
Distributed Approximate k-Core Decomposition
and Min-Max Edge Orientation:
Breaking the Diameter Barrier

T-H. Hubert Chan
The University of Hong Kong

Mauro Sozio
Telecom ParisTech University

Bintao Sun
The University of Hong Kong

Abstract—We design distributed algorithms to compute ap-
proximate solutions for several related graph optimization prob-
lems. All our algorithms have round complexity being logarithmic
in the number of nodes of the underlying graph and in particular
independent of the graph diameter. By using a primal-dual
approach, we develop a 2(1 + ε)-approximation algorithm for
computing the coreness values of the nodes in the underlying
graph, as well as a 2(1 + ε)-approximation algorithm for the
min-max edge orientation problem, where the goal is to orient
the edges so as to minimize the maximum weighted in-degree.
We provide lower bounds showing that the aforementioned algo-
rithms are tight both in terms of the approximation guarantee
and the round complexity. Finally, motivated by the fact that
the densest subset problem has an inherent dependency on the
diameter of the graph, we study a weaker version that does not
suffer from the same limitation.

Index Terms—distributed algorithms, coreness, round com-
plexity

I. INTRODUCTION

The k-core decomposition and algorithms for finding dens-
est subgraphs have proved to be a valuable tool in graph
mining and data analysis, with applications encompassing
sociology, bioinformatics as well as graph visualization.
Coreness. Formally, a node v in a (weighted) graph G is said
to have coreness value k, if k is the largest number such that v
belongs to a subgraph of G with minimum (weighted) degree
equal to k [25].

Intuitively, nodes belonging to well-connected communities
tend to have high coreness values. Besides, several definitions
of density have been proposed in the literature. In our work,
we focus on the average degree density which is defined as
the ratio between the number of edges and the number of
nodes in a graph [8]. One of the appealing properties of such
a definition is that a densest subgraph (in terms of average
degree density) can be computed in polynomial time. Such an
optimization problem is often referred to as the densest subset
problem. Recently, the diminishingly-dense decomposition has
been introduced and studied [11], [19], [26], which elegantly
merges the concepts of density and k-core decomposition.
Such a decomposition assigns to each node a real number,
which we refer to as maximal density value. We also study

T-H. Hubert Chan was partially supported by the Hong Kong RGC under
the grants 17200418.

the min-max edge orientation problem [27] which turns out
to be related to the previous problems. The goal is to assign
an orientation to every edge such that the maximum weighted
in-degree is minimized.

In our work, we develop distributed algorithms for approx-
imating the coreness values, the local density values, as well
as to find an approximate solution for the min-max edge
orientation problem. Moreover, we study a weaker version
of the densest subset problem. We envision the following
applications for our work. Our distributed algorithms can be
executed by agents in a social network or a P2P network, for
example, so as to collect relevant statistics of the agents with
respect to the underlying graph. Users in a social network with
large coreness value are known to have “good spreading” prop-
erties in epidemiological studies [20]. Therefore, the coreness
value (or an approximation) can be leveraged to maximize
the spreading of a diffusion protocol. Communities in a social
network consist of set of users sharing similar interests, such
as hiking, traveling or photography. The density of a given
subgraph can be used to measure how likely the corresponding
users belong to a same community [29]. Our work allows
to approximate such a metric in a distributed fashion. Our
distributed algorithms can also be used in distributed graph
processing systems [22] to process very large graphs not fitting
into the main memory of one single machine.

We are given an undirected edge-weighted graph G =
(V,E,w). We consider the classical Local model, in which
every node can directly communicate only with its neighbors
in synchronous rounds. Moreover, we assume each node
knows (an upper bound on) the number n = |V | of nodes.
The hop-diameter D (or diameter) of a graph G is at most
` if every pair of nodes in G can be connected with a path
consisting of at most ` edges. We use the convention that
the approximation ratio γ is at least 1.1 There is often a
tradeoff between the number of rounds and the approxima-
tion guarantees of a distributed algorithm. Figure I.1 shows
that approximating the coreness values or the min-max edge
orientation problem within a factor strictly less than 2 requires

1For minimization problems, this means the solution has value at most γ
times the optimal value. For maximization problems, the solution has value at
least 1

γ
fraction of the optimal value. For computation problems, the solution

is within a multiplicative factor of γ from its true value.

2 2 2

2

2

2

2

2 2
𝑣

𝑛/2 nodes

(a)

(b)

(c)

2 2

𝑛/2 nodes

1 1 2

2

2

1 1
𝑣

1 1

1 1 1

2

2

2 1
𝑣

1 1

Fig. I.1. Example graphs showing that the we cannot beat 2-approximation
for coreness values and min-max edge orientation problem unless the number
of rounds is at least Ω(n). All graphs have unit edge weights, and the nodes
are labeled with their coreness values. The coreness of v is 2 in (a), but is
1 in (b) and (c). The arrows in (b) and (c) indicate an optimal orientation,
where the maximum in-degree is 1; any other orientation of edges incident
on v will result in a maximum in-degree of at least 2. It takes Ω(n) rounds
for node v to distinguish between the different graphs.

Ω(D) communication rounds. Similarly, for a node to be aware
of whether it is included in an approximate densest subgraph,
Ω(D) communication rounds are required. This follows from
the fact that such a node has to verify whether a subgraph with
higher density (possibly many hops away) is included in the
graph or not. Hence, it is natural to investigate the following
question: Can we devise distributed approximation algorithms
for the aforementioned problems, while requiring a number of
communication rounds independent of the diameter?

Although some of the problems discussed above have been
studied in a distributed environment, there is no work focusing
on breaking the diameter barrier, to the best of our knowl-
edge. All our algorithms require a number of communication
rounds logarithmic in n, while we provide tight lower bounds
expressing the tradeoff between communication rounds and
approximation ratio.

A. Our Results and Contribution

Coreness Values. Just like almost every work on these related
problems [4], [6], [8], [12], [13], [15], [17], [23], [28], we
consider an elimination procedure that repeatedly “peels off”
nodes with small (weighted) degrees. In particular, we follow
the interpretation by Montresor et al. [23]. Specifically, given
a threshold value b, in each round, nodes with degree less
than b in the remaining graph are removed. Using a compact
representation, we can imagine that the elimination procedure
for all possible thresholds are run in parallel, where after each
iteration, each node v just remembers the largest threshold bv
(that we call the surviving number), for which it still survives.

It is known that after each iteration, the surviving number
of each node v is at least its coreness c(v); moreover, after n
rounds, the surviving number will reach the coreness value2.
However, to the best of our knowledge, so far there is no
approximation analysis for the process in terms of the number
of iterations.

2In general, Ω(n) rounds are needed, even if the diameter is constant.

