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Abstract

Using a divergent Bass-Burdzy flow we construct a self-repelling one-dimensional
diffusion. Heuristically, it can be interpreted as a solution to an SDE with a singular
drift involving a derivative of the local time. We show that this self-repelling diffu-
sion inverts the second Ray-Knight identity on the line. The proof goes through an
approximation by a self-repelling jump processes that has been previously shown by
the authors to invert the Ray-Knight identity in discrete.
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1 Introduction and presentation of results

Ray-Knight identity on R

We will construct a continuous self-repelling one-dimensional diffusion, involved in
the inversion of the Ray-Knight identity on R. We start by recalling the latter.

Given a ě 0, pφpaqpxqqxPR will denote a massless Gaussian free field on R conditioned
to be a at x “ 0, that is to say pφpaqpxq{

?
2qxě0 and pφpaqp´xq{

?
2qxě0 are two independent

standard Brownian motions starting from a{
?

2.
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Inverting the Ray-Knight identity on the line

Theorem 1.1 (Ray-Knight [25, 19, 15, 26, 23, 31]). Fix a ą 0. Let pβtqtě0 be a standard
Brownian motion starting from 0 and let `βt pxq be its local time process. Let τβa2{2 be the
stopping time

τβa2{2 “ inftt ě 0|`βt p0q ą a2{2u.

Let pφp0qpxqqxPR be a massless Gaussian free field on R conditioned to be 0 at x “ 0,
independent from the Brownian motion β. Then the field

pφp0qpxq2{2` `β
τβ
a2{2

pxqqxPR

has the same law as the field pφpaqpxq2{2qxPR.

The original formulation of Ray [25] and Knight [19] is different. It states that
p`β
τβ
a2{2

pxqqxě0 is a squared Bessel process of dimension 0, starting from a2{2 at x “ 0

(see also [26], Section XI.2). pφp0qpxq2{2qxě0 is by definition a squared Bessel process
of dimension 1, and by additivity property of squared Bessel processes, pφp0qpxq2{2 `
`β
τβ
a2{2

pxqqxě0 is a squared Bessel process of dimension 1 “ 1 ` 0, starting from a2{2 “

0` a2{2, the same as pφpaqpxq2{2qxě0. In Theorem 1.1 we use a reformulation of the Ray-
Knights identity that generalizes to a much wider setting, such as any discrete electrical
network, and continuum setting in dimension 2 and 3 after a Wick renormalization of the
square of the GFF [15, 23, 31]. It also makes the connection to Brydges-Fröhlich-Spencer-
Dynkin’s isomorphism [6, 11, 12] and Symanzik’s identities in Euclidean Quantum Field
Theory [28, 29, 30].

Theorem 1.1 provides a way to couple on the same probability space the triplet
pφp0q, β, φpaqq. We formalize this in the following definition.

Definition 1.2. Fix a ą 0. We say that the triplet pφp0q, β, φpaqq satisfies a Ray-Knight
coupling if the following conditions are satisfied.

• The process pφp0qpxqqxPR is distributed like a massless Gaussian free field on R
conditioned to be 0 at x “ 0.

• The process pβtqtě0 is a standard Brownian motion on R starting from 0.

• The processes φp0q and β are independent.

• For every x P R,
φpaqpxq2 “ φp0qpxq2 ` 2`β

τβ
a2{2

pxq.

• For every x P R such that pφpaqq2 is strictly positive on r0, xs, respectively rx, 0s, one
has φpaqpxq ą 0. For all other x P R, φpaqpxq “ φp0qpxq.

It follows from Theorem 1.1 that φpaq in a Ray-Knight coupling is distributed like a
massless Gaussian free field on R conditioned to be a at x “ 0.

Inversion of the Ray-Knight identity

Given a Ray-Knight coupling of pφp0q, β, φpaqq, we are interested in the conditional law
of the stochastic process

`

βτβ
a2{2

´t

˘

t
knowing φpaq.

The Ray-Knight identity of Theorem 1.1 generalizes to discrete electrical networks
and symmetric Markov jump processes on them [15, 23, 31]. This is known as second
generalized Ray-Knight identity. The inversion in the discrete setting was done in
[27, 20]. This inversion involves a nearest neighbor self-repelling jump process on the
network. More precisely, the jump rate at time t from a vertex x1 to a neighbor x2 is
given by

Cpx1, x2q
pΦpx2q

2 ´ 2Ltpx2qq
1
2

pΦpx1q
2 ´ 2Ltpx1qq

1
2

, (1.1)
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Inverting the Ray-Knight identity on the line

where Cpx1, x2q is a fixed conductance, Ltpxjq is the time spent at xj by the jump process
before time t, and Φ is a field on the vertices, considered as an initial condition. In the
inversion of Ray-Knight Φ is random, distributed as a discrete Gaussian free field. In
Section 3 we detail this in the setting of a discrete subset of R. Also note that this self-
repelling jump process with jump rates (1.1) is up to a time change the vertex-diminished
jump process (VDJP) studied in [27, 7].

If one takes a one-dimensional fine mesh lattice and renormalizes the jump rates
(1.1), then on a purely formal level, without dealing with the convergence or the meaning
of the terms involved, one gets the following equation for a continuous self-repelling
diffusion:

d qXt “ dWt ` “
1

2
Bx logpλ̌tpxqq

ˇ

ˇ

ˇ

x“|Xt
dt”, λ̌tpxq “ λ̌0pxq ´ 2ˇ̀

tpxq. (1.2)

There qXt is a continuous stochastic process on an interval I, λ̌0 a continuous function
from I to p0,`8q, Wt is a standard Brownian motion and ˇ̀

tpxq is the local time process
of qXt. We will call λ̌t the occupation profile at time t. Our process qXt is defined up to a
finite time

qT “ suptt ě 0|λ̌tp qXtq ą 0u.

We will also assume that

ż

inf I

λ̌0pxq
´1dx “ `8,

ż sup I

λ̌0pxq
´1dx “ `8 (1.3)

and say that λ̌0 is admissible. This is a condition for not reaching the boundary of I in
finite time. qXt is a self-repelling process that tends to avoid places it has visited a lot, yet
we will see that a.s. it will eventually exhaust the occupation profile at some location in
finite time qT . As we will further see, this self-repelling process appears in the inversion
of the Ray-Knight identity in the continuous one-dimensional setting.

The equation (1.2) is not a classical SDE. It is not immediately clear how to make

sense of the drift term
1

2
Bx logpλ̌tpxqq

ˇ

ˇ

ˇ

x“|Xt
dt, as x ÞÑ ˇ̀

tpxq will not be differentiable

for t ą 0, and moreover there will not be a change of scale under which it will be
differentiable for all t ą 0. So the problem is not only to solve (1.2) by an approximation
scheme, the problem is already to give an appropriate meaning to being a solution to
(1.2). The equation (1.2) is also somewhat misleading, as we believe that a solution qXt

would not be a semi-martingale, admitting an adapted decomposition into a Brownian
motion plus a drift term with zero quadratic variation, but with an infinite total variation.
See [18, 21] for a discussion on this point.

However, it turns out that the equation (1.2) is in some sense exactly solvable, and
in this paper we will give the explicit solution which involves a divergent bifurcating
stochastic flow of diffeomorphisms of R introduced by Bass and Burdzy in [3]. Our
construction here is similar to that of [21], where we introduced a reinforced diffusion
constructed out of a different, convergent, Bass-Burdzy flow.

Heuristic reduction to a Bass-Burdzy flow

Next we explain a non-rigorous heuristic derivation of an explicit solution to (1.2). A
similar heuristic appears in the introduction to [21].

Assume that for t0 ą 0, X̄pt0qt is a continuous process coinciding with qXt on r0, t0s,
and after time t0 continues as a Markovian diffusion with infinitesimal generator

1

2

d2

dx2
`

1

2
Bxλ̌t0

d

dx
.
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In other words, there is no additional self-repulsion after time t0. Then after time t0,
X̄
pt0q
t is a scale and time changed Brownian motion. Given S̄t0 an anti-derivative of λ̌´1

t0 ,

pS̄t0pX̄
pt0q
t qqtět0 is a local martingale. By further performing the time change

du “ λ̌t0pX̄
pt0q
t q´2dt

we get a standard Brownian motion.
Then it is reasonable to assume that near time t0, qXt is close to X̄pt0qt . The idea is

to let the change of scale depend on time. Assume there is a flow of changes of scales
qSt : I Ñ R, such that qSt is an anti-derivative of λ̌´1

t , and such that qStp qXtq is a local
martingale. Consider uptq the time change given by

du “ λ̌tp qXtq
´2dt,

and tpuq the inverse time change. Assume that, by analogy with the Markovian case,
qStpuqp qXtpuqquě0 is a standard Brownian motion pBuquě0. Let x1 ă x2 P I. Then

d

du
pqStpuqpx2q ´ qStpuqpx1qq “

dt

du

d

dt

ż x2

x1

λ̌tpxq
´1dx

“ λ̌tp qXtq
2 d

dt

ż t

0

1
x1ă|Xsăx2

2λ̌sp qXsq
´2ds

“ 2λ̌tp qXtq
2λ̌tp qXtq

´21
x1ă|Xtăx2

(1.4)

“ 21
x1ă|Xtăx2

“ 21
qStpuqpx1qăBuă qStpuqpx2q

.

This implies that d
du

qStpuqpxq is of form

dqStpuqpxq

du
“ 1

qStpuqpxqąBu
´ 1

qStpuqpxqăBu
` fpuq,

for some function fpuq not depending on x P I. Further, it is reasonable to assume that
the left and the right sides of qXt play symmetric roles, and thus fpuq ” 0. Then, we get
that

@x P I,
dqStpuqpxq

du
“ 1

qStpuqpxqąBu
´ 1

qStpuqpxqăBu
.

This is an equation studied by Bass and Burdzy in [3]. In the sequel we will construct qXt

out of the flow of solutions to the above equation.

Note that if in the equation (1.2), one replaced the
1

2
in front of

1

2
Bx logpλ̌tpxqq

ˇ

ˇ

ˇ

x“|Xt
dt

by a different positive constant, one would not get an as simple explicit solution. Indeed,
the cancellation of powers of λ̌tp qXtq as in (1.4) would not occur.

