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INVERTING RAY-KNIGHT IDENTITY ON THE LINE

TITUS LUPU, CHRISTOPHE SABOT, AND PIERRE TARRÈS

Abstract. Using a divergent Bass-Burdzy flow we construct a self-repelling one-dimensional
diffusion. We show that this self-repelling diffusion inverts the second Ray-Knight identity on
the line.

1. Introduction and presentation of results

Ray-Knight identity on R. We will construct a continuous self-repelling one-dimensional
diffusion, involved in the inversion of the Ray-Knight identity on R. We start by recalling the
latter.

Given a ě 0, pφpaqpxqqxPR will denote a massless Gaussian free field on R with condition a in

0, that is to say pφpaqpxq{
?
2qxě0 and pφpaqp´xq{

?
2qxě0 are two independent standard Brownian

motions starting from a{
?
2.

Theorem 1.1 (Ray-Knight [Ray63, Kni63, EKM`00, RY99, MR06, Szn12]). Let a ą 0. Let

pβtqtě0 be a standard Brownian motion started from 0 and ℓ
β
t pxq its local time process. Let τβ

a2{2

be the stopping time

τ
β

a2{2
“ inftt ě 0|ℓβt p0q ą a2{2u.

Let pφp0qpxqqxPR be a massless Gaussian free field on R with condition 0 in 0, independent from
the Brownian motion β. Then the field

pφp0qpxq2{2 ` ℓ
β

τ
β

a2{2

pxqqxPR

has same law as the field pφpaqpxq2{2qxPR.

The original formulation of Ray [Ray63] and Knight [Kni63] is different. It states that

pℓβ
τ
β

a2{2

pxqqxě0 is a squared Bessel process of dimension 0, started from a2{2 at x “ 0 (see also

[RY99], Section XI.2). pφp0qpxq2{2qxě0 is by definition a squared Bessel process of dimension 1,

and by additivity property of squared Bessel processes, pφp0qpxq2{2 ` ℓ
β

τ
β

a2{2

pxqqxě0 is a squared

Bessel process of dimension 1 “ 1`0, started from a2{2 “ 0`a2{2, the same as pφpaqpxq2{2qxě0.
In Theorem 1.1 we use a reformulation of Ray-Knights identity that generalizes to a much wider
setting, such as any discrete electrical network, continuum setting in dimension 2 and 3 after
a Wick renormalization of the square of the GFF [EKM`00, MR06, Szn12]. It also makes the
connection to Brydges-Fröhlich-Spencer-Dynkin’s isomorphism REF [BFS82, Dyn84a, Dyn84c,
Dyn84b] and Symanzik’s identities in Euclidean Quantum Field Theory [Sym65, Sym66, Sym69].

Inversion of Ray-Knight. We are interested in the conditional law of β
τ
β

a2{2
´t

given φpaq.

The Ray-Knight identity of Theorem 1.1 generalizes to discrete electrical networks and sym-
metric Markov jump processes on them [EKM`00, MR06, Szn12]. This is known as second
generalized Ray-Knight identity. The inversion in discrete setting was done in [ST16, LST17].
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This inversion makes appear a nearest neighbor self-repelling jumps processes on the network.
More precisely, the jump rate at time t from a vertex x1 to a neighbor x2 is given by

(1.1) Cpx1, x2qpΦpx2q2 ´ 2Ltpx2qq 1

2

pΦpx1q2 ´ 2Ltpx1qq 1

2

,

where Cpx1, x2q is a fixed conductance, Ltpxjq is the time spend in xj by the jump process
before time t, and Φ is a field on the vertices, considered as an initial condition. In the inversion
of Ray-Knight Φ is random, distributed as a discrete Gaussian free field. In Section 3 we detail
this in the setting of a discrete subset of R.

If one takes a one-dimensional fine mesh lattice and renormalizes the jump rates (1.1), then
on a purely formal level, without dealing with the convergence or the meaning of the terms
involved, one gets the following equation for a continuous self-repelling diffusion:

(1.2) d qXt “ dWt ` ”
1

2
Bx logpλ̌tpxqq

ˇ̌
ˇ
x“ qXt

dt”, λ̌tpxq “ λ̌0pxq ´ 2ℓ̌tpxq.

There qXt is a continuous stochastic process on an interval I, λ̌0 a continuous function from I

to p0,`8q, Wt is a standard Brownian motion and ℓ̌tpxq is the local time process of qXt. We

will call λ̌t occupation profile at time t. Our process qXt is defined up to a finite time

qT “ suptt ě 0|λ̌tp qXtq ą 0u.
We will also assume that

(1.3)

ż

inf I

λ̌0pxq´1dx “ `8,

ż sup I

λ̌0pxq´1dx “ `8

and say that λ̌0 is admissible. This is a condition for not reaching the boundary of I in finite

time. qXt is a self-repelling process that tends to avoid places it has visited a lot, yet we will
see that a.s. it will eventually exhaust the occupation profile at some location in finite time
qT . As we will further see, this self-repelling process appears in the inversion of the Ray-Knight
identity in continuous one-dimensional setting.