Densest Subset. It is interesting that a variant of the elimination
process was considered by Bahmani et al. [4] to give a 2(1+ε)-
approximation for the densest subset streaming model. In each
iteration or pass, the threshold is chosen to be 2(1 + ε) times
the density of the current subset of surviving nodes. Then, the
process terminates in O(log1+ε n) iterations, and the subgraph
from one of the iterations gives a 2(1+ε)-densest subset. This
inspires us that density can provide the right tool to design
and analyze distributed approximation algorithms for coreness
values. However, an immediate issue is that for every node to
know the (approximate) density of the current subgraph, we
already need Ω(D) rounds.
Local Notion of Density. We observe that it is not necessary
to use the global density of the (sub)graph, because in some
sense, coreness value measures the local density of a node.
Recently, Tatti and Gionis [26] considered a so-called locally-
dense graph decomposition, which has been further studied by
Danisch et al. [11], who defined a quantity known as maxi-
mal density for each node. This decomposition has actually
been considered in passing by Khuller and Saha [19] in the
context of finding densest subsets with large sizes. Intuitively,
the decomposition works by repeatedly peeling off maximal
densest subsets as follows. Given a weighted graph G, the
maximal densest subset B forms the first layer; every node
u ∈ B has maximal density equal to ρG(B), even though no
special importance is given to this value in [19]. Next, remove
the nodes in B to form a quotient graph G′, where an edge
between u ∈ B and v ∈ B becomes a self-loop at v in G′.
Then, the procedure is recursively applied to G′ until all nodes
are removed. Equipped with this notion of maximal density,
we can adapt previous analysis to achieve the following result.

Theorem I.1 (Gracefully Degrading Approximation Ratio for
coreness values). After running the compact elimination pro-
cedure in the Local model for T rounds, the surviving number
at each node gives a 2n

1
T -approximation to its coreness value

(and maximal density).
In particular, if every node knows the number of nodes

(or an upper bound) n and would like to achieve 2(1 + ε)-
approximation, then T = dlog1+ε ne rounds are sufficient.

Matching Lower Bound. For γ ≥ 2, by considering a γ-ary
tree, we show in Section III that achieving γ-approximation
requires Ω(logn

log γ) rounds.
Min-Max Edge Orientation Problem. The centralized ver-
sion of the problem was proposed by Venkateswaran [27]
and has applications in telecommunication network design;
it is known that the special case of unit edge weights can be
solved in polynomial time. The connection of the problem with
densest subsets has been explored in subsequent works [2], [3].

To the best of our knowledge, the only distributed algorithm
for this problem with round complexity independent of the
diameter is for unweighted graphs. Specifically, Barenboim
and Elkin [5] actually studied a stronger problem, where the
goal is to partition the edges of a graph into a minimum
number of forests. Instead of density ρ(S) = w(E(S))

|S| , a

similar notion of arboricity arb(S) = w(E(S))
|S|−1 is considered.

In hindsight, it is not surprising that they also used a variant
of the distributed elimination procedure to approximate the
forest-decomposition problem in the Local model. Indeed,
they showed that if the maximum arboricity is known by
every node, then O(1

ε log n) rounds are sufficient to achieve
(2+ε)-approximation. As remarked above, if every node needs
to know the (approximate) maximum arboricity, then Ω(D)
rounds are required. A careful study of their algorithm reveals
that the first phase [5, Algorithm 3] serves a similar purpose as
computing the surviving numbers as in our Theorem I.1, after
which they run the second phase as if the maximum arboricity
is known. This degrades the quality of the solution, and only
2(2 + ε)-approximation is achieved.
Primal-Dual Approach. By observing that the LP relaxation
of the min-max edge orientation problem is the dual of the
densest subset LP (see Section II), we have the intuition
that a procedure for approximating the maximal densities
should also give information about the dual problem, without
using a second phase. Indeed, we augment the distributed
elimination procedure by maintaining an auxiliary subset Nv
for every node v (which represents its in-neighbors) to give
the same approximation ratio for the edge orientation problem.
However, a very careful invariant analysis in Lemma III.11 is
performed to make sure that every edge is taken care of by at
least one of its end-points.

Theorem I.2 (Gracefully Degrading Approximation Ratio
for Min-Max Edge Orientation Problem). After running the
augmented elimination procedure (Algorithm 2) in the Local
model for T rounds, the auxiliary subsets {Nv : v ∈ V }
gives a 2n

1
T -approximation to the min-max edge orientation

problem.

In particular, if every node knows n and would like to
achieve 2(1 + ε)-approximation, then T = dlog1+ε ne rounds
are sufficient.

Densest Subset Problem. As argued above, for every node to
be aware of whether it should be included in an approximate
densest subset, it takes Ω(D) rounds. Indeed, Sarma et al. [24]
gave a distributed algorithm that gives 2(1+ ε)-approximation
with O(D log1+ε n) rounds.

We consider a weaker version of the problem (in Defini-
tion IV.1). Instead of just producing one subset, the distributed
algorithm will return a collection {Si : i ∈ I} of disjoint
subsets such that for each i ∈ I, each node will be aware
of which subset (if any) it belongs to; moreover, there exists
some i ∈ I such that Si is an approximate densest subset.
Using the procedure in Theorem I.1 as a subroutine, we have
the following.

Theorem I.3 (Distributed (Weak) Densest Subset Problem).
For any ε > 0 and n, there exists a distributed algorithm that
gives a 2(1 + ε)-approximation to the (weak) densest subset
problem in Definition IV.1 on any graph with n nodes using
O(log1+ε n) rounds.

B. Related Work

In addition to the most relevant works that have already
been compared with our work, we also describe other related
works.
Corenss Values. After Seidman [25] first proposed k-core
decomposition, Batagelj and Zaversnik [6] presented a (cen-
tralized) O(m) algorithm to compute a k-core decomposition.
This notion has been extended to weighted graphs [9], [14] and
directed graphs [13]. The distributed setting has been studied
by Montresor et al. [23], and was further extended to dynamic
graphs by Aridhi et al. [1]. The distributed algorithms have
been adapted to (centralized) I/O efficient algorithms [9], [28]
that were proposed to handle large graphs that cannot fit into
memory.
Min-Max Edge Orientation Problem. Since
Venkateswaran [27] introduced the problem, (centralized)
polynomial-time algorithms are known to give optimal
solutions for unweighted graphs [3], [21], [27]. However,
a series of works [2], [3] showed that the weighted version
is NP-hard even when all edge weights belong to the set
{1, k}, where k is any fixed integer greater than 1; on the
other hand, for integer edge weights, (2 − 1

k)-approximation
can be achieved, where k is the maximum weight. Gillet
and Hanusse [15] considered the more general asynchronous
distributed model with faults. However, their algorithm has
round complexity depending on the graph diameter, and
achieves 2(2 + ε)-approximation.

The problem can be also be seen as a special case of a
load-balancing task, where each node is a machine and each
edge is a job to be assigned to one of its incident machines.
From this perspective, minimizing the maximum in-degree is
equivalent to minimizing the makespan. Czygrinow et al. [10]
considered minimizing a slightly different objective that is the
sum of the squares of the loads of the machines. In contrast,
they gave a distributed 2-approximation algorithm that runs in
O(∆5) rounds, where ∆ is the maximum degree.