Construction of a self-repelling diffusion out of a divergent Bass-Burdzy flow

The divergent Bass-Burdzy flow is given by the differential equation

dYu
du

“

"

1 if Yu ą Bu,

´1 if Yu ă Bu,
(1.5)

where Bu is a standard Brownian motion starting from 0. The behavior at times when
Yu “ Bu is not specified. It is shown in [3] that given an initial condition, there is a.s.
a unique solution defined for all positive times that is Lipschitz continuous. Moreover,
these Lipschitz continuous solutions form a flow of increasing C1 diffeomorphisms of R,
pqΨuquě0. For the properties of this flow, we refer to [3, 18, 2].
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Define

ξ̌u “ pqΨuq
´1pBuq.

pqΨuquě0 satisfies a bifurcation property [3]: there is a finite random value ybif P R, such
that for y ą ybif , qΨupyq ą Bu for u large enough, and lim`8 qΨupyq “ `8, for y ă ybif ,
qΨupyq ă Bu for u large enough and lim`8 qΨupyq “ ´8, and tu ě 0|qΨupybifq “ Buu is
unbounded. Moreover,

ybif “ lim
uÑ`8

ξ̌u.

The process pξ̌uquě0 admits [3, 18] a family of local times qΛupyq continuous in py, uq, such
that for any f bounded Borel measurable function on R and u ě 0,

ż u

0

fpξ̌vqdv “

ż

R

fpyqqΛupyqdy.

Moreover, these local times are related to the spatial derivative of the flow as follows:

B

By
qΨupyq “ 1` 2qΛupyq.

For all u ě 0, qΛupyq,
B

By
qΨupyq and

B

By
pqΨuq

´1pyq are locally 1{2´ ε Hölder continuous in y.

Next we give the construction of qXt out of the flow pqΨuquě0.

Definition 1.3. Let x0 P I. Let be the change of scale

qS0pxq “

ż x

x0

λ̌0prq
´1dr, x P I,

and qS´1
0 the inverse change of scale. Consider the change of time tpuq from u to t (and

uptq the inverse time change) given by

dt “ λ̌0pqS
´1
0 pξ̌uqq

2p1` 2qΛupξ̌uqq
´2du. (1.6)

Let

qT “

ż `8

0

λ̌0pqS
´1
0 pξ̌uqq

2p1` 2qΛupξ̌uqq
´2du.

Set qXt “ qS´1
0 pξ̌uptqq, for t P r0, qT q.

We will call pBuquě0 the driving Brownian motion of qXt.
Note that

qT “

ż `8

0

λ̌0pqS
´1
0 pξ̌uqq

2p1` 2qΛupξ̌uqq
´2du

“

ż

R

ż `8

0

λ̌0pqS
´1
0 pyqq2p1` 2qΛupyqq

´2duqΛupyqdy

“
1

2

ż

R

λ̌0pqS
´1
0 pyqq2p1´ p1` 2qΛ`8pyqq

´1qdy

ď
1

2
psup
uě0

ξ̌u ´ inf
uě0

ξ̌uq sup
r qS´1

0 pinfuě0 ξ̌uq, qS
´1
0 psupuě0 ξ̌uqs

λ̌2
0.

Since ξ̌u converges at `8 and thus has a bounded range, qT ă `8 a.s. The process qXt

has local times
ˇ̀
tpxq “ λ̌0pxqp1´ p1` 2qΛuptqpqS0pxqqq

´1q.
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Indeed, for f a measurable bounded function on I,
ż t1

0

fp qXtqdt “

ż t1

0

fpqS´1
0 pξ̌uptqqqdt “

ż upt1q

0

fpqS´1
0 pξ̌uqqλ̌0pqS

´1
0 pξ̌uqq

2p1` 2qΛupξ̌uqq
´2du

“

ż

R

ż upt1q

0

fpqS´1
0 pyqqλ̌0pqS

´1
0 pyqq2p1` 2qΛupyqq

´2duqΛupyqdy

“
1

2

ż

R

fpqS´1
0 pyqqλ̌0pqS

´1
0 pyqq2p1´ p1` 2qΛupt1qpyqq

´1qdy

“
1

2

ż

I

fpxqλ̌0pxqp1´ p1` 2qΛupt1qp
qS0pxqqq

´1qdx.

Set
λ̌tpxq “ λ̌0 ´ 2ˇ̀

tpxq “ λ̌0pxqp1` 2qΛuptqpqS0pxqqq
´1.

A posteriori, the change of time (1.6) is

dt “ λ̌tp qXtq
2du.

We see that for all t P r0, qT q and x P I, λ̌tpxq ą 0. Note that qX
qT “ p

qS0q
´1pybifq. Moreover,

lim
tÑ qT

λ̌tp qXtq “ lim
uÑ`8

λ̌0pybifqp1` 2qΛupybifqq
´1 “ 0,

as limuÑ`8
qΛupybifq “ `8 (see Section 4 in [18]).

Also note that if one sets qSt “ qΨuptq ˝
qS0, then qStp qXtq “ Buptq, and pqSt^ qT p

qXt^ qT qqtě0 is
a local martingale. Moreover,

B

Bx
qStpxq “ λ̌0pxq

´1p1` 2qΛuptqpqS0pxqqq “ λ̌tpxq
´1.

So, qSt is a time-dependent change of scale indeed satisfying the properties postulated
previously in our heuristic.

Statement of the results

Now, let us see why p qXt, λ̌tq can be interpreted as solution to the equation (1.2), with
initial condition px0, λ̌0q. We will give an explanation in terms of discrete approximations.

Let Jpnq “ 2´nZ X I. Let qX
pnq
t be a continuous time discrete space self-interacting

nearest neighbor jump process on Jpnq, defined by the jumps rates from x to x` σ2´n,
σ P t´1, 1u, at time t, equal to

22n´1 λ̌
pnq
t px` σ2´nq

1
2

λ̌
pnq
t pxq

1
2

, (1.7)

where

λ̌
pnq
t pxq “ λ̌0pxq ´ 2ˇ̀pnq

t pxq, ˇ̀pnq
t pxq “ 2n

ż t

0

1
|X
pnq
s “x

ds.

Let

qT pnqε “ suptt ě 0|λ̌
pnq
t p qX

pnq
t q ą εu, ε ą 0, t

pnq

BJpnq
“ inftt ě 0| qX

pnq
t P tminJpnq,maxJpnquu.

We introduce the stopping time tpnq
BJpnq

to avoid considering what happens after qX
pnq
t hits

the boundary of the domain Jpnq.
If there were no self-interaction, that is to say in (1.7) λ̌pnqt were replaced by λ̌0, the

process would converge in law as nÑ `8 to a solution of the SDE

dXt “ dWt `
1

2
Bx logpλ̌0pxqq

ˇ

ˇ

ˇ

x“Xt
dt.

In our case with self-interaction, we have the following:
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Theorem 1.4. With the notations above, for all ε ą 0 the family of process

p qT pnqε ^ t
pnq

BJpnq
, qX

pnq

t^ qT
pnq
ε ^t

pnq

BJpnq

, λ̌
pnq

t^ qT
pnq
ε ^t

pnq

BJpnq

pxqqxPJpnq,tě0

converges in law as nÑ `8 to

p qTε, qXt^ qTε
, λ̌t^ qTε

pxqqxPI,tě0,

where qXt is given by Definition 1.3 and

qTε “ suptt ě 0|λ̌tp qXtq ą εu,

provided that qX
pnq
0 converges to qX0. In particular,

t
pnq

BJpnq
ą qT pnqε

with probability converging to 1. The convergence in law is for the topology of uniform
convergence on compact subsets of I ˆ r0,`8q. The spatial processes on Jpnq are
considered to be linearly interpolated outside Jpnq.

Next we state how our self-repelling diffusion is related to the inversion of the
Ray-Knight identity of Theorem 1.1.

Theorem 1.5. Let a ą 0 and pφpaqpxqqxPR be a massless Gaussian free field on R condi-
tioned to be a at x “ 0. Let Ipφpaqq be the connected component of 0 in tx P R|φpaqpxq ą 0u.
For x P Ipφpaqq, set λ̌˚0 pxq “ φpaqpxq2. Then a.s. λ̌˚0 satisfies the condition (1.3). Let
p qX˚t , λ̌

˚
t pxqqxPIpφpaqq,0ďtď qT˚ be the process, distributed conditionally on pφpaqpxqqxPR, as

the self repelling diffusion on Ipφpaqq, starting from 0, with initial occupation profile λ̌˚0 ,
following Definition 1.3. Let be the triple

pφp0qpxq2, βt, φ
paqpxq2qxPR,0ďtďτβ

a2{2

,

jointly distributed as in the Ray-Knight coupling (Definition 1.2). Let be

qT β,a “ τβa2{2 ´ suptt P r0, τβa2{2s|φ
p0qpβtq “ 0 and @s P r0, tq, βs ‰ βtu.

Then the couple
p qX˚t , φ

paqpxq2qxPR,0ďtď qT˚

has the same distribution as

pβτβ
a2{2

´t, φ
paqpxq2qxPR,0ďtď qTβ,a .

The notation p qX˚t , λ̌
˚
t pxq, qT

˚q is reserved to the case of the initial occupation profile
λ̌˚0 pxq “ φpaqpxq2, so as to to avoid confusion with the case of generic λ̌0.

Note that Theorem 1.5 also trivially implies that the triple

p qX˚t , φ
paqpxq2, λ̌˚t pxqqxPR,0ďtď qT˚ (1.8)

has the same distribution as

pβτβ
a2{2

´t, φ
paqpxq2, φp0qpxq2 ` 2`β

τβ
a2{2

´t
pxqqxPR,0ďtď qTβ,a . (1.9)

Moreover, since the law of pβτβ
a2{2

´tq0ďtďτβ
a2{2

is the same as that of pβtq0ďtďτβ
a2{2

, we have

that (1.8) is also distributed as

pβt, φ
paqpxq2, φp0qpxq2 ` 2`β

τβ
a2{2

pxq ´ 2`βt pxqqxPR,0ďtďTβ,a ,
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where
T β,a “ inftt P r0, τβa2{2s|φ

p0qpβtq “ 0 and @s P pt, τβa2{2s, βs ‰ βtu.