The equation (1.2) is not a classical SDE. It is not immediately clear how to make sense

of the drift term
1

2
Bx logpλ̌tpxqq

ˇ̌
ˇ
x“ qXt

dt, as x ÞÑ ℓ̌tpxq will not be differentiable for t ą 0, and

moreover there will not be a change of scale under which it will be differentiable for all t ą 0.
So the problem is not only to solve (1.2) by an approximation scheme, the problem is already to
give an appropriate meaning to being a solution to (1.2). The equation (1.2) is also somewhat

misleading, as we believe that a solution qXt would not be a semi-martingale, admitting an
adapted decomposition into a Brownian motion plus a drift term with zero quadratic variation,
but with an infinite total variation. See [HW00, LST19] for a discussion on this point.

However, it turns out that the equation (1.2) is in some sense exactly solvable, and in this
paper we will give the explicit solution which involves a divergent bifurcating stochastic flow
of diffeomorphisms of R introduced by Bass and Burdzy in [BB99]. Our construction here is
similar to that of [LST19], where we introduced a reinforced diffusion constructed out of a
different, convergent, Bass-Burdzy flow.

Heuristic reduction to a Bass-Burdzy flow. Next we explain the heuristic derivation of
an explicit solution to (1.2). A similar heuristic appears in the introduction to [LST19].

Assume that for t0 ą 0, X̄
pt0q
t is a continuous process coinciding with qXt on r0, t0s, and after

time t0 continues as a Markovian diffusion with infinitesimal generator

1

2

d2

dx2
` 1

2
Bxλ̌t0

d

dx
.

In other words, there is no additional self-repulsion after time t0. Then after time t0, X̄
pt0q
t is

a scale and time changed Brownian motion. Given S̄t0 a primitive of λ̌´1
t0

, pS̄t0pX̄pt0q
t qqtět0 is a
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local martingale. By further performing the time change

du “ λ̌t0pX̄pt0q
t q´2dt

we get a standard Brownian motion.

Then it is reasonable to assume that near time t0, qXt is close to X̄
pt0q
t . The idea is to let

the change of scale depend on time. Assume there is a flow of changes of scales qSt : I Ñ R,

such that qSt is a primitive of λ̌´1
t , and such that qStp qXtq is a local martingale. Assume that by

further performing a change of time

du “ λ̌tp qXtq´2dt,

qSup qXuquě0 is a standard Brownian motion pBuquě0. Let x1 ă x2 P I. Then

d

du
p qSupx2q ´ qSupx1qq “ dt

du

d

dt

ż x2

x1

λ̌tpxq´1dx

“ λ̌tp qXtq2
d

dt

ż t

0

1
x1ă qXsăx2

2λ̌sp qXsq´2ds

“ 2λ̌tp qXtq2λ̌tp qXtq´21
x1ă qXtăx2

(1.4)

“ 21
x1ă qXtăx2

“ 21qSupx1qăBuă qSupx2q
.

By considering moreover that infinitesimally after time t, the process spends the same proportion
of time left and right from its position at time t, we get

@x P I,
dqSupxq
du

“ 1qSupxqąBu
´ 1qSupxqăBu

.

This is an equation studied by Bass and Burdzy in [BB99]. In the sequel we will construct qXt

out of the flow of solutions to the above equation.

Note that if in the equation (1.2), one replaced the
1

2
in front of

1

2
Bx logpλ̌tpxqq

ˇ̌
ˇ
x“ qXt

dt by

a different positive constant, one would not get an as simple explicit solution. Indeed, the

cancellation of powers of λ̌tp qXtq as in (1.4) would not occur.

Construction of a self-repelling diffusion out of a divergent Bass-Burdzy flow. The
divergent Bass-Burdzy flow is given by the differential equation

(1.5)
dYu

du
“

"
1 if Yu ą Bu,

´1 if Yu ă Bu,

where Bu is a standard Brownian motion started from 0. The behavior at times when Yu “ Bu is
not specified. It is shown n [BB99] that given an initial condition, there is a.s. a unique solution
defined for all positive times that is Lipschitz continuous. Moreover, these Lipschitz continuous

solutions form a flow of increasing C1 diffeomorphisms of R, pqΨuquě0. For the properties of this
flow, we refer to [BB99, HW00, Att10].

Define
ξ̌u “ pqΨuq´1pBuq.

pqΨuquě0 satisfies a bifurcation property [BB99]: there is a finite random value ybif P R, such that

for y ą ybif , qΨupyq ą Bu for u large enough, and lim`8
qΨupyq “ `8, for y ă ybif , qΨupyq ă Bu

for u large enough and lim`8
qΨupyq “ ´8, and tu ě 0|qΨupybifq “ Buu is unbounded. Moreover,

ybif “ lim
uÑ`8

ξ̌u.