The Min-Max Edge Orientation Problem share some simi-
larities with the vertex cover with hard capacities problem [16].
Densest Subsets. The densest subset problem [8] has been
extensively studied and extended to directed graphs [18]. As
mentioned above, even though Khuller and Saha [19] have
implicitly considered locally-dense graph decompositions, this
notion has not been fully studied until recently by Tatti and
Gionis [26] and Danisch et al. [11]. One of its surprising
applications is its usage in the computation of the (non-linear)
Laplacian operator of a hypergraph [7].

II. PRELIMINARIES

Distributed Model. The input is an edge-weighted undirected
graph G = (V,E,w), where n = |V | and the edge weights
w : E → R+ are non-negative. We consider the classical Local
model, where each node in V is a CPU with a unique identifier
that is aware of only its incident edges (and their weights) and
its neighbors; each node knows the total number n of nodes (or
an upper bound). In addition to the Local model, our protocols
satisfy the following.

• Synchronous Rounds and Polynomial-Time Computation.
In each round, a node can send a message to its neighbors
in G. Moreover, after receiving messages from its neigh-
bors, a node can perform polynomial-time computation
in each round.

• Broadcast Model. We consider protocols in which a node
sends the same message to (a subset of) its neighbors in
each round.

• Message Content and Size. In our protocols, we assume
that each message contains the identity of the sender, and
typically, the content of a message is a constant number
of real numbers. In most useful applications, each edge
weight is an integer whose size is polynomial in n. In this
case, every number sent in a message in our protocols
can be represented by O(log n) bits, which means the
requirements of the Congest model are also satisfied.
Alternatively, with arbitrary edge weights, by restricting
the set of numbers to appropriate powers of (1 + λ), we
can also restrict the message size.

Graph Terminology. In most cases, each edge e ∈ E is
interpreted as a 2-subset of V , although in the analysis we
sometimes consider a self-loop, which is a singleton.

For each node v ∈ V , the set of neighbors of v is NG(v) :=
{u ∈ V : u 6= v ∧ {u, v} ∈ E}, and the weighted degree of
v is degG(v) :=

∑
e∈E: v∈e w(e), i.e., the sum of the weights

of the edges that contain v. When there is no ambiguity, the
subscript G can be omitted.
Density. For a non-empty S ⊆ V , we denote E(S) := {e ∈
E : e ⊆ S}, and its density is ρG(S) = w(E(S))

|S| . A (non-
empty) subset S in G is a densest subset if and only if S has
maximum density among all subsets in G. The following fact
is standard.

Fact II.1. The maximal densest subgraph of G is unique and
contains all densest subgraphs of G.

Local Density. While a densest subset gives the densest region
in a graph G, there are other notions that measure the local
density around each node v. The first notion is coreness cG(v),
which is mentioned in Section I. Another notion is maximal
density, which is defined in terms of quotient graph and
diminishingly-dense decomposition as follows.

Definition II.2 (Quotient Graph [11]). Given a weighted undi-
rected graph G = (V,E,w) and a subset B ⊆ V , the quotient
graph of G with respect to B is a graph G\B := (V̂ , Ê, ŵ),
where V̂ := V \B and Ê := {e∩ V̂ : e ∈ E, e∩ V̂ 6= ∅}, i.e.,
every edge e ∈ E not contained in B contributes towards Ê.
Moreover, for e′ ∈ Ê, ŵ(e′) :=

∑
e∈E:e′=e∩V̂ w(e).

Definition II.3 (Diminishingly-Dense Decomposition and
Maximal Density [11]). Given a weighted undirected graph
G = (V,E,w), define the diminishingly-dense decomposition
B of G as the sequence ∅ = B0 (B1 (· · · (Bk = V as
follows.

Initially we set B0 := ∅ and G0 := G. For i ≥ 1, if Bi−1 =
V , the decomposition is fully defined. Otherwise, define Gi :=
Gi−1\Bi−1 and let Si be the maximal densest subset in Gi.

Then, define Bi := Bi−1 ∪ Si. Finally, for each node v ∈ V ,
we say that the maximal density of v is rG(v) := ρGi(Si) if
v ∈ Si. For simplicity, we use r(v) to denote rG(v) if the
context is self-evident.

Fact II.4 (Strictly Diminishing Densities). In Definition II.3,
the sequence {ρGi(Si)}i is strictly decreasing in i.

Distributed Approximation of Local Density. Our goal is
to design distributed protocols such that at the end, each
node v outputs some number β(v), which is an approximation
of its coreness c(v) or maximal density r(v). Observe that
there are example graphs such that computing c(v) or r(v)
exactly needs Ω(n) rounds. The main result of this paper
is that there are protocols with O(log n) rounds that give
O(1)-approximation for both c(v) and r(v) for each node v.
To be precise, we use the following convention to describe
approximation ratio.

Definition II.5 (Approximation Ratio). Given a non-negative
real number s ∈ R+ and γ ≥ 1, another number β is a γ-
approximation for s, if s ≤ β ≤ γ · s. In general, a function
β : V → R+ is a γ-approximation for s : V → R+, if for all
v ∈ V , s(v) ≤ β(v) ≤ γ · s(v).

Min-Max Edge Orientation Problem. The input is an edge-
weighted undirected graph G = (V,E,w). The goal is to give
an orientation to each edge such that the maximum weighted
in-degree of a node is minimized. Equivalently, we wish to
determine an assignment a : E → V such that each edge e is
assigned to one of its end-points, and maxv∈E

∑
e∈a−1(v) we

is minimized.

Distributed Setting. After the distributed algorithm terminates,
each node v ∈ V will have computed some subset Nv of
its neighbors, which represents the set of incident edges that
are assigned to it. Observe that it is sufficient to enforce the
condition that for every edge {u, v} ∈ E, we have u ∈ Nv or
v ∈ Nu; by means of one more round of communication, we
can resolve any conflict (i.e. an edge being assigned to both
its end-points).

LP Relaxation and Relationship with Densest Subset. The
following is an LP relaxation of the problem together with its
dual. In the primal LP, for each e ∈ E and node u ∈ e, αeu is
the portion of the weight we of edge e that is assigned to u.
As observed in [11], the dual LP is exactly the densest subset
LP by Charikar [8].

min ρ

s.t. ρ ≥
∑
e:u∈e

αeu, ∀u ∈ V∑
u∈e

αeu ≥ we, ∀e ∈ E

αeu ≥ 0, ∀u ∈ e ∈ E

max
∑
e∈E

wexe

s.t. xe ≤ yu, ∀u ∈ e∑
u∈V

yu = 1,

xe, yu ≥ 0, ∀u ∈ V, e ∈ E

Approximation Analysis. As we shall see, a by-product of our
distributed algorithm is that it gives an assignment of edges to
their incident nodes. If ρ∗ is the maximum density of a subset,
and the sum of the edge weights assigned to every node is at
most γ · ρ∗, then weak duality implies that the assignment is
a γ-approximation to the min-max edge orientation problem.

III. DISTRIBUTED APPROXIMATION ALGORITHMS FOR
CORENESS VALUES (AND MIN-MAX EDGE ORIENTATION)

In this section, we give a distributed protocol that approx-
imates both the coreness value and maximal density for each
node in a given graph.