We prefer the time-reversed presentation (1.9) as we imagine the Brownian path
pβtq0ďtďτβ

a2{2

being reconstructed from its end by starting from the final condition

pφpaqpxq2qxPR for pφp0qpxq2 ` 2`βt pxqqxPR.
One could also extend the definition of the self-repelling diffusion to metric graphs,

where it is again related to the inversion of the Ray-Knight identity. The proof would be
essentially the same as for an interval. We won’t detail it here. A metric graph is obtained
by replacing in an undirected graph each edge by a continuous line segment of certain
length, corresponding to the resistance of the edge. For background on Markovian
(non-selfinteracting) diffusions on metric graphs, see [4, 14, 36]. The Gaussian free field
on metric graphs was introduced in [22], in relation with isomorphism theorems.

Other works on self-interacting diffusions in dimension one

Now let us review some other works on self-interacting diffusions in dimension one
and their relations to ours. Two other Bass-Burdzy flows appeared in construction of
self-interacting diffusions. First, in [34] it was shown that the flow of solutions to

dYu
du

“ 1YuąBu

was related to the Brownian first passage bridge conditioned by its family of local times
and to the Brownian burglar [35]. There the problem is similar to ours, i.e. constructing a
Brownian motion with some conditioning on its family of local times, yet it is different and
the processes obtained are different. Then, in [21] we constructed a linearly reinforced
diffusion on R out of the flow of solutions to

dYu
du

“ ´1YuąBu ` 1YuăBu ,

that is to say the signs are opposite to those in (1.5). The reinforced diffusion in [21] can
be considered as a dual of the self-repelling diffusion in the present paper.

Our self-repelling diffusion is different from the Brownian polymer models studied in
[10, 8, 9, 24, 32, 5, 17], as here the interaction of the moving particle with the occupation
profile occurs locally, at zero range, and is not an average over positive ranges. In other
words, we do not mollify the occupation profile prior to taking its derivative. Also, for
that reason, we do not expect our process to be a semi-martingale as the above Brownian
polymer models, but only a Dirichlet process in the sense of Föllmer [16], admitting an
adapted decomposition into a continuous local martingale and zero quadratic variation
drift, with the drift term not necessarily of bounded variation (see also [18] and [21]).
Our process is also different from the true self-repelling motion (TSRM) introduced by
Tóth and Werner in [33], as our process, unlike the TSRM, has the Hölder regularity
of a Brownian motion and does not exhibit a 2{3 scaling exponent. We do not know if
our process is related to the continuum directed random polymer introduced by Alberts,
Khanin and Quastel in [1].

Organization of the article

We will first prove Theorem 1.5, as well as Theorem 1.4 in the particular case when
the initial occupation profile is random, given by the square of the free field. The proof
relies on the restriction of continuous processes to discrete subsets and on taking the
limit of discrete space processes inverting Ray-Knight in the discrete setting. On one
hand these discrete space processes are embedded into a standard Brownian motion. So
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the limit exists a priori and is a Brownian path. On the other hand one can construct out
of the discrete space processes discrete analogues of the divergent Bass-Burdzy flow
converging to the latter. Further, the proof of Theorem 1.4 for general occupation profile
will follow out of a path transformation as in Proposition 2.1 (1).

The reason why we do not proceed directly to the proof of Theorem 1.4 for general
occupation profile is that we need tightness and need the ratio

λ̌
pnq

t^ qT
pnq
ε

px` 2´nq

λ̌
pnq

t^ qT
pnq
ε

pxq

to converge to 1 as nÑ `8, uniformly in px, tq on compact subsets. For λ̌˚0 “ pφ
paqq2 this

is achieved by embedding the discrete space self-repelling processes into a Brownian
motion.

Our article is organized as follows. In Section 2 we will give some properties of our
self-repelling diffusion. In Section 3 we will recall how the self-repelling jump processes
of Theorem 1.4 appear in the inversion of the Ray-Knight identity on discrete subsets of
R. This is a result obtained in [20]. Using this we will prove in Section 4 the Theorem
1.5 and the particular case of Theorem 1.4 when λ̌0pxq “ λ̌˚0 pxq “ φpaqpxq2. In Section 5
we will prove Theorem 1.4 in general.

2 Elementary properties of the self-repelling diffusion

First, we give some elementary properties of p qXt, λ̌tpxqqxPI,0ďtď qT . They are straigh-
forward and come without proofs. For proofs of analogous statements, see Proposition
2.4 in [21].

Proposition 2.1. (1) Let I and I‚ be two open subintervals of R. Let be λ̌0 and λ̌‚0
two admissible initial occupation profiles on I, respectively I‚, and p qXt, λ̌tpxqqxPI,0ďtď qT ,

p qX‚t , λ̌
‚
t pxqqxPI‚,0ďtď qT ‚ the corresponding self-repelling diffusions, starting from x0 P

I, respectively x‚0 P I‚. One can go from one to the other by a deterministic path
transformation. More precisely, let

qS0pxq “

ż x

x0

λ̌0prq
´1dr, x P I, qS‚0pxq “

ż x

x‚0

λ̌‚0prq
´1dr, x P I‚.

Let t ÞÑ θ‚ptq be the change of time

dθ‚ptq “ λ̌‚0pp
qS‚0q

´1 ˝ qS0p qXtqq
2λ̌0p qXtq

´2dt.

Then then process ppqS‚0q
´1 ˝ qS0p qXpθ‚q´1ptqq, λ̌pθ‚q´1ptqp

qS´1
0 ˝ qS‚0pxqqqxPI‚,0ďtďθ‚p qT q has the

same law as p qX‚t , λ̌
‚
t pxqqxPI‚,0ďtď qT ‚ .

(2)(Strong Markov property) For any T stopping time for the natural filtration of
p qXt^ qT qtě0, such that T ă qT a.s., the process p qXT`t, λ̌T`tpxqqxPI,0ďtď qT´T , conditional on

the past before T , is a self-repelling diffusion with inital occupation profile λ̌T .
(3) Let a ă b P I such that a ă x0 ă b. Let ta,b be the first time t that qXt hits

a or b. We consider the stopping time ta,b ^ qT . Given a Brownian motion pBuquě0.

Let UÒ
qS0pbq P p0,`8s the first time Bu ´ u hits qS0pbq, whenever this happens. Let

UÓ
qS0paq P p0,`8s the first time Bu ` u hits qS0paq, whenever this happens. Then

Ppta,b ă qT , qXta,b “ bq “ PpUÒ
qS0pbq ă UÓ

qS0paqq,

Ppta,b ă qT , qXta,b “ aq “ PpUÓ
qS0paq ă UÒ

qS0pbqq,
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Ppta,b ą qT q “ PpUÒ
qS0pbq “ UÓ

qS0paq “ `8q.

In particular,
Ppta,b ă qT , qXta,b “ bq ě Ppta,b ă qT , qXta,b “ aq

if and only if
ż b

x0

λ̌0prq
´1dr “ qS0pbq ď |qS0paq| “

ż x0

a

λ̌0prq
´1dr.

Next we state that our self-repelling diffusion depends continuously on the initial
occupation profile.

Lemma 2.2. Let pIkqně0 be a sequence of open subintervals of R such that

lim
nÑ`8

inf Ik “ inf I P r´8,`8q, lim
nÑ`8

sup Ik “ sup I P p´8,`8s.

On each Ik we consider λ̌Ik0 an admissible occupation profile, and we assume that for all
K compact subset of I,

lim
kÑ`8

sup
KXIk

|λ̌0 ´ λ̌
Ik
0 | “ 0.

Let p qXIk
t , λ̌

Ik
t pxqqxPIk,0ďtď qT Ik be the self-repelling diffusion on Ik with initial occupation

profile λ̌Ik0 . We assume that limkÑ`8
qXIk

0 “ qX0 P I. Then, as k Ñ `8,

p qXIk
t^ qT Ik

, λ̌Ik
t^ qT Ik

pxqqxPIk,tě0

converges in law to
p qXt^ qT , λ̌t^ qT pxqqxPI,tě0,

where the convergence is for the uniform topology in t P r0,`8q, and uniform on compact
subsets of I for x.

Proof. This is an immediate consequence of Definition 1.3 and Proposition 2.1 (1). If
moreover all of the processes p qXIk

t , λ̌
Ik
t pxqqxPIk,0ďtď qT Ik and p qXt^ qT , λ̌t^ qT pxqqxPI,tě0 are

constructed of the same driving Brownian motion pBuquě0 (Definition 1.3), then the
convergence is a.s. Indeed, one uses the same process pξ̌uquě0, and the change of scale
and change of time functions involved in the construction of p qXIk

t , λ̌
Ik
t pxqqxPIk,0ďtď qT Ik

converge as k Ñ `8.

3 Inversion of the Ray-Knight identity on a discrete subset

Consider the triple
pφp0qpxq2, βt, φ

paqpxq2qxPR,0ďtďτβ
a2{2

,

jointly distributed as in the Ray-Knight coupling (Definition 1.2). Let Ipφpaqq be the
connected component of 0 in tx P R|φpaqpxq ą 0u.

Let `βt pxq be the family of local times of the Brownian motion βt. Let J‚ be a countable
discrete subset of R, containing 0, unbounded in both directions. Consider the change of
time

QJ
‚,βptq “

ÿ

xPJ‚

`βt pxq.

Define XJ‚

q “ βpQJ‚,βq´1pqq, where pQJ
‚,βq´1 is the right-continuous inverse of QJ

‚,β. It
is a nearest neighbor Markov jump process on J‚, with jump rate from a vertex x1 to a
neighbor x2 equal to the conductance

Cpx1, x2q “
1

2|x2 ´ x1|
. (3.1)
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Given x P J‚, λJ
‚

q pxq will denote

λJ
‚

q pxq “ φp0qpxq2 ` 2`β
pQJ‚,βq´1pqq

pxq “ λJ
‚

0 pxq ` 2

ż q

0

1XJ‚
r “x

dr.