The process pξ̌uquě0 admits [BB99, HW00] a family of local times qΛupyq continuous in py, uq,
such that for any f bounded Borel measurable function on R and u ě 0,ż u

0

fpξ̌vqdv “
ż

R

fpyqqΛupyqdy.
3



Moreover, these local times are related to the spatial derivative of the flow as follows:

B
By

qΨupyq “ 1 ` 2qΛupyq.

For all u ě 0, qΛupyq, B
By

qΨupyq and
B

By pqΨuq´1pyq are locally 1{2 ´ ε Hölder continuous in y.

Next we give the construction of qXt out of the flow pqΨuquě0.

Definition 1.2. Let x0 P I. Let be the change of scale

qS0pxq “
ż x

x0

λ̌0prq´1dr, x P I,

and qS´1
0 the inverse change of scale. Consider the change of time tpuq from u to t (and uptq

the inverse time change) given by

(1.6) dt “ λ̌0p qS´1
0 pξ̌uqq2p1 ` 2qΛupξ̌uqq´2du.

Let

qT “
ż `8

0

λ̌0p qS´1
0 pξ̌uqq2p1 ` 2qΛupξ̌uqq´2du.

Set qXt “ qS´1
0 pξ̌uptqq, for t P r0, qT q.

We will call pBuquě0 the driving Brownian motion of qXt.
Note that

qT “
ż `8

0

λ̌0p qS´1
0 pξ̌uqq2p1 ` 2qΛupξ̌uqq´2du “

ż

R

ż `8

0

λ̌0p qS´1
0 pyqq2p1 ` 2qΛupyqq´2duqΛupyqdy

“ 1

2

ż

R

λ̌0p qS´1
0 pyqq2p1 ´ p1 ` 2qΛ`8pyqq´1qdy

ď 1

2
psup
uě0

ξ̌u ´ inf
uě0

ξ̌uq sup
r qS´1

0
pinfuě0 ξ̌uq, qS´1

0
psupuě0 ξ̌uqs

λ̌2
0.

Since ξ̌u converges at `8 and thus has a bounded range, qT ă `8 a.s. The process qXt has
local times

ℓ̌tpxq “ λ̌0pxqp1 ´ p1 ` 2qΛuptqp qS0pxqqq´1q.
Indeed, for f a measurable bounded function on I,

ż t1

0

fp qXtqdt “
ż t1

0

fp qS´1
0 pξ̌uptqqqdt “

ż upt1q

0

fp qS´1
0 pξ̌uqqλ̌0p qS´1

0 pξ̌uqq2p1 ` 2qΛupξ̌uqq´2du

“
ż

R

ż upt1q

0

fp qS´1
0 pyqqλ̌0p qS´1

0 pyqq2p1 ` 2qΛupyqq´2duqΛupyqdy

“ 1

2

ż

R

fp qS´1
0 pyqqλ̌0p qS´1

0 pyqq2p1 ´ p1 ` 2qΛupt1qpyqq´1qdy

“ 1

2

ż

I

fpxqλ̌0pxqp1 ´ p1 ` 2qΛupt1qp qS0pxqqq´1qdx.

Set
λ̌tpxq “ λ̌0 ´ 2ℓ̌tpxq “ λ̌0pxqp1 ` 2qΛuptqp qS0pxqqq´1.

A posteriori, the change of time (1.6) is

dt “ λ̌tp qXtq2du.
We see that for all t P r0, qT q and x P I, λ̌tpxq ą 0. Note that qX qT “ p qS0q´1pybifq. Moreover,

lim
tÑ qT

λ̌tp qXtq “ lim
uÑ`8

λ̌0pybifqp1 ` 2qΛupybifqq´1 “ 0,

as limuÑ`8
qΛupybifq “ `8 (see Section 4 in [HW00]).
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Statement of the results. Now, let us see why p qXt, λ̌tq can be interpreted as solution to
the equation (1.2), with initial condition px0, λ̌0q. We will give an explanation in terms of

discrete approximations. Let Jpnq “ 2´nZ X I. Let qXpnq
t be a continuous time discrete space

self-interacting nearest neighbor jump process on Jpnq, defined by the jumps rates from x to
x ` σ2´n, σ P t´1, 1u, at time t, equal to

(1.7) 22n´1 λ̌
pnq
t px ` σ2´nq 1

2

λ̌
pnq
t pxq 1

2

,

where

λ̌
pnq
t pxq “ λ̌0pxq ´ 2ℓ̌

pnq
t pxq, ℓ̌

pnq
t pxq “ 2n

ż t

0

1 qXpnq
s “x

ds.