A. Warmup: Single Threshold

The warmup protocol is based on a well-known idea of
iteratively eliminating vertices with small degree [4], [6], [8],
[13], [15], [17], [23], [28], which can be easily implemented
in the distributed model. Here we consider a protocol that is
parameterized by some universal threshold b. In each round,
each node with weighted degree less than b in the subgraph
induced by surviving nodes is marked to be removed at the
end of the round. It is clear that after running the protocol for
n rounds, all surviving nodes have coreness at least b [13].
It is shown in [17] that running the protocol for various
thresholds and O(log n) rounds can be used to give O(1)-
approximation for the densest subgraph problem. We show
that the analysis can be adapted to approximate both coreness
values and maximal density.

We describe the elimination procedure in the distributed
model in Algorithm 1. Each node v ∈ V keeps a state
σv ∈ {0, 1} which records whether the node is present (1)
or removed (0).

Algorithm 1: Elimination Procedure for a Single Thresh-
old

Input: G = (V,E,w), threshold value b ∈ R, number T of
rounds

Output: Each node v returns a state σv ∈ {0, 1}.
1 Initially, each node v has state σv ← 1.
2 for each round t ∈ [1..T] do
3 Each node v broadcasts its current state σv to all its

neighbors.
4 After receiving updated states from all its neighbors, each

node v performs the following:
5 if

∑
e={u,v}:σu=1 we < b then

6 σv ← 0

7 return σv for each node v.

B. Parallel Execution with Multiple Thresholds

Parallel Execution. Observe that the elimination procedure
for different threshold values can be executed in parallel, but
this can cause a large message size. Hence, for the purpose
of analysis, we imagine that the protocol is executed for all
possible thresholds in parallel and concentrate on the round
complexity. Later in Section III-C, we show how parallel
execution for all threshold values can be performed compactly.
Depending on this parallel thought experiment, we define the
surviving number as follows.

Definition III.1 (Surviving Number). Given a weighted undi-
rected graph G = (V,E,w), the surviving number of a node
v ∈ V after T rounds, denoted as βTG(v), is defined as the
maximum b ∈ R such that v survives after T rounds of
the elimination procedure using threshold value b. When the
context is clear, we omit G or T from the notation and simply
use β(v).

It is known that after running the procedure for n rounds,
βn(v) = c(v) gives the exact coreness value [23]. Our goal
is to show that to get a constant approximation, it suffices
to use O(log n) rounds, independent of the diameter of the
graph. In particular, we shall prove that for ε > 0, if we set
T := dlog1+ε ne, then βT (v) is a 2(1 + ε)-approximation for
both the coreness value c(v) and maximal density r(v).

Lemma III.2 (Lower Bound on Surviving Number). For any
node v ∈ V and any positive integer t, βt(v) ≥ c(v).

Proof. For any node v with coreness c(v), by the definition
of coreness, suppose S ⊆ V is a subset such that v ∈ S
and degG[S](u) ≥ c(v) for all u ∈ S. Then, for b = c(v),
all members of S will survive the elimination procedure with
threshold b, no matter how many rounds of elimination are
executed. In particular, v will survive. Hence, βt(v) ≥ c(v)
for all positive integers t.

Lemma III.3 (Upper Bound on Surviving Number). For any
positive integer T and any node v ∈ V , we have βT (v) ≤
2n

1
T · r(v). In other words, to achieve an approximation

guarantee of γ > 2, it suffices to set T = d logn
log(γ/2)e; in

particular, for ε > 0, the special case T := dlog1+ε ne gives
βT (v) ≤ 2(1 + ε) · r(v).

Proof. The proof approach has appeared in several previous
works [4], [8], [17]. For completeness, we adapt the proof
from [17, Lemma 3.1].

Fix some v ∈ V . Consider the diminishingly-dense decom-
position of G. Let Gi and Si be defined as in Definition II.3
such that v ∈ Si, which is the maximal densest subset
in Gi = (Vi, Ei). Then, r(v) = ρGi(Si). Observe that
Gi = G \ Vi is a quotient graph, which means that any edge
connecting Vi to Vi becomes a self-loop in Vi, which implies
that for all v ∈ Vi, for all t, βtG(v) ≤ βtGi

(v).
Fix any b > 2n

1
T ·r(v). It suffices to show that after applying

T rounds of elimination with threshold b to the graph Gi, no
node in Vi (which includes v) can survive.

Define A0 := Vi; for j ≥ 1, let Aj ⊆ Vi be the set of nodes
that survive after round j. Suppose for some j ≥ 0, both Aj
and Aj+1 are non-empty. Then, since Si is a densest subset
in Gi, we have r(v) = ρGi(Si) ≥ ρGi(Aj) =

w(E(Gi[Aj]))
|Aj | ≥∑

u∈Aj
degG[Aj]

(u)

2·|Aj | ≥ b·|Aj+1|
2·|Aj | >

n1/T ·r(v)·|Aj+1|
|Aj | . Note that

we use the inequality w(E(Gi[Aj])) ≥
∑

u∈Aj
degG[Aj]

(u)

2 ,
because Gi could contain self-loops. Hence, we have |Aj+1| <
|Aj |
n1/T . Therefore, if AT is non-empty, we have |AT | < |A0|

n ≤
1, which is a contradiction. So AT is empty, which means that
no node in Vi survives after round T , as required.

Lemma III.4 (Relating Maximal Density and Coreness
Value). For any v ∈ V , r(v) ≤ c(v).

Proof. Consider the diminishingly-dense decomposition of G.
Let {(Gi, Bi, Si)}i be defined as in Definition II.3. Recall
that there is a unique i such that v ∈ Si ⊆ Bi, and Si is the
maximal densest subset in Gi.

We prove by induction on i ≥ 1 that degG[Bi](v) ≥ ρGi
(Si)

for all v ∈ Bi, which is slightly stronger than the required
statement. From this, it follows that c(v) ≥ degG[Bi](v) ≥
ρGi

(Si) = r(v) for all v ∈ Bi, i ≥ 1.
Base Case. Suppose v ∈ S1 = B1. Since S1 is a densest subset
in G1, we must have degG[B1](v) ≥ ρG1(S1), as required.
Otherwise, the subset S1\{v} would have higher density than
S1 in G1.
Induction Hypothesis. Suppose for some i > 1, for all u ∈
Bi−1, degG[Bi−1](u) ≥ ρGi−1

(Si−1).
Inductive Step. Consider v ∈ Si. Note that Bi = Bi−1 ∪ Si.
For u ∈ Si, since Gi = G \ Bi−1 is a quotient graph, it
follows that degG[Bi](u) = degGi[Si](u), because any edge
connecting Si to Bi\Si will become a self-loop in Gi. Similar
to the base case, because Si is a densest subset in Gi, we have
degGi[Si](u) ≥ ρGi(Si) = r(u), as required. For u ∈ Bi−1,
we have degG[Bi](u) ≥ degG[Bi−1](u) ≥ ρGi−1(Si−1), where
the second inequality follows from the induction hypothesis.
By Fact II.4, the last term satisfies ρGi−1

(Si−1) > ρGi
(Si),

thereby completing the inductive step and the proof of the
lemma.