Next, for q ě 0, OJ‚q will denote a function from pairs of neighbor vertices in J‚ to
t0, 1u. Given x1 ă x2 two neighbors in J‚, we will say that the edge tx1, x2u is open (at
time q) if OJ‚q ptx1, x2uq “ 1 and closed if OJ‚q ptx1, x2uq “ 0. OJ‚q ptx1, x2uq is defined as
follows:

OJ
‚

0 ptx1, x2uq “ 1φp0qpxq2 has no zeroes on rx1,x2s
,

OJ
‚

q ptx1, x2uq “ 1φp0qpxq2`2`β
pQJ

‚,βq´1pqq
pxq has no zeroes on rx1,x2s

,

By construction, pOJ‚q qtě0 is a family non-decreasing in q.

Next we state that the joint process pXJ‚

q , λJ
‚

q ,OJ
‚

q qqě0 is Markovian and give the
transitions rates. For details we refer to Theorem 8 in [20].

Proposition 3.1. pXJ‚

q , λJ
‚

q ,OJ
‚

q qqě0 is a Markov process. Let x1 and x2 be two neighbors

in J‚. If XJ‚

q “ x1, then:

• XJ‚

q jumps to x2 with rate p2|x2 ´ x1|q
´1. OJ‚q ptx1, x2uq is then set to 1 (if it was not

already).

• In case OJ‚q ptx1, x2uq “ 0, OJ‚q ptx1, x2uq is set to 1 without XJ‚

q jumping with rate

1

2|x2 ´ x1|

λJ
‚

q px2q
1
2

λJ‚q px1q
1
2

expp´|x2 ´ x1|
´1λJ

‚

q px1q
1
2λJ

‚

q px2q
1
2 q. (3.2)

For x P J‚,

λJ
‚

q pxq “ λJ
‚

0 pxq ` 2

ż q

0

1XJ‚
r “x

dr.

Proof. IfXJ‚

q jumps through the edge tx1, x2u, then βt crosses the interval delimited by x1

and x2, and then the local time of βt on this interval is positive, and thus OJ‚q ptx1, x2uq “ 1

after the jump.
As described in Section 2 in [20] and in particular in Theorem 8, the conditional

probability that OJ‚q ptx1, x2uq “ 0, given pXJ‚

r , λJ
‚

r pxqqxPJ‚,0ďrďq, and that OJ‚0 ptx1, x2uq “

0, and that XJ‚

r has not crossed the edge tx1, x2u before time q, equals

exppCpx1, x2qλ
J‚

0 px1q
1
2λJ

‚

0 px2q
1
2 ´ Cpx1, x2qλ

J‚

q px1q
1
2λJ

‚

q px2q
1
2 q,

where Cpx1, x2q is given by (3.1). Thus, the rate (3.2) is obtained as

lim
∆qÑ0`

1

∆q

ˆ

1´
exppCpx1, x2qλ

J‚

0 px1q
1
2λJ

‚

0 px2q
1
2 ´ Cpx1, x2qpλ

J‚

q px1q ` 2∆qq
1
2λJ

‚

q px2q
1
2 q

exppCpx1, x2qλJ
‚

0 px1q
1
2λJ

‚

0 px2q
1
2 ´ Cpx1, x2qλJ

‚

q px1q
1
2λJ‚q px2q

1
2 q

˙

.

The fields φp0q and φpaq restricted to J‚ are discrete Gaussian free fields on J‚. The
triple

pφp0qpxq2, XJ‚

q , φpaqpxq2qxPJ‚,0ďqďQJ‚,βpτβ
a2{2

q

satisfies the Ray-Knight identity on the discrete network J‚. So in [20] one can find
a procedure inverting this Ray-Knight identity in the discrete setting. It corresponds
to a time reversal of the process of Proposition 3.1 from stopping time QJ

‚,βpτβa2{2q.
This is explained in Section 3 in [20], in particular in Proposition 3.4 there. Note that
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the introduction of the variables OJ‚q , as in [20], allows for a simpler expression of

the inversion procedure. This is related to the fact that φp0qpx1qφ
p0qpx2q ą 0 whenever

OJ‚0 ptx1, x2uq “ 1. The inversion procedure that does not keep track of the variables
OJ‚q is presented in [27], and it involves more complicated expressions with conditional
expectations of relative signs.

Let J be a finite subset of R containing 0. Let us consider the continuous time discrete
space self-repelling nearest neighbor jump process on J, which has been introduced
in [20]. Let λ̌J0 be a positive function on J. We consider the process p qXJ

q , λ̌
J
q pxqqxPJ,qě0,

where qXJ
q is a nearest neighbor jump process on J, starting from 0, with time-dependent

jump rates from x1 to a neighbor x2 in J given by

1

2|x2 ´ x1|

λ̌Jq px2q
1
2

λ̌Jq px1q
1
2

, (3.3)

and

λ̌Jq pxq “ λ̌J0pxq ´ 2

ż q

0

1
|XJ
r“x

dr. (3.4)

Let be qQJ be a the random time coupled to p qXJ
q , λ̌

J
q pxqqxPJ,qě0 in the following way. If J

is reduced to t0u, then we set qQJ “ 0. Otherwise, qQJ is the first time q when the integral
ż q

0

ÿ

x
J
„|XJ

r

ˆ

λ̌Jr pxq
1
2

| qXJ
r ´ x|λ̌

J
r p

qXJ
r q

1
2

pexpp| qXJ
r ´ x|

´1λ̌Jr pxq
1
2 λ̌Jr p

qXJ
r q

1
2 q ´ 1q´1

˙

dr (3.5)

hits an independent exponential random variable of mean 1. The notation x
J
„ qXJ

r means
that x is a neighbor of qXJ

r in J. We will further explain where the definition of qQJ comes
from. Note that a.s. the time qQJ fires before one of the λ̌Jq pxq reaches 0. This is due to
the fact that

@K ą 0,

ż

0

1

r1{2
pexppKr1{2q ´ 1q´1dr “ `8.

Next we describe the process p

(

X J‚

q , λ̆
J‚

q ,

(

O J‚

q qqě0 introduced in Section 3.3 in [20].

(

O J‚

q is a function from pairs of neighbor vertices in J‚ to t0, 1u. Given x1 ă x2 two
neighbors in J‚, we set

(

O J‚

0 ptx1, x2uq “ 1φpaqpxq2 has no zeroes on rx1,x2s
.

(

X J‚

q is a nearest neighbor jump process on J‚.

(

X J‚

0 “ 0. For x P J‚,

λ̆J
‚

q pxq “ φpaqpxq2 ´ 2

ż q

0

1 (

X J‚
r “x

dr “ λ̆J
‚

0 pxq ´ 2

ż q

0

1 (

X J‚
r “x

dr.

Let x1 and x2 be two neighbors in J‚. If

(

X J‚

q “ x1 and

(

O J‚

q ptx1, x2uq “ 1, then:

•

(

X J‚

q jumps to x2 with rate

1

2|x2 ´ x1|

λ̆J
‚

q px2q
1
2

λ̆J‚q px1q
1
2

.

•

(

O J‚

q ptx1, x2uq is set to 0 with rate

1

|x2 ´ x1|

λ̆J
‚

q px2q
1
2

λ̆J‚q px1q
1
2

`

expp|x2 ´ x1|
´1λ̆J

‚

q px1q
1
2 λ̆J

‚

q px2q
1
2 q ´ 1

˘´1
.

(

X J‚

qě0 jumps instantaneously jumps to x2 or stays in x1 depending on which of the

two vertices remains connected to 0 by open edges in

(

X J‚

q .
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The process p

(

X J‚

q , λ̆
J‚

q ,

(

O J‚

q qqě0 is defined up to time

(

Q J‚ “ suptq ě 0|λ̆J
‚

q p

(

X J‚

q q ą 0u.

By construction,

(

X J‚

q is always in the same connected component induced by open edges

in

(

O J‚

q as the vertex 0. p

(

O J‚

q q0ďqď

(

Q J‚
is a non-increasing family. It is easy to see that a.s.

(

X J‚

q p

(

Q J‚q “ 0 and the edges adjacent to 0 are closed in

(

O J‚

(

Q J‚
.

Let be J˚ “ J‚ X Ipφpaqq, Ipφpaqq being as in Theorem 1.1. We consider the process
p qXJ˚

q , λ̌J
˚

q pxqqxPJ˚,0ďqď qQJ˚ following the definition (3.3), (3.4) and (3.5), with J “ J˚,

qXJ˚

0 “ 0, and qXJ˚

q “ φpaqpxq2, x P J˚. By construction,

(

X J‚

q takes values in J˚. One

can couple p

(

X J‚

q , λ̆
J‚

q ,

(

O J‚

q q0ďqď

(

Q J‚
and p qXJ˚

q , λ̌J
˚

q pxqqxPJ˚,0ďqď qQJ˚ such that on the event

qQJ˚ ‰ 0 (i.e. J˚ not reduced to t0u),

qQJ
˚

“ suptq ě 0|

(

O J‚

q “

(

O J‚

0 u,

and
@q P r0, qQJ

˚

s, qXJ˚

q “
(

X J‚

q .

qQJ˚ is the first time q when one more edge of J‚ is closed in

(

O J‚

q . Note that after time
qQJ˚ , the processes qXJ˚

q and

(

X J‚

q do not coincide anymore.

Proposition 3.2 (Lupu-Sabot-Tarrès [20], Proposition 3.4). With the notations above, the
process

p

(

X J‚

q , λ̆
J‚

q ,

(

O J‚

q q0ďqď

(

Q J‚

has the same law as the time-reversed process

pXJ‚

QJ‚,βpτβ
a2{2

q´q
, λJ

‚

QJ‚,βpτβ
a2{2

q´q
,OJ

‚

QJ‚,βpτβ
a2{2

q´q
q0ďqďQJ‚,βpτβ

a2{2
q
.