Let

qT pnq
ε “ suptt ě 0|λ̌pnq

t p qXpnq
t q ą εu, ε ą 0, t

pnq

min Jpnq,max Jpnq “ inftt ě 0| qXpnq
t P tmin Jpnq,max Jpnquu.

If there were no self-interaction, that is to say in (1.7) λ̌
pnq
t were replaced by λ̌0, the process

would converge in law as n Ñ `8 to a solution of the SDE

dXt “ dWt ` 1

2
Bx logpλ̌0pxqq

ˇ̌
ˇ
x“Xt

dt.

In our case with self-interaction, we have the following:

Theorem 1.3. With the notations above, for all ε ą 0 the family of process

p qT pnq
ε ^ t

pnq

min Jpnq,max Jpnq ,
qXpnq

t^ qT pnq
ε ^t

pnq

min Jpnq,max Jpnq

, λ̌
pnq

t^ qT pnq
ε ^t

pnq

min Jpnq,max Jpnq
,
pxqqxPJpnq ,tě0

converges in law as n Ñ `8 to

p qTε, qX
t^ qTε

, λ̌
t^ qTε

pxqqxPI,tě0,

where qXt is given by Definition 1.2 and

qTε “ suptt ě 0|λ̌tp qXtq ą εu,

provided that qXpnq
0 converges to qX0. In particular,

t
pnq

min Jpnq,max Jpnq ą qT pnq
ε

with probability converging to 1. The convergence in law is for the topology of uniform con-
vergence on compact subsets of I ˆ r0,`8q. The spatial processes on Jpnq are considered to be

linearly interpolated outside Jpnq.

Next we state how our self-repelling diffusion is related to the inversion of the Ray-Knight
identity of Theorem 1.1.

Theorem 1.4. Let a ą 0 and pφpaqpxqqxPR be a massless Gaussian free field on R with condition

a in 0. Let Ipφpaqq be the connected component of 0 in tx P R|φpaqpxq ą 0u. For x P Ipφpaqq, set
λ̌˚
0pxq “ φpaqpxq2. Then a.s. λ̌˚

0 satisfies the condition (1.3). Let p qX˚
t , λ̌

˚
t pxqq

xPIpφpaqq,0ďtď qT˚ be

the process, distributed conditionally on pφpaqpxqqxPR, as the self repelling diffusion on Ipφpaqq,
started from 0, with initial occupation profile λ̌˚

0 , following Definition 1.2. Let be the triple

pφp0qpxq2, βt, φpaqpxq2q
xPR,0ďtďτ

β

a2{2

,

jointly distributed as in Ray-Knight identity (Theorem 1.1). Let be

qT β,a “ τ
β

a2{2
´ suptt P r0, τβ

a2{2
s|φp0qpβtq “ 0 and @s P r0, tq, βs ‰ βtu.

Then the couple

p qX˚
t , φ

paqpxq2q
xPR,0ďtď qT˚

5



has same distribution as

pβ
τ
β

a2{2
´t
, φpaqpxq2q

xPR,0ďtď qTβ,a.

The notation p qX˚
t , λ̌

˚
t pxq, qT ˚q is reserved to the case of the initial occupation profile λ̌˚

0pxq “
φpaqpxq2, so as to to avoid confusion with the case of generic λ̌0.

One could also extend the definition of the self-repelling diffusion to metric graphs, where
it is again related to the inversion of Ray-Knight identity. The proof would be essentially the
same as for an interval. We won’t detail it here. A metric graph is obtained by replacing in an
undirected graph each edge by a continuous line segment of certain length, corresponding to the
resistance of the edge. For background on Markovian (non-selfinteracting) diffusions on metric
graphs, see [BC84, EK01, Wer16]. The Gaussian free field on metric graphs was introduced in
[Lup16], in relation with isomorphism theorems.

Other works on self-interacting diffusions in dimension one. Now let us review some
other works on self-interacting diffusions in dimension one and their relations to ours. Two other
Bass-Burdzy flows appeared in construction of self-interacting diffusions. First, in [War05] it
was shown that the flow of solutions to

dYu

du
“ 1YuąBu

was related to the Brownian first passage bridge conditioned by its family of local times and
to the Brownian burglar [WY98]. There the problem is similar to ours, i.e. constructing a
Brownian motion with some conditioning on its family of local times, yet it is different and the
processes obtained are different. Then, in [LST19] we constructed a linearly reinforced diffusion
on R out of the flow of solutions to

dYu

du
“ ´1YuąBu ` 1YuăBu ,

that is to say the signs are opposite to those in (1.5). The reinforced diffusion in [LST19] can
be considered as a dual of the self-repelling diffusion in present paper.