Theorem III.5. Given G = (V,E,w) and γ > 2, let T :=
d logn
log(γ/2)e. Then, for all v ∈ V , we have r(v) ≤ c(v) ≤
βT (v) ≤ γ · r(v) ≤ γ · c(v).

In particular, for any ε > 0, we can set γ = 2(1 + ε) and
T := dlog1+ε ne.

Proof. This follows directly from Lemma III.2, Lemma III.3
and Lemma III.4.

Corollary III.6 (Relating Coreness Value and Maximal Den-
sity). For each node v, r(v) ≤ c(v) ≤ 2 · r(v).

C. Compact Parallel Execution

Observe that it is inefficient (or infeasible) to naively
execute the elimination procedure for all threshold values
in parallel. Instead, at any moment, a node v just needs to
remember the maximum threshold value β(v) for which it still

survives in the corresponding elimination procedure. Hence,
in each round, a node v just needs to send its current value
β(v) to all its neighbors. Indeed, this observation is made by
Montresor et al. [23] to produce a compact algorithm, which
we restate in Algorithm 2. However, they run the algorithm
till the exact coreness value for each node is achieved, while
we have already shown that for any γ > 2, T = d logn

log(γ/2)e
rounds are sufficient to obtain γ-approximation for both the
coreness value and maximal density.
Message Size. If every edge has integer weight that is poly-
nomial in n, then each message has size O(log n) bits. For
general edge weights, to further optimize for the message size,
we can restrict the sent numbers from some set Λ, thereby
achieving log2 |Λ| bits per message. After the receiving the
current numbers from its neighbors, the node calls the sub-
routine Update to modify its own number, and round it down
to the next number in Λ. For instance, one can set Λ to include
appropriate powers of (1 + λ), for some small λ > 0. We use
the convention λ = 0 to denote the case when Λ includes all
real numbers.
Keeping Auxiliary Information for the Min-Max Edge
Orientation Problem. One can augment the elimination pro-
cedure to approximate the min-max edge orientation problem.
In this case, we consider Λ = R. For each node v, in addition
to the current surviving number bv , node v also maintains a
subset Nv of its neighbors for the min-max edge orientation
problem. Intuitively, Nv contains the neighbors u such that
edge (u, v) should be oriented towards v because u has a
higher surviving number than v. The subroutine Update in
Algorithm 3 is also augmented to return a subset N, which
is only needed in the last round; however, in the description,
we still maintain Nv after every iteration for the purpose of
analysis.

For technical reasons, we need to assume that for each
node v, Update is stateful; in particular, each node v re-
members the surviving numbers of its neighbors in all past
iterations, which will be used by Update in the current
iteration. Specifically, the following invariants are preserved.

Definition III.7 (Maintained Invariants). For the special case
Λ = R, the following invariants are defined on the variables
in Algorithm 2.
• For each node v,

∑
e={u,v}:u∈Nv

we ≤ bv .
• For each edge {u, v}, we have u ∈ Nv or v ∈ Nu.

Remark III.8. Note that the running time of Update is
O(d log d) due to sorting. When the graph is unweighted,
similar to the original implementation in [23], the running
time can be reduced to O(d) with the help of a counter array
of size O(d).

Fact III.9. At the end of round T , each node v has bv =
max{b ∈ Λ : b ≤ βT (v)}.

Corollary III.10. By setting Λ to include appropriate powers
of (1 +λ) and setting T := dlog1+ε ne, Algorithm 2 produces
bv for each node v such that

Algorithm 2: Compact Elimination Procedure
Input: G = (V,E,w), set Λ of threshold values (that are

powers of 1 + λ), number T of rounds
Output: Each node v maintains a number bv ∈ Λ; for the

special case Λ = R, node v also returns a subset Nv
of its neighbors.

1 Initially, each node v sets bv ← +∞ and Nv ← N(v).
2 for each round t ∈ [1..T] do
3 Each node v broadcasts its current number bv to all its

neighbors.
4 After receiving the updated number bu from each neighbor

u ∈ N(v) which is connected to v with an edge of
weight wu, node v performs the following procedure
defined in Algorithm 3:

5 (bv,Nv)← v.Update({(u, bu, wu) : u ∈ N(v)})
6 /* Nv is auxiliary, and can be returned only in the last

round. */
7 Round bv down to the next power of (1 + λ) in Λ.

8 return each node v has computed bv (and Nv , for the special
case Λ = R).

Algorithm 3: Update
Input: A sequence of tuples {(ui, bi, wi)}di=1 (d ≥ 1)
Output: The maximum real number b such that∑

i: bi≥b wi ≥ b, and some appropriate subset
N ⊆ {ui : bi ≥ b}.

1 Sort and re-index the input sequence according to the surviving
numbers: b1 ≤ · · · ≤ bd; any tie is resolved by the
lexicographic order on the surviving numbers from all past
iterations, where more recent iterations have higher priority.
Finally,any remaining tie is resolved consistently using the
node identity.

2 /* The tie resolving rule is used for analyzing the auxiliary
subset N in Lemma III.11. Alternatively, each node
maintains an ordering of its neighbors, and stable sorting
is performed according to the current bi’s. */

3 We use the convention b0 ← −∞ so that the for loop below
will definitely terminate when i reaches 1.

4 s← 0
5 for i = d down to 1 do
6 s← s+ wi /* s =

∑d
j=i wj */

7 if s > bi−1 then
8 b← bi, N← {ui+1, . . . , ud}
9 /* Invariant:

∑
uj∈N wj ≤ b */

10 if s ≤ bi then
11 b← s, N← N ∪ {ui}
12 return (b,N)

r(v)
1+λ ≤

c(v)
1+λ ≤ bv ≤ 2(1 + ε)r(v) ≤ 2(1 + ε)c(v).

Lemma III.11 (Invariants Are Maintained). For the case Λ =
R, after the end of every round of Algorithm 2, the invariants
in Definition III.7 are maintained.

Proof. For the first invariant, consider some node v. By
construction, when it calls Update in Algorithm 3, the pair
(bv,Nv) returned satisfies

∑
e={u,v}:u∈Nv

we ≤ bv .
We next consider the second invariant, which is satisfied

initially. Suppose t is the first iteration after which the second

invariant fails for some edge {u, v}, i.e., after the iteration t,
the auxiliary subsets are such that u /∈ Ntv and v /∈ Ntu, where
we use the superscript t to denote the states of the variables
at the end of iteration t.
Same Surviving Numbers in Consecutive Iterations. We
next show that u /∈ Ntv implies that bt−1u ≤ btv . For the
execution of v.Update in the t-th iteration, suppose i is the
smallest index reached in the for loop in line 5 of Algorithm 3.
For contradiction’s sake, assume that bt−1u > btv = min{bi, s},
where bi and s are the local variables in line 10. If bi < s, then
we have bt−1u > bi, which implies that u ∈ Ntv; if s ≤ bi, then
we have bt−1u > s > bi−1, which also implies that u ∈ Ntv .