In particular, by considering p

(

X J‚

q , λ̆
J‚

q ,

(

O J‚

q q0ďqď

(

Q J‚
up to time qQJ˚ we get the

following:

Corollary 3.3. Let qT J
˚,β,a be 0 if J˚ is reduced to t0u, and otherwise,

qT J
˚,β,a “ τβa2{2´suptt P r0, τβa2{2s|βt P pminJ˚,maxJ˚q, φp0qpβtq “ 0 and @s P r0, tq, βs ‰ βtu.

Then, the joint law of

pJ˚, φpaqpxq, XJ‚

QJ‚,βpτβ
a2{2

q´q
qxPJ˚,0ďqďQJ‚,βpτβ

a2{2
q´QJ‚,βpτβ

a2{2
´ qT J˚,β,aq

is the same as the joint law of

pJ˚, φpaqpxq, qXJ˚

q qxPJ˚,0ďqď qQJ˚ .

Proof. The identity comes from Proposition 3.2 and the fact that, in case J˚ is not
reduced to t0u,

QJ
‚,βpτβa2{2 ´

qT J
˚,β,aq “ inf

!

q ě 0|OJ
‚

q “ OJ
‚

QJ‚,βpτβ
a2{2

q

)

,and

QJ
‚,βpτβa2{2q ´Q

J‚,βpτβa2{2 ´
qT J
˚,β,aq

“ sup
!

q P r0, QJ
‚,βpτβa2{2qs|O

J‚

QJ‚,βpτβ
a2{2

q´q
“ OJ

‚

QJ‚,βpτβ
a2{2

q

)

.
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4 Convergence for squared GFF initial occupation profile

We use the notations of the previous section. First we will check that the condition
(1.3) is satisfied by λ̌˚0 pxq “ φpaqpxq2.

Lemma 4.1. A.s. we have that

ż

inf Ipφpaqq

φpaqpxq´2dx “ `8,

ż sup Ipφpaqq

φpaqpxq´2dx “ `8.

Proof. Conditional on inf Ipφpaqq, pφpaqpinf Ipφpaqq ` xq{
?

2q0ďxď| inf Ipφpaqq|{2 is absolutely
continuous with respect to a Bessel 3 process starting from 0. So we only need to check
that given pρpxqqxě0 a Bessel 3 process starting from 0,

ż

0

ρpxq´2dx “ `8.

For h ą 0, let χρh denote the first “time” x when ρpxq reaches the level h. Then,

ż χρ1

0

ρpxq´2dx “
ÿ

kě0

ż χρ
2´k

χρ
2´k´1

ρpxq´2dx.

By the strong Markov property of ρ, the sum on the right-hand side is a sum of positive
independent terms. Moreover, by Brownian scaling satisfied by ρ, these terms are
identically distributed. So the sum is a.s. infinite.

Now we consider J‚ “ Zn “ 2´nZ, and J˚ “ Z˚n “ Zn X Ipφ
paqq. Let

X
pnq
t “ βpQZn,βq´1p2ntq.

Lemma 4.2. The process

pX
pnq

p2´nQZn,βpτβ
a2{2

q´tq
, φpaqpxq2 ´ 2`β

τβ
a2{2

pxq ` 2`β
pQZn,βq´1pQZn,βpτβ

a2{2
q´2ntq

pxqq

x P Z˚n, 0 ď t ď p2´nQZn,βpτβa2{2q ´ 2´nQZn,βpτβa2{2 ´
qTZ

˚
n ,β,aqq, (4.1)

interpolated linearly outside x P Z˚n, converges a.s. in the uniform topology to

pβτβ
a2{2

´t, φ
paqpxq2 ´ 2`β

τβ
a2{2

pxq ` 2`β
τβ
a2{2

´t
pxqqxPIpφpaqq,0ďtď qTβ,a (4.2)

as nÑ `8.

Proof. One needs to show that, on one hand, as nÑ `8, a.s. pQZn,βq´1p2ntq converges
to t uniformly on r0, τβa2{2s, and on the other hand qTZ

˚
n ,β,a converges a.s. to qT β,a.

The first convergence comes from the fact that

2´n
ÿ

xP2´nZ

`βt pxq

converges to

t “

ż

R

`βt pxqdx

uniformly on compact intervals of time.
The second convergence comes from the fact that pminZ˚n,maxZ˚nq is a non-decreasing

sequence of intervals converging to Ipφpaqq, and thus, a.s., for n large enough, qT β,a “
qTZ

˚
n ,β,a.
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Inverting the Ray-Knight identity on the line

Let qX
˚pnq
t “ qX

Z˚n
2nt be the self-repelling jump process on Z˚n, accelerated by the factor

2n. It is the same process as in Theorem 1.4, but with a random initial occupation profile

λ̌
˚pnq
0 pxq “ λ̌

Z˚n
0 pxq “ φpaqpxq2, x P Z˚n.

We will show that qX
˚pnq
t converges in law as nÑ `8 to our self-repelling diffusion. For

this we will use a method that appears in [21], and construct a discrete analogue of the
divergent Bass-Burdzy flow.

Proposition 4.3. Given φpaq, let qX
˚pnq
t be the process on Z˚n defined above, and

λ̌
˚pnq
t pxq “ φpaqpxq2 ´ 2n`1

ż t

0

1
|X
˚pnq
s “x

ds, x P Z˚n.

Then, as nÑ `8, the process

p qX
˚pnq

t^2´n qQZ
˚
n
, λ̌
˚pnq

t^2´n qQZ
˚
n
pxqqxPZ˚n ,tě0, (4.3)

interpolated linearly outside x P Z˚n, converges in law to the self repelling diffusion

p qX˚
t^ qT˚

, λ̌˚
t^ qT˚

pxqqxPIpφpaqq,tě0

with qX˚0 “ 0 and the initial occupation profile λ̌˚0 pxq “ φpaqpxq2.

Before proceeding to the proof of Proposition 4.3, let us explain how it implies
Theorem 1.5.

Proof of Theorem 1.5. On one hand, according to Proposition 4.3,

p qX
˚pnq
t , λ̌

˚pnq
t pxqq

xPZ˚n ,0ďtď2´n qQZ
˚
n

(4.4)

converges in law to
p qX˚t , λ̌

˚
t pxqqxPIpφpaqq,0ďtď qT˚ . (4.5)

On the other hand, according to Corollary 3.3, (4.4) has the same distribution as (4.1).
According to Lemma 4.2, (4.1) in turn converges a.s. to (4.2). This means that (4.5) has
the same distribution as (4.2), which is exactly what we want.

Proof of Proposition 4.3. From Corollary 3.3 and Lemma 4.2 we already know that the
process (4.3) has a limit in law, but we want another description of the limit, which we
will obtain by convergence. We will need the triple

pφp0qpxq2, βt, φ
paqpxq2qxPR,0ďtďτβ

a2{2

,

jointly distributed as in the Ray-Knight coupling (Definition 1.2). We will also assume
that all of the qX

˚pnq
t are defined on the same probability spaces, embedded in βt as in

Corollary 3.3.
We introduce pqS˚pnqt q

0ďtď2´n qQZ
˚
n

a family of maps R Ñ R, parametrized by t. For a
given n, the family is characterized by the following:

• For all x such that x and x` 2´n are in Z˚n, and for all t P r0, 2´n qQZ˚n s,

qS
˚pnq
t px` 2´nq ´ qS

˚pnq
t pxq “ 2´nλ̌

˚pnq
t pxq´

1
2 λ̌
˚pnq
t px` 2´nq´

1
2 .

• qS
˚pnq
0 p0q “ 0.

• For every x P Z˚n, t ÞÑ qS
˚pnq
t pxq is constant on each time interval on which qX

˚pnq
t “ x.
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Inverting the Ray-Knight identity on the line

• For each x P Z˚n, t ÞÑ qS
˚pnq
t pxq is continuous.

• For each t, qS˚pnqt is interpolated linearly between points of Z˚n.

• Below minZ˚n and above maxZ˚n, x ÞÑ qS
˚pnq
t pxq has constant slope 1.

By construction, x ÞÑ qS
˚pnq
t is continuous strictly increasing. We see qS

˚pnq
t as a time-

dependent change of scale. It has been constructed in such a way that the process
pqS
˚pnq
t p qX

˚pnq
t qqt is a local martingale; see Lemma 4.5 further below.

For x P Ipφpaqq and t P r0, τβa2{2q, set

S̄˚t pxq “

ż x

0

pφpaqprq2 ´ 2`β
τβ
a2{2

` 2`β
τβ
a2{2

´t
q´1dr.

x ÞÑ S̄˚t pxq is an increasing diffeomorphism from Ipφpaqq to R. Clearly, we have the
following

Lemma 4.4. A.s. qS
˚pnq
t pxq ´ qS

˚pnq
t p0q converges to S̄˚t pxq ´ S̄˚t p0q uniformly for px, tq in

compact subsets of Ipφpaqq ˆ r0, τβa2{2q. Similarly, a.s. py, tq ÞÑ pqS
˚pnq
t q´1py ` qS

˚pnq
t p0qq

converges to py, tq ÞÑ pS̄˚t q
´1py ` S̄˚t p0qq uniformly on compact subsets of Rˆ r0, τβa2{2q.

Let be M pnq
t “ qS

˚pnq
t p qX

˚pnq
t q. Let t˚pnq

BZ˚n
be the first time qX

˚pnq
t hits minZ˚n or maxZ˚n.

We introduce the stopping time t˚pnq
BZ˚n

to avoid considering what happens after qX
˚pnq
t hits

the boundary of the domain Z˚n.

Lemma 4.5. The process pM pnq

t^t
˚pnq

BZ
˚
n
^2´n qQZ

˚
n
qtě0 is a local martingale in the filtration of

pφpaq, qX
˚pnq

t^2´n qQZ
˚
n
, t
˚pnq

BZ˚n
1
t
˚pnq

BZ
˚
n
ďt
q.

Proof. Indeed, consider the following stopping times for the above filtration: t˚pnqk the

first time qX
˚pnq
t performs k jumps, and

qT˚pnqε “ suptt ě |λ̌
˚pnq
t p qX

˚pnq
t q ą εu. (4.6)

Then |M pnq

t^t
˚pnq
k ^ qT

˚pnq
ε ^t

˚pnq

BZ
˚
n
^2´n qQZ

˚
n
| is bounded by

k2´npmin
Z˚n

λ̌
˚pnq
0 ^ εq´1.