Our self-repelling diffusion is different from the Brownian polymer models studied in [DR92,
CLJ95, CM96, Pem07, TTV12, BCG15, Gau18], as here the interaction of the moving particle
with the occupation profile occurs locally, at zero range, and is not an average over positive
ranges. In other words, we do not mollify the occupation profile prior to taking its derivative.
Also, for that reason, we do not expect our process to be a semi-martingale as the above
Brownian polymer models, but only a Dirichlet process in the sense of Föllmer [Fö81], admitting
an adapted decomposition into a continuous local martingale and zero quadratic variation drift,
with the drift term not necessarily of bounded variation (see also [HW00] and [LST19]). Our
process is also different from the true self-repelling motion (TSRM) introduced by Tóth and
Werner in [TW98], as our process, unlike the TSRM, has the Hölder regularity of a Brownian
motion and does not exhibit a 2{3 scaling exponent. We do not know if our process is related
to the continuum directed random polymer indtroduced by Alberts, Khanin and Quastel in
[AKQ14].

Organization of the article. We will first prove Theorem 1.4, as well as Theorem 1.3 in
the particular case when the initial occupation profile is random, given by the square of the
free field. The proof relies on the restriction of continuous processes to discrete subsets and on
taking the limit of discrete space processes inverting Ray-Knight in discrete setting. On one
hand these discrete space processes are embedded into a standard Brownian motion. So the
limit exists a priori and is a Brownian path. On the other hand one can construct out of the
discrete space processes discrete analogues of the divergent Bass-Burdzy flow converging to the
latter. Further, the proof of Theorem 1.3 for general occupation profile will follow out of a path
transformation as in Proposition 2.1 (1).

6



The reason why we do not proceed directly to the proof of Theorem 1.3 for general occupation
profile is that we need tightness and need the ratio

λ̌
pnq

t^ qT pnq
ε

px ` 2´nq

λ̌
pnq

t^ qT pnq
ε

pxq

to converge to 1 as n Ñ `8, uniformly in px, tq on compact subsets. For λ̌˚
0 “ pφpaqq2 this is

achieved by embedding the discrete space self-repelling processes into a Brownian motion.
Our article is organized as follows. In Section 2 we will give some properties of our self-

repelling diffusion. In Section 3 we will recall how the self-repelling jump processes of Theorem
1.3 appear in the inversion of the Ray-Knight identity on discrete subsets of R. This is a result
obtained in [LST17]. Using this we will prove in Section 4 the Theorem 1.4 and the particular

case of Theorem 1.3 when λ̌0pxq “ λ̌˚
0pxq “ φpaqpxq2. In Section 5 we will prove Theorem 1.3 in

general.

2. Elementary properties of the self-repelling diffusion

First, we give some elementary properties of p qXt, λ̌tpxqq
xPI,0ďtď qT . They are straighforward

and come without proofs. For proofs of analogous statements, see Proposition 2.4 in [LST19].

Proposition 2.1. (1) Let I and I‚ be two open subintervals of R. Let be λ̌0 and λ̌‚
0 two admissi-

ble initial occupation profiles on I, respectively I‚, and p qXt, λ̌tpxqq
xPI,0ďtď qT , p qX‚

t , λ̌
‚
t pxqq

xPI‚,0ďtď qT ‚

the corresponding self-repelling diffusions, starting from x0 P I, respectively x‚
0 P I‚. One can

go from one to the other by a deterministic path transformation. More precisely, let

qS0pxq “
ż x

x0

λ̌0prq´1dr, x P I, qS‚
0pxq “

ż x

x‚
0

λ̌‚
0prq´1dr, x P I‚.

Let t ÞÑ θ‚ptq be the change of time

dθ‚ptq “ λ̌‚
0pp qS‚

0q´1 ˝ qS0p qXtqq2λ̌0p qXtq´2dt.

Then then process pp qS‚
0q´1 ˝ qS0p qXpθ‚q´1ptqq, λ̌pθ‚q´1ptqp qS´1

0 ˝ qS‚
0pxqqq

xPI‚,0ďtďθ‚p qT q
has same law as

p qX‚
t , λ̌

‚
t pxqq

xPI‚,0ďtď qT ‚ .

(2)(Strong Markov property) For any T stopping time for the natural filtration of p qX
t^ qT qtě0,

such that T ă qT a.s., the process p qXT`t, λ̌T`tpxqq
xPI,0ďtď qT´T

, conditional on the past before T ,

is a self-repelling diffusion with inital occupation profile λ̌T .

(3) Let a ă b P I such that a ă x0 ă b. Let ta,b be the first time t that qXt hits a or b. We

consider the stopping time ta,b ^ qT . Given a Brownian motion pBuquě0. Let UÒ qS0pbq P p0,`8s
the first time Bu ´ u hits qS0pbq, whenever this happens. Let UÓ qS0paq P p0,`8s the first time

Bu ` u hits qS0paq, whenever this happens. Then

Ppta,b ă qT , qXta,b “ bq “ PpUÒ qS0pbq ă UÓ qS0paqq, Ppta,b ă qT , qXta,b “ aq “ PpUÓ qS0paq ă UÒ qS0pbqq,

Ppta,b ą qT q “ PpUÒ qS0pbq “ UÓ qS0paq “ `8q.
In particular,

Ppta,b ă qT , qXta,b “ bq ě Ppta,b ă qT , qXta,b “ aq
if and only if ż b

x0

λ̌0prq´1dr “ qS0pbq ď | qS0paq| “
ż x0

a

λ̌0prq´1.