The same argument gives us v /∈ Ntu ⇒ bt−1v ≤ btu.
However, since the surviving numbers are monotonically de-
creasing with the iterations, we must have b := bt−1u = btu =
bt−1v = btv .
Vertex-Induced Surviving Number. We next show that for
the local variables bi and s defined above, we actually must
have bi < s. Otherwise, we have s ≤ bi, which means s =
btv = b and bi−1 ≥ bt−1u = b. However, we have s > bi−1,
which gives a contradiction. Therefore, we have b = bi.
Reaching Contradiction. Since t is the first iteration such that
the second invariant is violated, without loss of generality, we
assume that u ∈ Nt−1v . Since the first invariant holds, we must
have

∑
x∈Nt−1

v
wxv ≤ bt−1v = b. Observe that it is crucial that

Λ = R, because we need the upper bound b in the inequality,
and a looser upper bound will not work.

Suppose in the t-th iteration, in the subroutine v.Update,
the index of u among N(v) is iu after sorting. We next show
that any node not in Nt−1v must appear before u in this order.
This is enough to get the contradiction, because we must have∑d
j=iu

wj ≤ b < s, which means u should have been included
in Ntv .

We next consider what happens in v.Update during t−1-st
iteration; suppose i′ is the smallest index reached in the for
loop in line 5. Similar to before, consider the local variables
b̂i′ and ŝ in line 10, where we use the widehat notation to
distinguish from the local variables defined in the t-th iteration.

The first case is b̂i′ < ŝ, which implies that bt−1v = b̂i′ and
ui′ /∈ Nt−1v . We know that the surviving number bt−2u of u
can drop to bt−1u = b. However, because of our stable sorting
rule, in iteration t’s v.Update, u must appear after ui′ and any
nodes not in Nt−1v .

The second case is ŝ ≤ b̂i′ , which implies that b = ŝ >
b̂i′−1. This means that any node not in Nt−1v must have
surviving numbers strictly less than b during the sorting of
the t-th iteration. Hence, all these nodes must appear before
u. This completes the proof.

Corollary III.12 (Approximation for Min-Max Edge Orien-
tation Problem). For γ > 2, after running Algorithm 2 for
T := d logn

log(γ/2)e rounds, the subsets {Nv : v ∈ V } maintained
by the nodes give a γ-approximation for the min-max edge
orientation problem as defined in Section II.

Proof. We prove in Lemma III.11 that both invariants in
Definition III.7 hold. In particular, the second invariant implies

that the subsets {Nv : v ∈ V } form a feasible solution, i.e.,
for each edge {u, v}, we have u ∈ Nv or v ∈ Nu.

We next prove the approximation ratio. Let ρ∗ be the
maximum density of a subset in the given graph G. The first
invariant implies that for each node v,

∑
u∈Nv

wuv ≤ βT (v),
which, by Lemma III.3, is at most γ · r(v). Finally, since
the maximal density of every node is at most ρ∗, we have∑
u∈Nv

wuv ≤ γρ∗.
By weak LP duality as mentioned in Section II, ρ∗ is a lower

bound on the optimal value of the min-max edge orientation
problem. Therefore, γ-approximation is achieved, as required.

The next lemma shows that the running times of our
distributed algorithms are asymptotically tight, while the ap-
proximation factor cannot be improved without introducing a
linear dependency on the diameter of the underlying graph.

Lemma III.13 (Lower Bound on the Running time). For
γ ≥ 2, any distributed algorithm approximating the coreness
values, the maximal densities or the min-max edge orientation
problem with an approximation ratio strictly smaller than
γ requires Ω(logn

log γ) communication rounds, where n is the
number of nodes in the underlying graph (n sufficiently large).
Moreover, any distributed algorithm for the aforementioned
problems with an approximation ratio strictly smaller than 2
would require Ω(n) communication rounds.

Proof. We prove the lemma for the case of coreness values
and min-max edge orientation problem. Since coreness values
and maximal densities are within a factor of 2 of each other,
a lower bound for one of them implies the same lower bound
for the other one.

Without loss of generality, we assume that γ ≥ 2 is an
integer. We construct a graph G as follows. Start with a
vertex v as a root, and construct a complete γ-ary tree with
at least 2γ + 1 leaves. Let n be the number of nodes in the
tree, while let T := Θ(logn

log γ) be the depth of the tree. Since
G is a tree, cG(v) = 1, while there is an orientation of the
edges with maximum degree equal to one. We next construct
another graph G′ obtained by planting a clique on the leaves
of G. Since every node in G′ has degree at least γ, we have
cG′(v) ≥ γ. Moreover, there is no orientation of the edges
with maximum in-degree < γ.

Any distributed algorithm for the k-core decomposition
or the min-max assignment problem with an approximation
ratio < γ must allow the root v to distinguish between G and
G′. Hence, at least T rounds are needed.

Finally, Figure I.1 shows that any distributed algorithm with
an approximation ratio strictly smaller than 2 requires Ω(n)
communication rounds.

IV. DISTRIBUTED ALGORITHM FOR APPROXIMATE
DENSEST SUBSET PROBLEM

In Section III, we gave a distributed algorithm that ap-
proximates the coreness and the maximal density of each
node. We next consider a distributed algorithm to return an

approximate densest subset. In the distributed setting, this
means at the end, each node should know whether it is
contained in the approximate solution. However, if we restrict
the round complexity to be independent of the hop-diameter
of the graph, then it is impossible for a node to know whether
there is some other much denser subset that is many hops
away. Therefore, we define the following notion of distributed
approximation of the densest subset problem.

Definition IV.1 (Distributed Approximation Algorithm for
(Weak) Densest Subset Problem). For γ ≥ 1, a distributed
algorithm achieves γ-approximation for the densest subset
problem, if after the algorithm terminates, there exists a
collection of disjoint subsets {Si}i∈I of nodes such that the
following hold:
• For each i ∈ I, every node in Si knows that it belongs

to Si (and also the density of Si). To be specific, each
Si will have some vertex vi ∈ Si as its leader, and every
node in Si knows the identity of the leader vi (but might
not know who else is in Si).

• There exists some i ∈ I such that the density ρ(Si) ≥ ρ∗

γ ,
where ρ∗ is the maximum density of a subset in the input
graph.

Suppose we fix the approximation ratio γ > 2. In view
of Lemma III.3, we set T := d logn

log(γ/2)e. The distributed
algorithm consists of several phases.
Phase 1: Approximating the Maximal Density. In this phase,
Algorithm 2 is run for T rounds. After that, each node v ∈ V
knows some number bv , which is a γ-approximation of its
maximal density.
Phase 2: Building BFS Trees. In this phase, each node will
try to identify a leader v who is the node within T hops with
the largest value bv . Moreover, for each potential leader v,
a breadth-first-search (BFS) tree rooted at v with depth at
most T is constructed in Algorithm 4. To resolve ties among
nodes with the same bv value, we assume that there is a
global ordering � on V that is known by every node. This
induces a total ordering on {(v, bv) : v ∈ V } defined by
(u, bu) � (v, bv) iff (i) bu > bv , or (ii) bu = bv and u � v.

Fact IV.2. Suppose node v has the maximum value bv and is
also the maximum under the ordering �. Then, Algorithm 4
correctly constructs the BFS tree rooted at v that includes all
nodes within T hops from v in the original input graph G.