Moreover,

sup
kPN,εą0

t
˚pnq
k ^ qT˚pnqε ^ t

˚pnq

BZ˚n
^ 2´n qQZ

˚
n “ t

˚pnq

BZ˚n
^ 2´n qQZ

˚
n a.s.

To see that pM pnq

t^t
˚pnq
k ^ qT

˚pnq
ε ^t

˚pnq

BZ
˚
n
^2´n qQZ

˚
n
qtě0 is a martingale, observe that at time t, if

qX
˚pnq
t “ x P Z˚nztminZ˚n,maxZ˚nu, qX

˚pnq
t jumps left with rate

22n´1 λ̌
˚pnq
t px´ 2´nq

1
2

λ̌
˚pnq
t pxq

1
2

,

and then M pnq
t decreases by

2´nλ̌
˚pnq
t px´ 2´nq´

1
2 λ̌
˚pnq
t pxq´

1
2 ,
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and qX
˚pnq
t “ x P Z˚n jumps right with rate

22n´1 λ̌
˚pnq
t px` 2´nq

1
2

λ̌
˚pnq
t pxq

1
2

,

and then M pnq
t increases by

2´nλ̌
˚pnq
t px` 2´nq´

1
2 λ̌
˚pnq
t pxq´

1
2 ,

so the average variation of M pnq
t is 0.

Next we will apply a time-change which will make pM pnq

t^t
˚pnq

BZ
˚
n
^2´n qQZ

˚
n
qtě0 into a mar-

tingale with normalized variance. Let be

U pnqptq “

ż t

0

1

2
λ̌˚pnqs p qX˚pnqs q´

3
2

´

λ̌˚pnqs p qX˚pnqs ´ 2´nq´
1
2 ` λ̌˚pnqs p qX˚pnqs ` 2´nq´

1
2

¯

ds.

Let qU pnq “ U pnqpt
˚pnq

BZ˚n
^ 2´n qQZ˚n q. By considering the rate of jumps and the size of jumps

of M pnq
t , we immediately get the following:

Lemma 4.6. The process ppM pnq

t^t
˚pnq

BZ
˚
n
^2´n qQZ

˚
n
q2 ´ U pnqptq ^ qU pnqqtě0 is a local martingale

in the filtration of pφpaq, qX˚pnq
t^2´n qQZ

˚
n
, t
˚pnq

BZ˚n
1
t
˚pnq

BZ
˚
n
ďt
q.

Let be
Zpnqu “M

pnq

pUpnqq´1puq
.

Lemma 4.7. pZpnq
u^ qUpnq

quě0 is a martingale in the filtration of pφpaq, Zpnqu , qU pnq1
qUpnqďuq.

Moreover, for any 0 ď u1 ă u2,

ErpZ
pnq

u2^ qUpnq
´ Z

pnq

u1^ qUpnq
q2|φpaq, pZpnqu q0ďuďu1 ,

qU pnq1
qUpnqďu1

s “

Eru2 ^ qU pnq ´ u1 ^ qU pnq|φpaq, pZpnqu q0ďuďu1
, qU pnq1

qUpnqďu1
s, (4.7)

or equivalently, the process ppZpnq
u^ qUpnq

q2 ´ u^ qU pnqquě0 is a martingale in the filtration of

pφpaq, Z
pnq
u , qU pnq1

qUpnqďuq.

Proof. First not that, since pM pnq

t^t
˚pnq
k ^ qT

˚pnq
ε ^t

˚pnq

BZ
˚
n
^2´n qQZ

˚
n
qtě0 is a bounded martingale, so

is pZpnq
u^Upnqpt

˚pnq
k ^ qT

˚pnq
ε q^ qUpnq

quě0. Moreover, with the sizes of jumps and the jump rates,

one sees that dU pnqt is the average squared variation of M pnq
t during dt. So after the time

change, for Zpnqu ,

ErpZ
pnq

u2^Upnqpt
˚pnq
k ^ qT

˚pnq
ε q^ qUpnq

´ Z
pnq

u1^Upnqpt
˚pnq
k ^ qT

˚pnq
ε q^ qUpnq

q2|φpaq,

pZpnqu q0ďuďu1
, qU pnq1

qUpnqďu1
s “

Eru2 ^ U
pnqpt

˚pnq
k ^ qT˚pnqε q ^ qU pnq ´ u1 ^ U

pnqpt
˚pnq
k ^ qT˚pnqε q ^ qU pnq|φpaq,

pZpnqu q0ďuďu1 ,
qU pnq1

qUpnqďu1
s.

For a fixed u ě 0, pZpnq
u^Upnqpt

˚pnq
k ^ qT

˚pnq

k´1 q^
qUpnq
qkě1 is a martingale parametrized by k P N˚.

It converges a.s. to Zpnq
u^ qUpnq

and is bounded in L2, so the convergence is also in L2. It

follows that pZpnq
u^ qUpnq

quě0 is a martingale and (4.7).

EJP 26 (2021), paper 96.
Page 17/25

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP657
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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For ε ą 0 and n P N˚, we consider qT
˚pnq
ε the time defined by (4.6). Let be p rZpn,εqu quě0

the process, which up to time U pnqp qT˚pnqε q ^ qU pnq coincides with Zpnqu , and after that time

continues as a standard Brownian motion starting from Z
pnq

Upnqp qT
˚pnq
ε q^ qUpnq

, conditional of

that value independent of everything else.

Lemma 4.8. As n Ñ `8, the pair pφpaq, rZpn,εqu quě0 converges in law, for the uniform
convergence on compact subsets, to pφpaq, Buquě0, where pBuquě0 is a standard Brownian
motion starting from 0, independent of φpaq.

Proof. The convergence of p rZpn,εqu quě0 to pBuquě0 follows from Theorem 1.4, Section 7.1
in [13]. To apply it, we use the following:

• p rZpn,εqu quě0 is a martingale.

• pp rZpn,εqu q2 ´ uquě0 is a martingale by Lemma 4.7.

• The jumps of p rZpn,εqu qu are bounded by 2´npminZ˚n λ̌
˚pnq
0 ^ εq´1, and in particular

lim
nÑ`8

E
”

max
uě0

p rZpn,εqu ´ rZ
pn,εq
u´

q2
ı

“ 0.

The independence of pBuquě0 from φpaq follows from the fact that the above listed three
conditions hold after conditioning by φpaq.

We stress that in Lemma 4.8 we neither require pBuquě0 to be defined on the same

probability space as the qX
˚pnq
t and pφp0qpxq2, βt, φpaqpxq2qxPR,0ďtďτβ

a2{2

, nor the conver-

gence to be in probability.
Let be, for t P r0, qT β,as,

Uptq “

ż t

0

pφpaqpβτβ
a2{2

´sq
2 ´ 2`β

τβ
a2{2

pβτβ
a2{2

´sq ` 2`β
τβ
a2{2

´s
pβτβ

a2{2
´sqq

´2ds,

and

qT β,aε “ suptt ě 0|φpaqpβτβ
a2{2

´sq
2 ´ 2`β

τβ
a2{2

pβτβ
a2{2

´sq ` 2`β
τβ
a2{2

´s
pβτβ

a2{2
´sq ą εu.

Clearly, we have the following:

Lemma 4.9. For all ε ą 0, a.s., qT
˚pnq
ε converges to qT β,aε , U pnqptq ^ U pnqp qT

˚pnq
ε q ^ qU pnq

converges to Uptq^Up qT β,aε q uniformly on r0,`8q, and pU pnqq´1puq^ qT
˚pnq
ε ^t

˚pnq

BZ˚n
^2´n qQZ˚n

converges to U´1puq ^ qT β,aε uniformly on r0,`8q.

Next, for u P r0, qU pnqq, we define

qΨpnqu pyq “ qS
˚pnq

pUpnqq´1puq
˝ pqS

˚pnq
0 q´1pyq, y P R.

By simple computation, we have the following:

Lemma 4.10. For u P r0, qU pnqq such that Zpnqu “ Z
pnq
u´

, we have the following expressions

and bounds for
B

Bu
qΨ
pnq
u pyq:

• if qΨpnqu pyq “ Z
pnq
u ,

B

Bu
qΨ
pnq
u pyq “ 0;

• if qΨpnqu pyq P pZ
pnq
u , qS

˚pnq
0 p qX

˚pnq

pUpnqq´1puq
` 2´nqq,

0 ă
B

Bu
qΨpnqu pyq

ă
2λ̌
˚pnq

pUpnqq´1puq
p qX

˚pnq

pUpnqq´1puq
` 2´nq´

1
2

λ̌
˚pnq

pUpnqq´1puq
p qX

˚pnq

pUpnqq´1puq
´ 2´nq´

1
2 ` λ̌

˚pnq

pUpnqq´1puq
p qX

˚pnq

pUpnqq´1puq
` 2´nq´

1
2

;
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• if qΨpnqu pyq ě qS
˚pnq
0 p qX

˚pnq

pUpnqq´1puq
` 2´nq,

B

Bu
qΨpnqu pyq “

2λ̌
˚pnq

pUpnqq´1puq
p qX

˚pnq

pUpnqq´1puq
` 2´nq´

1
2

λ̌
˚pnq

pUpnqq´1puq
p qX

˚pnq

pUpnqq´1puq
´ 2´nq´

1
2 ` λ̌

˚pnq

pUpnqq´1puq
p qX

˚pnq

pUpnqq´1puq
` 2´nq´

1
2

;

• if qΨpnqu pyq P pqS
˚pnq
0 p qX

˚pnq

pUpnqq´1puq
´ 2´nq, Z

pnq
u q,

0 ą
B

Bu
qΨpnqu pyq

ą
´2λ̌

˚pnq

pUpnqq´1puq
p qX

˚pnq

pUpnqq´1puq
´ 2´nq´

1
2

λ̌
˚pnq

pUpnqq´1puq
p qX

˚pnq

pUpnqq´1puq
´ 2´nq´

1
2 ` λ̌

˚pnq

pUpnqq´1puq
p qX

˚pnq

pUpnqq´1puq
` 2´nq´

1
2

;

• if qΨpnqu pyq ď qS
˚pnq
0 p qX

˚pnq

pUpnqq´1puq
´ 2´nq,

B

Bu
qΨpnqu pyq “

´2λ̌
˚pnq

pUpnqq´1puq
p qX

˚pnq

pUpnqq´1puq
´ 2´nq´

1
2

λ̌
˚pnq

pUpnqq´1puq
p qX

˚pnq

pUpnqq´1puq
´ 2´nq´

1
2 ` λ̌

˚pnq

pUpnqq´1puq
p qX

˚pnq

pUpnqq´1puq
` 2´nq´

1
2

.