Next we state that our self-repelling diffusion depends continuously on the initial occupation
profile.

7



Lemma 2.2. Let pIkqně0 be a sequence of open subintervals of R such that

lim
nÑ`8

inf Ik “ inf I P r´8,`8q, lim
nÑ`8

sup Ik “ sup I P p´8,`8s.

On each Ik we consider λ̌
Ik
0 an admissible occupation profile, and we assume that for all K

compact subset of I,

sup
KXIk

|λ̌0 ´ λ̌
Ik
0 | “ 0.

Let p qXIk
t , λ̌

Ik
t pxqq

xPIk ,0ďtď qT Ik
be the self-repelling diffusion on Ik with initial occupation profile

λ̌
Ik
0 . We assume that limkÑ`8

qXIk
0 “ qX0 P I. Then, as k Ñ `8,

p qXIk

t^ qT Ik
, λ̌

Ik

t^ qT Ik
pxqqxPIk,tě0

converges in law to

p qX
t^ qT , λ̌t^ qT pxqqxPI,tě0,

where the convergence is for the uniform topology in t P r0,`8q, and uniform on compact
subsets of I for x.

Proof. This is an immediate consequence of Definition 1.2 and Proposition 2.1 (1). If moreover

all of the processes p qXIk
t , λ̌

Ik
t pxqq

xPIk ,0ďtď qT Ik
and p qX

t^ qT , λ̌t^ qT pxqqxPI,tě0 are constructed of the

same driving Brownian motion pBuquě0 (Definition 1.2), then the convergence is a.s. �

3. Inversion of the Ray-Knight identity on a discrete subset

Consider the triple

pφp0qpxq2, βt, φpaqpxq2q
xPR,0ďtďτ

β

a2{2

,

jointly distributed as in Ray-Knight identity (Theorem 1.1). Let Ipφpaqq be the connected

component of 0 in tx P R|φpaqpxq ą 0u.
Let ℓ

β
t pxq be the family of local times of the Brownian motion βt. Let J‚ be a countable

discrete subset of R, containing 0, unbounded in both directions. Consider the change of time

QJ‚,βptq “
ÿ

xPJ‚

ℓ
β
t pxq.

Define XJ‚

q “ βpQJ‚,βq´1pqq, where pQJ‚,βq´1 is the right-continuous inverse. It is a nearest
neighbor Markov jump process on J‚, with jump rate from a vertex x1 to a neighbor x2 equal
to the conductance

(3.1) Cpx1, x2q “ 1

2|x2 ´ x1| .

Given x P J‚, λJ‚

q pxq will denote

λJ‚

q pxq “ φp0qpxq2 ` 2ℓβ
pQJ‚,βq´1pqq

pxq “ λ
J‚

0 pxq ` 2

ż q

0

1
X

J‚
r “x

dr.

Next, for q ě 0, OJ‚

q will denote a function from pairs of neighbor vertices in J‚ to t0, 1u.
Given x1 ă x2 two neighbors in J‚, we will say that the edge tx1, x2u is open (at time q) if
OJ‚

q ptx1, x2uq “ 1 and closed if OJ‚

q ptx1, x2uq “ 0. OJ‚

q ptx1, x2uq is defined as follows:

O
J‚

0 ptx1, x2uq “ 1φp0qpxq2 has no zeroes on rx1,x2s,

OJ‚

q ptx1, x2uq “ 1
φp0qpxq2`2ℓ

β

pQJ‚,βq´1pqq
pxq has no zeroes on rx1,x2s

,

By construction, pOJ‚

q qtě0 is a family non-decreasing in q.

Next we state that the joint process pXJ‚

q , λJ‚

q ,OJ‚

q qqě0 is Markovian and give the transitions
rates. For details we refer to Theorem 8 in [LST17].

8



Proposition 3.1. pXJ‚

q , λJ‚

q ,OJ‚

q qqě0 is a Markov process. Let x1 and x2 be two neighbors in

J‚. If XJ‚

q “ x1, then:

‚ XJ‚

q jumps to x2 with rate p2|x2 ´ x1|q´1. OJ‚

q ptx1, x2uq is then set to 1 (if it was not
already).