Remark IV.3. Observe that if v = parent[v], then v is the
root of some BFS tree. Moreover, every node u in this BFS
tree has leader[u] = (v, bv).

Phase 3: Elimination Procedure within Each BFS Tree. In
this phase, each node v communicates only with its parent[v]
and children[v], and ignores all other nodes. Within each BFS,
all nodes have a common leader = (u, bu). The elimination
procedure in Algorithm 1 is run with threshold value bu from
the leader. However, in the augmented Algorithm 5, each
node remembers its weighted degree for every iteration, which
is later used to determine an approximate densest subset.

Algorithm 4: BFS Construction
Input: Each node v ∈ V has some bv; number T
Output: Each node v knows some potential

leader[v] ∈ {(u, bu) : u ∈ V }, a potential
parent[v] ∈ V , and a potential subset children[v] ⊆ V .

1 Initially, each node v ∈ V sets leader[v]← (v, bv),
parent[v]← v, children[v]← ∅.

2 for each round t ∈ [1..T] do
3 Each node v broadcasts its current leader[v] to all its

neighbors.
4 After node v receives messages from all its neighbors

N(v), suppose u ∈ N(v) is the neighbor whose leader[u]
is the maximum in the ordering �. Then, node v
performs the following:

5 if leader[u] � leader[v] then
6 leader[v]← leader[u], parent[v]← u

7 Request Parent. Each node v sends a request message
containing leader[v] to the node parent[v], if parent[v] 6= v.

8 Include Children. For node v, after receiving the request
message from each node u, it checks whether
leader[u] = leader[v]; if so, it adds
children[v]← children[v] ∪ {u}.

9 Confirm Parent. If a node v has parent[v] 6= v and does not
receive an acknowledge message, then it sets parent[v] = ⊥.

10 return Each node v has computed leader[v], parent[v] and
children[v].

Moreover, we optimize the algorithm such that a node does
not participate in the protocol once it is eliminated.

After this phase, each node v computes two arrays
numv[0..T − 1] and degv[0..T − 1]. For each t ∈ [0..T − 1],
numv[t] ∈ {0, 1} indicates whether v survives after iteration t;
if numv[t] = 1, then degv[t] gives the corresponding weighted
degree. Lemma IV.4 gives some ideas on how these results can
help to find an approximate densest subset.

Algorithm 5: Augmented Elimination Procedure
Input: Each node v has leader[v], neighbors

N(v) = parent[v] ∪ children[v], number
T := d logn

log(γ/2)
e of rounds. Recall that all nodes in the

same BFS have same value b in their leader.
Output: Each node v computes two arrays numv[0..T − 1]

and degv[0..T − 1], where numv[t] ∈ {0, 1}
indicates whether v survives after iteration t, and
degv[t] indicates the corresponding weighted degree.

1 Initially, each node v is active σv ← 1, and initializes the
arrays numv := degv ← 0.

2 for each round t ∈ [1..T] do
3 Each active node v (with current σv = 1) broadcasts to all

its neighbors N(v) that it is still active.
4 After hearing from all its (active) neighbors in N(v), each

active node v performs the following:
5 numv[t− 1]← 1, degv[t− 1]←

∑
e={u,v}:σu=1 we

6 if degv[t− 1] < b then
7 σv ← 0
8 Node v becomes inactive, and stops participating in the

algorithm.

9 return Each node v has computed the arrays numv and
degv .

Lemma IV.4 (Surviving Nodes in Some Iteration Give Ap-
proximate Densest Subset). Let γ > 2, and T := d logn

log(γ/2)e.
Suppose the augmented elimination procedure in Algorithm 5
is run for T rounds on the depth-T BFS rooted at some node u
with threshold value bu = βTG(u) (which is the value returned
by running Algorithm 1 on the original graph G for T rounds).

Suppose in Algorithm 5, for t ∈ [0..T], At is the set of
surviving nodes at the end of round t. Then, there exists some
t ∈ [0..T − 1] such that the density of At is at least bu

γ .

Proof. The proof uses the same idea as in Lemma III.3 (which
is inspired from [4], [8], [17]).

For t ∈ [0..T − 1], the density ρ(At) =
∑

v∈At
degv [t]

2·|At| ≥
bu·|At+1|
2·|At| .

Therefore,
∏
t∈[0..T−1] ρ(At) ≥ (bu

2)T · |AT |
|A0| . Observe that

since threshold bu is used, the node u still survives after
round T . Therefore, we have |AT | ≥ 1 and |A0| ≤ n.

Hence, there exists some t ∈ [0..T − 1] such that ρ(At) ≥
bu
2 ·

1
n1/T ≥ bu

γ , where the last inequality follows because
T ≥ logn

log(γ/2) .

Phase 4: Aggregation and Finding Approximate Dens-
est Subset. In view of Lemma IV.4, one should compute
arg maxt∈[0..T−1] ρ(At), where the density satisfies ρ(At) =∑

v degv[t]
2·
∑

v numv [t]
and the summation is over all nodes in the BFS.

The details are given in Algorithm 6.
Optimizing Message Size. During aggregation, a node v sends
its length-T aggregated arrays (num′v, deg

′
v) to its parent.

Since the depth of the BFS tree is at most T , the aggregation
part takes T rounds, but the size of each message contains
Θ(T) words. To reduce the message size, the entries of the
arrays can be sent to the parent in a pipelined fashion. For
instance, one entry from each of the two arrays are sent per
message to the parent, and the number of rounds increases by
T .

Corollary IV.5 (Correctness). Algorithm 6 gives γ-
approximation to the distributed densest subset problem as
in Definition IV.1.

V. CONCLUSION AND FUTURE DIRECTIONS

We have shown that the well-known elimination procedure,
when implemented in a distributed setting, provides a con-
stant approximation to both the coreness values and maximal
densities. The asymptotically round complexity is tight and
independent of the diameter. Moreover, by augmenting the
elimination procedure, the min-max edge orientation problem
can also be approximated with the same theoretical ratio.

Empirical results3 on real-world graphs show that the ap-
proximation ratio often converges to 2 much quicker than
what the worst-case analysis suggests. Are there any special
properties that can explain this phenomenon? The theoretical
lower bound on round complexity applies to the worst case
approximation ratio over all nodes. Can one improve the

3Some experimental results are included in the full version.

Algorithm 6: Aggregation and Finding Approximate
Densest Subset

Input: Each node v has leader[v], parent[v], children[v] and
length-T arrays numv and degv , where T := d logn

log(γ/2)
e.

Output: Each node v computes σv ∈ {0, 1}. If σv = 1, then
node v knows that it belongs to the subset with leader
specified in leader[v].

1 Initially, each node v sets σv ← 0.
2 Aggregate. If a node v has children[v] = ∅ and parent[v] 6= v,

then it sends its arrays (num′v = numv, deg
′
v = degv) to

parent[v].
3 for each node v do
4 After node v has received arrays from all nodes in

children[v], it aggregates the arrays:
5 num′v ← numv +

∑
x∈children[v] num

′
x

6 deg′v ← degv +
∑
x∈children[v] deg

′
x

7 if parent[v] 6= v then
8 Node v sends its aggregated arrays (num′v, deg

′
v) to

parent[v].