For ε ą 0, let rΨpn,εqu pyq be defined as follows. For u P r0, U pnqp qT˚pnqε q^ qU pnqs, rΨpn,εqu pyq “
qΨ
pnq
u pyq. For u ą U pnqp qT

˚pnq
ε q ^ qU pnq, rΨpn,εqu pyq is a divergent Bass-Burdzy flow driven by

rZ
pn,εq
u (which is then a Brownian motion) satisfying

rΨpn,εqu pyq ´ rΨ
pn,εq

Upnqp qT
˚pnq
ε q^ qUpnq

pyq “

ż u

Upnqp qT
˚pnq
ε q^ qUpnq

p1
rΨ
pn,εq
v pyqą rZ

pn,εq
v

´ 1
rΨ
pn,εq
v pyqă rZ

pn,εq
v

qdv.

Lemma 4.11. For all ε ą 0, as nÑ `8, the family

pφpaqpxq, rZpn,εqu , rΨpn,εqu pyq, prΨpn,εqu q´1pyqqxPR,yPR,uě0 (4.8)

converges in law to, for the topology of uniform convergence on compact subsets, to

pφpaqpxq, Bu, qΨupyq, pqΨuq
´1pyqqxPR,yPR,uě0,

where pBuquě0 is a standard Brownian motion starting from 0, independent of φpaq,
pqΨuquě0 is the divergent Bass-Burdzy flow driven by pBuquě0, and ppqΨuq

´1quě0 the inverse
flow.

Proof. For this, first we will show the tightness of the family. For the tightness of the
functions prΨpn,εqu pyqqyPR,uě0, we use that, for u ď U pnqp qT

˚pnq
ε q ^ qU pnq,

rΨpn,εqu pyq “ pqS
˚pnq

pUpnqq´1puq
˝ pqS

˚pnq
0 q´1pyq ´ qS

˚pnq

pUpnqq´1puq
p0qq

´ pqS
˚pnq

pUpnqq´1puq
p qX

pnq˚

pUpnqq´1puq
q ´ qS

˚pnq

pUpnqq´1puq
p0qq ` rZpn,εqu ,

each term having a limit in law by Lemmas 4.4, 4.8 and 4.9, and that after time
U pnqp qT

˚pnq
ε q^ qU pnq, rΨpn,εqu is already a Bass-Burdzy flow. Similarly for pprΨpn,εqu q´1pyqqyPR,uě0.
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Further, because of the identities and bounds of Lemma 4.10, any subsequential limit of
(4.8) is of form

pφpaqpxq, Bu, Ψ̄upyq, pΨ̄uq
´1pyqqxPR,yPR,uě0,

where pBuquě0 is a standard Brownian motion starting from 0, independent of φpaq, and

Ψ̄upyq “

ż u

0

p1Ψ̄vpyqąBv ´ 1Ψ̄vpyqăBv qdv, (4.9)

and thus by the uniquennes proved in [3], Theorem 2.3, pΨ̄uquě0 is the divergent Bass
Burdzy flow driven by pBuquě0. To get (4.9), we used that

λ̌
˚pnq

t^ qT
˚pnq
ε

px` 2´nq

λ̌
˚pnq

t^ qT
˚pnq
ε

px´ 2´nq
“

φpaqpx` 2´nq2 ´ 2`β
τβ
a2{2

px` 2´nq ` 2`β
pQZn,βq´1pQZn,βpτβ

a2{2
q´2nt^ qT˚pnqq

px` 2´nq

φpaqpx´ 2´nq2 ´ 2`β
τβ
a2{2

px´ 2´nq ` 2`β
pQZn,βq´1pQZn,βpτβ

a2{2
q´2nt^ qT˚pnqq

px´ 2´nq

a.s. converges to 1 as nÑ `8, uniformly in t and uniformly for x in compact subsets of
Ipφpaqq.

We are now ready to finish the proof of the Proposition 4.3. By construction,

qX
˚pnq

pUpnqq´1puq^ qT
˚pnq
ε ^t

˚pnq

BZ
˚
n
^2´n qQZ

˚
n
“ pqS

˚pnq
0 q´1˝prΨ

pn,εq

u^Upnqp qT
˚pnq
ε q^ qUpnq

q´1p rZ
pn,εq

u^Upnqp qT
˚pnq
ε q^ qUpnq

q.

We have that the process ppqS˚pnq0 q´1 ˝ prΨ
pn,εq
u q´1p rZ

pn,εq
u qquě0 converges in law to the

process ppqS˚0 q
´1 ˝ pqΨuq

´1pBuqquě0, which appears in Definition 1.3, and out of which one

constructs qX
˚pnq
t by the change of time

U˚ptq “

ż t

0

λ̌˚s p
qX˚s q

´2ds, t P r0, qT˚q.

We will also denote
qT˚ε “ suptt ě 0|λ̌˚t p

qX˚t q ą εu.

We use the fact that, as nÑ `8, the joint processes

p qT˚pnqε ^ t
˚pnq

BZ˚n
^ 2´n qQZ

˚
n , U pnqp qT˚pnqε q ^ qU pnq,

qX
˚pnq

t^ qT
˚pnq
ε ^t

˚pnq

BZ
˚
n
^2´n qQZ

˚
n
, λ̌
˚pnq

t^ qT
˚pnq
ε ^t

˚pnq

BZ
˚
n
^2´n qQZ

˚
n
pxq,

U pnqptq ^ U pnqp qT˚pnqε q ^ qU pnq, pU pnqq´1puq ^ qT˚pnqε ^ t
˚pnq

BZ˚n
^ 2´n qQZ

˚
n qxPZ˚n ,tě0,uě0 (4.10)

converges a.s. to

p qT β,aε , Up qT β,aε q,

β
pτβ
a2{2

´tq^pτβ
a2{2

´ qTβ,aε q
, φpaqpxq2 ´ 2`β

τβ
a2{2

pxq ` 2`β
pτβ
a2{2

´tq^pτβ
a2{2

´ qTβ,aε q
pxq,

Uptq ^ Up qT β,aε q, pUq´1puq ^ qT β,aε qxPIpφpaqq,tě0,uě0.

If we add to the family (4.10) the processes pφp0qpxq2, βt, φpaqpxq2qxPR,0ďtďτβ
a2{2

and

ppqS
˚pnq
0 q´1 ˝ prΨ

pn,εq
u q´1p rZ

pn,εq
u qquě0, we get a tight family which has subsequential limits

in law as n Ñ `8. Because of the constraints satisfied for finite n, any subsequential
limit in law will satisfy:
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• qT˚ε “
qT β,aε ,

• qX˚t “ β
pτβ
a2{2

´tq for t ď qT˚ε ,

• `β
τβ
a2{2

pxq ´ `β
τβ
a2{2

´t
pxq is the local time process of qX˚t for t ď qT˚ε .

So we get the equality in law between

p qX˚t , φ
paqpxq2qxPR,0ďtď qT˚ε

and
pβ
pτβ
a2{2

´tq, φ
paqpxq2qxPR,0ďtď qTβ,aε

.

Taking εÑ 0, we get the equality in law between

p qX˚t , φ
paqpxq2qxPR,0ďtď qT˚

and
pβ
pτβ
a2{2

´tq, φ
paqpxq2qxPR,0ďtď qTβ,a .

This finishes our proof.
Note that a posteriori, once the above identity in law established, one can show that

the Brownian motion pBuquě0 driving the self repelling diffusion p qX˚t qxPR,0ďtď qT˚ can be

constructed on the same probability space as pφp0qpxq2, βt, φpaqpxq2qxPR,0ďtďτβ
a2{2

, and the

convergence of pZpnq
u^Upnqp qT

˚pnq
ε q^ qUpnq

quě0 to pBu^U˚p qT˚ε qquě0 can be upgraded from in law

as in Lemma 4.8 to almost sure. However, in our proof we avoid using that a priori, and
only rely on the convergence in law.

Combining Theorem 1.5 and Proposition 2.1 (1) one immediately gets the following:

Corollary 4.12. Let be the triple

pφp0qpxq2, βt, φ
paqpxq2qxPR,0ďtďτβ

a2{2

,

jointly distributed as in the Ray-Knight coupling (Definition 1.2) and let Ipφpaqq be the
connected component of 0 in tx P R|φpaqpxq ą 0u. Let I be another, deterministic, subin-
terval of R and λ̌0 an admissible initial occupation profile on I. Let p qXt, λ̌tpxqqxPI,0ďtď qT

be the self-repelling diffusion on I with initial occupation profile λ̌0, starting from x0 P I.
Let

qS˚0 pxq “

ż x

0

φpaqprq´2dr, x P Ipφpaqq, qS0pxq “

ż x

x0

λ̌tprq
´1dr, x P I.

Let t ÞÑ θptq be the change of time

dθptq “ λ̌0pqS
´1
0 ˝ qS˚0 pβτβ

a2{2
´tqq

2φpaqpβτβ
a2{2

´tq
´4dt.

Then then process

pqS´1
0 ˝ qS˚0 pβτβ

a2{2
´θ´1ptqq, ppφ

paqq2 ´ 2`β
τβ
a2{2

` 2`β
τβ
a2{2

´θ´1ptq
qppqS˚0 q

´1 ˝ qS0pxqqqxPI,0ďtďθp qTβa q

has the same law as p qXt, λ̌tpxqqxPI,0ďtď qT .