‚ In case OJ‚

q ptx1, x2uq “ 0, OJ‚

q ptx1, x2uq is set to 1 without XJ‚

q jumping with rate

(3.2)
1

2|x2 ´ x1|
λJ‚

q px2q 1

2

λJ‚

q px1q 1

2

expp´|x2 ´ x1|´1λJ‚

q px1q 1

2λJ‚

q px2q 1

2 q.

For x P J‚,

λJ‚

q pxq “ λJ‚

0 pxq ` 2

ż q

0

1
X

J‚
r “x

dr.

Proof. If XJ‚

q jumps through the edge tx1, x2u, then βt crosses the interval delimited by x1 and

x2, and then the local time of βt on this interval is positive, and thus OJ‚

q ptx1, x2uq “ 1.
As described in Section 2 in [LST17] and in particular in Theorem 8, the conditional prob-

ability that OJ‚

q ptx1, x2uq “ 0, given pXJ‚

r , λJ‚

r pxqqxPJ‚,0ďrďq, and that O
J‚

0 ptx1, x2uq “ 0, and

that XJ‚

r has not crossed the edge tx1, x2u before time q, equals

exppCpx1, x2qλJ‚

0 px1q 1

2λ
J‚

0 px2q 1

2 ´ Cpx1, x2qλJ‚

q px1q 1

2λJ‚

q px2q 1

2 q,

where Cpx1, x2q is given by (3.1). Thus, the rate (3.2) is obtained as

lim
∆qÑ0`

1

∆q

ˆ
1 ´

exppCpx1, x2qλJ‚

0 px1q 1

2λ
J‚

0 px2q 1

2 ´ Cpx1, x2qpλJ‚

q px1q ` 2∆qq 1

2λJ‚

q px2q 1

2 q
exppCpx1, x2qλJ‚

0 px1q 1

2λ
J‚

0 px2q 1

2 ´ Cpx1, x2qλJ‚

q px1q 1

2λ
J‚

q px2q 1

2 q

˙
. �

The fields φp0q and φpaq restricted to J‚ are discrete Gaussian free fields on J‚. The triple

pφp0qpxq2,XJ‚

q , φpaqpxq2q
xPJ‚,0ďqďQJ‚,βpτβ

a2{2
q

satisfies the Ray-Knight identity on the discrete network J‚. So in [LST17] one can find a
procedure inverting this Ray-Knight identity in discrete setting. It corresponds to a time reversal

of the process of Proposition 3.1 from stopping time QJ‚,βpτβ
a2{2

q. This is explained in Section

3 in [LST17], in particular in Proposition 3.4 there.
Let J be a finite subset of R containing 0. Let us consider the continuous time discrete

space self-repelling nearest neighbor jump process on J, which has been introduced in [LST17].

Let λ̌J

0 be a positive function on J. We consider the process p qXJ
q , λ̌

J
qpxqqxPJ,qě0, where qXJ

q is a
nearest neighbor jump process on J, started from 0, with time-dependent jump rates from x1
to a neighbor x2 in J given by

(3.3)
1

2|x2 ´ x1|
λ̌J
qpx2q 1

2

λ̌
J
qpx1q 1

2

,

and

(3.4) λ̌J
qpxq “ λ̌

J

0pxq ´ 2

ż q

0

1 qXJ
r“x

dr.

Let be qQJ be a the random time coupled to p qXJ
q , λ̌

J
qpxqqxPJ,qě0 in the following way. If J is

reduced to t0u, then we set qQJ “ 0. Otherwise, qQJ is the first time q when the integral

(3.5)

ż q

0

ÿ

x
J
„ qXJ

r

ˆ
λ̌J
rpxq 1

2

| qXJ
r ´ x|λ̌J

rp qXJ
r q 1

2

pexpp| qXJ
r ´ x|´1λ̌J

rpxq 1

2 λ̌J
rp qXJ

r q 1

2 q ´ 1q´1

˙
dr

9



hits an independent exponential random variable of mean 1. The notation x
J„ qXJ

r means that

x is a neighbor of qXJ
r in J. We will further explain where the definition of qQJ comes from. Note

that a.s. the time qQJ fires before one of the λ̌J
qpxq reaches 0. This is due to the fact that

@K ą 0,

ż

0

1

r1{2
pexppKr1{2q ´ 1q´1dr “ `8.

Next we describe the process p (

X J‚

q , λ̆J‚

q ,

(

O J‚

q qqě0 introduced in Section 3.3 in [LST17].

(

O J‚

q

is a function from pairs of neighbor vertices in J‚ to t0, 1u. Given x1 ă x2 two neighbors in J‚,
we set

(

O
J‚

0 ptx1, x2uq “ 1φpaqpxq2 has no zeroes on rx1,x2s.

(

X J‚

q is a nearest neighbor jump process on J‚.

(

X J‚

0 “ 0. For x P J‚,

λ̆J‚

q pxq “ φpaqpxq2 ´ 2

ż q

0

1 (

X
J‚
r “x

dr “ λ̆
J‚

0 pxq ´ 2

ż q

0

1 (

X
J‚
r “x

dr.