9 Identify Densest Subset. After a root node v (i.e.,
parent[v] = v and leader[v] = (v, bv) for some bv) has
computed its aggregated arrays num′v and deg′v , it computes
bmax ← maxt∈[0..T−1]

deg′v [t]
2·num′v [t]

.
10 if bmax ≥ bv then
11 The root node v sets σv ← 1, and computes

t∗ ← arg maxt∈[0..T−1]
deg′v [t]
num′v [t]

.
12 Node v sends a message containing t∗ to each node in

children[v], and terminates.
13 for each node v do
14 Upon receiving t∗ from its parent[v], node v performs the

following:
15 if numv[t∗] = 1 then
16 Node v sets σv ← 1.

17 Node v sends a message containing t∗ to each node in
children[v], and terminates.

18 Even if a node does not hear back from its parent, it terminates
after the algorithm is run for 3T rounds.

19 return Each node v has computed σv .

theoretical upper/lower bounds on the round complexity when
average approximation ratio over all nodes is considered?

REFERENCES

[1] Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yannis Vele-
grakis. Distributed k-core decomposition and maintenance in large dy-
namic graphs. In Proceedings of the 10th ACM International Conference
on Distributed and Event-based Systems, DEBS ’16, Irvine, CA, USA,
June 20 - 24, 2016, pages 161–168, 2016.

[2] Yuichi Asahiro, Jesper Jansson, Eiji Miyano, Hirotaka Ono, and Kouhei
Zenmyo. Approximation algorithms for the graph orientation mini-
mizing the maximum weighted outdegree. Journal of combinatorial
optimization, 22(1):78–96, 2011.

[3] Yuichi Asahiro, Eiji Miyano, Hirotaka Ono, and Kouhei Zenmyo. Graph
orientation algorithms to minimize the maximum outdegree. In Pro-
ceedings of the 12th Computing: The Australasian Theroy Symposium-
Volume 51, pages 11–20. Australian Computer Society, Inc., 2006.

[4] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest
subgraph in streaming and mapreduce. Proceedings of the VLDB
Endowment, 5(5):454–465, 2012.

[5] Leonid Barenboim and Michael Elkin. Sublogarithmic distributed
MIS algorithm for sparse graphs using nash-williams decomposition.
Distributed Computing, 22(5-6):363–379, 2010.

[6] Vladimir Batagelj and Matjaz Zaversnik. An o(m) algorithm for cores
decomposition of networks. arXiv preprint cs/0310049, 2003.

[7] T.-H. Hubert Chan, Anand Louis, Zhihao Gavin Tang, and Chenzi
Zhang. Spectral properties of hypergraph laplacian and approximation
algorithms. J. ACM, 65(3):15:1–15:48, 2018.

[8] Moses Charikar. Greedy approximation algorithms for finding dense
components in a graph. In International Workshop on Approximation
Algorithms for Combinatorial Optimization, pages 84–95. Springer,
2000.

[9] James Cheng, Yiping Ke, Shumo Chu, and M Tamer Özsu. Efficient
core decomposition in massive networks. In Data Engineering (ICDE),
2011 IEEE 27th International Conference on, pages 51–62. IEEE, 2011.

[10] Andrzej Czygrinow, Michal Hanćkowiak, Edyta Szymańska, and Wo-
jciech Wawrzyniak. Distributed 2-approximation algorithm for the
semi-matching problem. In International Symposium on Distributed
Computing, pages 210–222. Springer, 2012.

[11] Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. Large
scale density-friendly graph decomposition via convex programming. In
Proceedings of the 26th International Conference on World Wide Web,
WWW 2017, Perth, Australia, April 3-7, 2017, pages 233–242, 2017.

[12] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. Efficient densest
subgraph computation in evolving graphs. In Proceedings of the 24th
International Conference on World Wide Web, WWW 2015, Florence,
Italy, May 18-22, 2015, pages 300–310, 2015.

[13] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. D-
cores: Measuring collaboration of directed graphs based on degeneracy.
In Data Mining (ICDM), 2011 IEEE 11th International Conference on,
pages 201–210. IEEE, 2011.

[14] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis.
Evaluating cooperation in communities with the k-core structure. In
Advances in Social Networks Analysis and Mining (ASONAM), 2011
International Conference on, pages 87–93. IEEE, 2011.

[15] Noël Gillet and Nicolas Hanusse. A fully asynchronous and fault
tolerant distributed algorithm to compute a minimum graph orientation.
In International Symposium on Stabilization, Safety, and Security of
Distributed Systems, pages 308–322. Springer, 2017.

[16] Fabrizio Grandoni, Jochen Könemann, Alessandro Panconesi, and
Mauro Sozio. A primal-dual bicriteria distributed algorithm for capaci-
tated vertex cover. SIAM J. Comput., 38(3):825–840, 2008.

[17] Shuguang Hu, Xiaowei Wu, and T.-H. Hubert Chan. Maintaining densest
subsets efficiently in evolving hypergraphs. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management,
CIKM 2017, Singapore, November 06 - 10, 2017, pages 929–938, 2017.

[18] Ravi Kannan and V Vinay. Analyzing the structure of large graphs.
Rheinische Friedrich-Wilhelms-Universität Bonn Bonn, 1999.

[19] Samir Khuller and Barna Saha. On finding dense subgraphs. In ICALP
(1), volume 5555 of Lecture Notes in Computer Science, pages 597–608.
Springer, 2009.

[20] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros,
Lev Muchnik, H Eugene Stanley, and Hernán A Makse. Identification
of influential spreaders in complex networks. Nature physics, 6(11):888,
2010.

[21] Lukasz Kowalik. Approximation scheme for lowest outdegree orien-
tation and graph density measures. In International Symposium on
Algorithms and Computation, pages 557–566. Springer, 2006.

[22] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system
for large-scale graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data, pages 135–
146. ACM, 2010.

[23] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi.
Distributed k-core decomposition. IEEE Trans. Parallel Distrib. Syst.,
24(2):288–300, 2013.

[24] Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Amitabh
Trehan. Dense subgraphs on dynamic networks. In DISC, volume 7611
of Lecture Notes in Computer Science, pages 151–165. Springer, 2012.

[25] Stephen B Seidman. Network structure and minimum degree. Social
networks, 5(3):269–287, 1983.

[26] Nikolaj Tatti and Aristides Gionis. Density-friendly graph decomposi-
tion. In WWW, pages 1089–1099, 2015.

[27] Venkat Venkateswaran. Minimizing maximum indegree. Discrete
Applied Mathematics, 143(1-3):374–378, 2004.

[28] Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu.
I/O efficient core graph decomposition at web scale. In 32nd IEEE

International Conference on Data Engineering, ICDE 2016, Helsinki,
Finland, May 16-20, 2016, pages 133–144, 2016.

[29] Jaewon Yang and Jure Leskovec. Defining and evaluating network
communities based on ground-truth. Knowl. Inf. Syst., 42(1):181–213,
2015.