Remark 4.13. Note that the process pβτβ
a2{2

´tq0ďtďτβ
a2{2

has the same law as pβtq0ďtďτβ
a2{2

,

so the two processes can be interchanged in Theorem 1.5, Corollary 3.3 and Corollary
4.12.
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5 Convergence for general initial occupation profile

In the sequel I, qXt, λ̌t will denote the general setting, qX˚t and λ̌˚t being reserved
for the case λ̌˚0 pxq “ φpaqpxq2. Next we show that a discrete space nearest neighbor
self-repelling jump process as in Corollary 3.3, but with general initial occupation profile,
can be embedded into a continuous self-repelling diffusion.

Proposition 5.1. Let J be a finite subset of R containing 0. Let λ̌J0 be a positive function
on J. Let be p qXJ

q , λ̌
J
0pxqqxPJ,0ďqď qQJ ,the nearest neighbor self-repelling jump process on J

introduced previously ( (3.3), (3.4), (3.5)), starting from 0. Let qBJ the first time q when
qXJ
q reaches minJ or maxJ.

Let ϕ “ ϕλ̌
J
0 be the Gaussian free field φpaq, with a “ λ̌J0p0q

1
2 , conditioned on φpaq being

positive on rminJ,maxJs, and on φpaqpxq “ λ̌J0pxq
1
2 for all x P J. In other words, ϕ{

?
2 is

obtained by interpolating between values λ̌J0pxq
1
2 {
?

2 for consecutive points x P J with
independent Brownian bridges conditioned on staying positive, and by adding below
minJ and above maxJ two independent Brownian motions, the first one time-reversed,
starting from λ̌J0pminJq

1
2 {
?

2 and from λ̌J0pmaxJq
1
2 {
?

2 respectively.
Let Ipϕq be the connected component of 0 in the non-zero set of ϕ. Denote by

p qXϕ
t , λ̌

ϕ
t pxqqxPIpϕq,0ďtď qTϕ

the process, which conditional on ϕ, is distributed as the self-repelling diffusion on Ipϕq,
starting from 0, with initial occupation profile λ̌ϕ0 pxq “ ϕpxq2, qTϕ being the first time one
of the λ̌ϕt pxq reaches 0. Let tϕBJ be the first time t when qXϕ

t reaches minJ or maxJ.
Let be

QJ,ϕptq “
ÿ

xPJ

ˇ̀ϕ
t pxq,

where ˇ̀ϕ
t pxq “ pλ̌

ϕ
0 pxq ´ λ̌ϕt pxqq{2 is the local time process of qXϕ

t . Denote pQJ,ϕq´1 the
right-continuous inverse of QJ,ϕ. Then the process

p qXϕ
pQJ,ϕq´1pqq

, λ̌ϕ
pQJ,ϕq´1pqq

pxqqxPJ,0ďqďQJ,ϕp qTϕq^QJ,ϕptϕ
BJ
q

(5.1)

has the same law as
p qXJ

q , λ̌
J
0pxqqxPJ,0ďqď qQJ^qBJ

. (5.2)

Proof. For pλ̌J0pxqqxPJzt0u not fixed, but random, distributed as pφpaqpxq2qxPJzt0u, φ
paq being

conditioned on being positive on rminJ,maxJs, the identity in law is a direct consequence
of Corollary 3.3 and Theorem 1.5. To conclude that the identity in law disintegrated
according the values of pλ̌J0pxqqxPJzt0u also holds, it is sufficient to show that both sides of
the identity, (5.1) and (5.2), are continuous with respect to pλ̌J0pxqqxPJzt0u. The continuity
of the law of (5.2) with respect to pλ̌J0pxqqxPJzt0u is clear from the construction. As for
(5.1), first the law of pϕpxqqxPrmin J,max Js, hence the law of pλ̌ϕ0 pxqqxPrmin J,max Js, depends
continuously on pλ̌J0pxqqxPJzt0u, and second, according to Lemma 2.2, the law of (5.1)
depends continuously on pλ̌ϕ0 pxqqxPrmin J,max Js.

Proof of Theorem 1.4. We will first consider the case of I bounded. Without loss of
generality, we assume that 0 P I and qX0 “ 0. We also slightly simplify by taking
qX
pnq
0 “ qX0 “ 0 for all n. Using the notations of Proposition 5.1, let be Jpnq “ 2´nZX I

and ϕpnq the conditioned GFF interpolating between pλ̌0pxq
1
2 qxPJpnq . By Proposition 5.1,

we can take

qX
pnq
t “ qXϕpnq

pQJ
pnq,ϕpnq q´1p2ntq

, λ̌
pnq
t pxq “ qXϕpnq

pQJ
pnq,ϕpnq q´1p2ntq

pxq, (5.3)

t ď 2´nQJ
pnq,ϕpnqp qTϕ

pnq

^ tϕ
pnq

BJpnq
q,

where tϕ
pnq

BJpnq
is the first time qXϕpnq

t hits minJpnq or maxJpnq.
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Lemma 5.2. As n Ñ `8, pϕpnqpxqqxPI converges in probability to pλ̌0pxq
1
2 qxPI for the

topology of uniform converge on compact subsets of I.

Proof. Indeed, given K a compact subinterval of I and n large enough so that K Ď

rminJpnq,maxJpnqs, one will obtain ϕpnq by first interpolating linearly between the values
of pλ̌0pxq

1
2 qxPJpnq , then by adding of order 2n independent bridges from 0 to 0 of duration

2´n, each conditioned by a positivity event. The minimal probability of an event by which
we condition will converge to 1 with n. Moreover, for an unconditioned bridge, the
probability to deviate more than ε from 0 is Opexpp´k2nε2qq, for a constant k ą 0. This
beats the 2n factor.

Lemma 5.3. As n Ñ `8, the process p qXϕpnq

t^ qTϕ
pnq
^tϕ

pnq

BJpnq

, λ̌ϕ
pnq

t^ qTϕ
pnq
^tϕ

pnq

BJpnq

pxqqxPI,tě0 con-

verges in law to p qXt^ qT , λ̌t^ qT pxqqxPI,tě0.

Proof. Indeed, by Lemma 5.2, pλ̌ϕ
pnq

0 pxqqxPI converges in probability to pλ̌0pxqqxPI for
the topology of uniform convergence on compact subsets, the law of the self-repelling
diffusion depends continuously on the initial occupation profile (Lemma 2.2), and the
range of p qXt^ qT qtě0 is a.s. a compact subinterval of I.

Lemma 5.4. As n Ñ `8, simultaneously with the convergence in law of Lemma 5.3,

we have that t ÞÑ 2´nQJ
pnq,ϕpnqpt ^ qTϕ

pnq

^ tϕ
pnq

BJpnq
q converges in law to t ÞÑ t ^ qT for the

uniform topology.

Proof. To simplify, we will assume here that all the

p qXϕpnq

t^ qTϕ
pnq
^tϕ

pnq

BJpnq

, λ̌ϕ
pnq

t^ qTϕ
pnq
^tϕ

pnq

BJpnq

pxqqxPI,tě0

and p qXt^ qT , λ̌t^ qT pxqqxPI,tě0 live on the same probability space, constructed from the same
driving Brownian motion pBuquě0, independent of the ϕpnq. This is always possible to do.
Write

2´nQJ
pnq,ϕpnqpt^ qTϕ

pnq

q “ 2´n´1
ÿ

xPJpnq

pλ̌ϕ
pnq

0 pxq ´ λ̌ϕ
pnq

t^ qTϕ
pnq pxqq

“ 2´n´1
ÿ

xPJpnq

pλ̌ϕ
pnq

0 pxq ´ λ̌0pxq ´ λ̌
ϕpnq

t^ qTϕ
pnq pxq ` λ̌t^ qT pxqq

`2´n´1
ÿ

xPJpnq

pλ̌0pxq ´ λ̌t^ qT pxqq.

We have that

2´n´1
ÿ

xPJpnq

pλ̌0pxq ´ λ̌t^ qT pxqq

converges a.s. to t^ qT , uniformly of r0,`8q. Moreover,

ˇ

ˇ2´n´1
ÿ

xPJpnq

pλ̌ϕ
pnq

0 pxq ´ λ̌0pxq ´ λ̌
ϕpnq

t^ qTϕ
pnq pxq ` λ̌t^ qT pxqq

ˇ

ˇ

ď p1` |I|q
1

2
max

xPJpnq,sě0
|λ̌ϕ

pnq

0 pxq ´ λ̌0pxq ´ λ̌
ϕpnq

s^ qTϕ
pnq pxq ` λ̌s^ qT pxq|,

|I| being the length of I, and the right-hand side converges in probability to 0. Finally,

tϕ
pnq

BJpnq
ą qTϕ

pnq

with probability converging to 1.
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Lemma 5.5. As nÑ `8, the process

p qX
pnq

t^2´nQJ
pnq,ϕpnq p qTϕ

pnq
^tϕ

pnq

BJpnq
q
, λ̌
pnq

t^2´nQJ
pnq,ϕpnq p qTϕ

pnq
^tϕ

pnq

BJpnq
q
pxqqxPJpnq,tě0

converges in law to p qXt^ qT , λ̌t^ qT pxqqxPI,tě0.

Proof. This follows from (5.3), Lemma 5.3 and the convergence of

t ÞÑ 2´nQJ
pnq,ϕpnqpt^ qTϕ

pnq

^ tϕ
pnq

BJpnq
q

in law to t ÞÑ t^ qT (Lemma 5.4).

To finish the proof of Theorem 1.4, observe that by Lemma 5.5,

λ̌
pnq

2´nQJ
pnq,ϕpnq p qTϕ

pnq
^tϕ

pnq

BJpnq
q
p qX

pnq

2´nQJ
pnq,ϕpnq p qTϕ

pnq
^tϕ

pnq

BJpnq
q
q

converges in probability to λ̌
qT p

qX
qT q “ 0, thus qT

pnq
ε ă 2´nQJ

pnq,ϕpnqp qTϕ
pnq

^ tϕ
pnq

BJpnq
q with

probability converging to 1.
Finally, if I is unbounded, it is enough to consider an increasing family of bounded

subintervals of I which at the limit gives I, as the range of qXt^ qTε
is a.s. bounded.
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