A−K )P]
k ,

which implies that the inverse M exists, and every entry of M is

positive; in particular, for every k ∈ V ,Mkk > 1.

By the definition of M , we have [I − (I −A−K )P]M = I . We fix

some k ∈ V . By considering the (k,k)-the entry, i.e., the dot product
between the k-th row of [I − (I −A−K )P] and the k-th column of

M , we have

Mkk −
∑
i ∈V
(1 − ak )PkiMik = 1

where ak = 0 if k ∈ K , otherwise ak = αk < 1. Hence, we have

(PM)kk =
∑
i ∈V PkiMik =

Mkk−1

1−ak
.

Similarly, for j , k , by considering the dot product between the

k-th row of [I − (I −A−K )P] and the j-th column ofM , we have

Mk j −
∑
i ∈V
(1 − ak )PkiMi j = 0.

Hence, we have for j , k ,

(PM)k j =
∑
i ∈V

PkiMi j =
Mk j

1 − ak
,

as required. �

Lemma 6.2. (Lemma 3.3 restated) Referring to Lemma 3.2. For any
α ∈ (0, 1)V and any i ∈ V , denote M = [I − (I − A−{i })P]−1. Then,
∂f (α )
∂αi

has the same sign in {−, 0,+} as si −
∑
j,i Mi jα jsj , which is

independent of αi .



Proof. Using the Sherman-Morrison formula, we consider

X :=[I − (I −A)P]−1 = [I − (I −A−{i } − αieie
T
i )P]

−1

=[I − (I −A−{i })P + αieie
T
i P]
−1

=M −
αi

1 + αieTi PMei
MeieTi PM .

Observe that eTi PMei = (PM)ii and (MeieTi PM)i j = Mii (PM)i j
for each j ∈ V . Then, by Lemma 3.1 with K = {i}, we have

Xii =Mii −
αiMii (PM)ii
1 + αi (PM)ii

= Mii −
αiMii (Mii − 1)

1 + αi (Mii − 1)

=
(1 − αi + αiMii − αiMii + αi )Mii

1 − αi + αiMii
=

Mii
1 − αi + αiMii

;

and for j , i ,

Xi j =Mi j −
αiMii (PM)i j

1 + αi (PM)ii
= Mi j −

αiMiiMi j

1 + αi (Mii − 1)

=
(1 − αi + αiMii − αiMii )Mi j

1 − αi + αiMii
=
(1 − αi )Mi j

1 − αi + αiMii
.

By Lemma 3.2, we know
∂f (α )
∂αi

and si − zi (α) have the same sign

in {−, 0,+}. Recall that z(α) = [I − (I −A)P]−1As = XAs . Applying
the above results, we have

si − zi (α) =si −
∑
j ∈V

Xi jα jsj

=si −
Miiαisi

1 − αi + αiMii
−
∑
j,i

(1 − αi )Mi jα jsj

1 − αi + αiMii

=
si (1 − αi + αiMii ) −Miiαisi − (1 − αi )

∑
j,i Mi jα jsj

1 − αi + αiMii

=
(1 − αi )(si −

∑
j,i Mi jα jsj )

1 − αi + αiMii
.

Since αi ∈ (0, 1), we conclude that
1−αi

1−αi+αiMii
> 0. Thus

∂f (α )
∂αi

,

si − zi (α) and si −
∑
j,i Mi jα jsj have the same sign. �

Lemma 6.3. (Lemma 3.6 restated) For any i,k ∈ V such that i , k ,
let M = [I − (I −A−{i })P]−1 and R = [I − (I −A−{i,k })P]−1. Then
for any j ∈ V , we have

(1) Mjk =
Rjk

1+αkRkk−αk
,

(2) Mjh = Rjh −
αkRjkRkh

1+αkRkk−αk
, for each h , k .

In particular, the quantity in Lemma 3.3 can be rewritten as follows:

si−
∑
j,i

Mi jα jsj = si−
∑
j,i,k

Ri jα jsj−
αkRik

1 + αkRkk − αk
(sk−

∑
j,i,k

Rk jα jsj ).

Proof. Using the Sherman-Morrison formula, we have

M = [I − (I −A−{i,k })P + αkeke
T
k P]
−1

= R −
αk

1 + αkeTk PRek
Reke

T
k PR

We can compute that eTk PRek = (PR)kk and (RekeTk PR)jh = Rjk (PR)kh
for j,h ∈ V . Then we have

Mjh = Rjh −
αkRjk (PR)kh

1 + αk (PR)kk
.

By Lemma 3.1, we obtain

Mjh = Rjh −
αkRjkRkh

1 + αkRkk − αk
for j,h ∈ V and h , k ,

and

Mjk = Rjk −
αkRjk (Rkk − 1)

1 + αkRkk − αk
=

Rjk

1 + αkRkk − αk
for j ∈ V .

as required. �

Lemma 6.4. (Lemma 3.7 restated) Suppose α ∈ (0, 1)V , recall
that A−{i,k } := Diag(α−{i,k }), and P corresponds to an irreducible
interaction matrix. For any i,k ∈ V such that i , k , let R = [I − (I −
A−{i,k })P]

−1, then Rii = maxj ∈V Rji . Moreover, Rii = Rki if and
only if Pkk + Pki = 1.

Proof. We have [I − (I − A−{i,k })P]R = I . By considering the

dot product between each row of [I − (I −A−{i,k })P] and column i
of R, we have

Rii −
∑
h∈V

PihRhi = 1,Rki −
∑
h∈V

PkhRhi = 0,

and Rji −
∑
h∈V

(1 − α j )PjhRhi = 0, for j , i,k .

After rearranging, we have

Rii = 1 +
∑
h∈V

PihRhi ,Rki =
∑
h∈V

PkhRhi ,

and Rji = (1 − α j )
∑
h∈V

PjhRhi , for j , i,k .

Now it suffices to show that for j , i,k , the above Rji cannot be
the maximum among them, and Rki ≤ Rii .

First, we show thatRji cannot be themaximum. Since

∑
h∈V Pjh =

1 and α j ∈ (0, 1), we have

Rji = (1 − α j )
∑
h∈V

PjhRhi ≤ (1 − α j )max

h∈V
Rhi < max

h∈V
Rhi .

Thus, Rji cannot be the maximum.

Next, we show that Rki ≤ Rii by contradiction. Suppose Rki >
Rii , then Rki is the unique maximum in the i-th column of R. Since∑
h∈V Pkh = 1 and Rki =

∑
h∈V PkhRhi , it must be the case that

Pkk = 1. This means P corresponds to a random walk with absorb-

ing state k , which contradicts that P is irreducible. Therefore, we

have Rki ≤ Rii , and hence Rii = maxh∈V Rhi .
Observe that we already know Rji < Rii for j , i,k , and Rki =∑
h∈V PkhRhi . Hence, Rki = Rii implies that Pkk + Pki = 1.

Conversely, Pkk +Pki = 1 implies that Rki = PkkRki+PkiRii . As
argued above, we must have Pkk , 1, which implies Rki = Rii . �

7 CONCLUSION AND FUTUREWORK
We have given a solid theoretical analysis of the unbudgeted variant

of the opinion susceptibility problem, and designed scalable local

search algorithms that can solve the problem optimally on graphs

with millions of nodes.

We believe that our techniques will lead to insights for the anal-

ysis of the budgeted variant of the problem. We leave the task

of providing theoretical guarantees for greedy algorithms on the

budgeted variant as future work.
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