Let x1 and x2 be two neighbors in J‚. If
(

X J‚

q “ x1 and

(

O J‚

q ptx1, x2uq “ 1, then:

‚ (

X J‚

q jumps to x2 with rate

1

2|x2 ´ x1|
λ̆J‚

q px2q 1

2

λ̆
J‚

q px1q 1

2

.

‚ (

O J‚

q ptx1, x2uq is set to 0 with rate

1

|x2 ´ x1|
λ̆J‚

q px2q 1

2

λ̆
J‚

q px1q 1

2

`
expp|x2 ´ x1|´1λ̆J‚

q px1q 1

2 λ̆J‚

q px2q 1

2 q ´ 1
˘´1

.

(

X J‚

qě0 jumps instantaneously jumps to x2 or stays in x1 depending on which of the two

vertices remains connected to 0 by open edges in

(

X J‚

q .

The process p (

X J‚

q , λ̆J‚

q ,

(

O J‚

q qqě0 is defined up to time

(

Q
J‚ “ suptq ě 0|λ̆J‚

q p (

X J‚

q q ą 0u.

By construction,

(

X J‚

q is always in the same connected component induced by open edges in

(

O J‚

q as the vertex 0. p (

O J‚

q q
0ďqď

(

Q J‚ is a non-increasing family. It is easy to see that a.s.

(

X J‚

q p (

Q J‚q “ 0 and the edges adjacent to 0 are closed in

(

O
J‚

(

Q J‚ .

Let be J˚ “ J‚ X Ipφpaqq, Ipφpaqq being as in Theorem 1.1. We consider the process

p qXJ˚

q , λ̌J˚

q pxqq
xPJ˚ ,0ďqď qQJ˚ following the definition (3.3), (3.4) and (3.5), with J “ J˚, qXJ˚

0 “ 0,

and qXJ˚

q “ φpaqpxq2, x P J˚. By construction,

(

X J‚

q takes values in qXJ˚

q . One can couple

p (

X J‚

q , λ̆J‚

q ,

(

O J‚

q q
0ďqď

(

Q J‚ and p qXJ˚

q , λ̌J˚

q pxqq
xPJ˚ ,0ďqď qQJ˚ such that on the event qQJ˚ ‰ 0 (i.e. J˚

not reduced to t0u),
qQJ˚ “ suptq ě 0| (

O J‚

q “ (

O
J‚

0 u,
and

@q P r0, qQJ˚ s, qXJ˚

q “ (

X J‚

q .

qQJ˚
is the first time q when one more edge of J‚ is closed in

(

O J‚

q . Note that after time qQJ˚
,

the processes qXJ˚

q and

(

X J‚

q do not coincide anymore.

Proposition 3.2 (Lupu-Sabot-Tarrès [LST17], Proposition 3.4). With the notations above, the
process

p (

X J‚

q , λ̆J‚

q ,

(

O
J‚

q q
0ďqď

(

Q J‚

10



has same law as the time-reversed process

pXJ‚

QJ‚,βpτβ
a2{2

q´q
, λJ‚

QJ‚,βpτβ
a2{2

q´q
,OJ‚

QJ‚,βpτβ
a2{2

q´q
q
0ďqďQJ‚,βpτβ

a2{2
q
.

In particular, by considering p (

X J‚

q , λ̆J‚

q ,

(

O J‚

q q
0ďqď

(

Q J‚ up to time qQJ˚
we get the following:

Corollary 3.3. Let qT J˚,β,a be 0 if J˚ is reduced to t0u, and otherwise,

qT J˚,β,a “ τ
β

a2{2
´ suptt P r0, τβ

a2{2
s|βt P pmin J˚,max J˚q, φp0qpβtq “ 0 and @s P r0, tq, βs ‰ βtu.

Then, the joint law of

pJ˚, φpaqpxq,XJ‚

QJ‚,βpτβ
a2{2

q´q
q
xPJ˚,0ďqďQJ‚,βpτβ

a2{2
q´QJ‚,βpτβ

a2{2
´ qT J˚,β,aq

is the same as the joint law of

pJ˚, φpaqpxq, qXJ˚

q q
xPJ˚,0ďqď qQJ˚ .

Proof. The identity comes from Proposition 3.2 and the fact that, in case J˚ is not reduced to
t0u,

QJ‚,βpτβ
a2{2

´ qT J˚,β,aq “ inf
!
q ě 0|OJ‚

q “ O
J‚

QJ‚,βpτβ
a2{2

q

)
,

and

QJ‚,βpτβ
a2{2

q ´ QJ‚,βpτβ
a2{2

´ qT J˚,β,aq “ sup
!
q P r0, QJ‚,βpτβ

a2{2
qs|OJ‚

QJ‚,βpτβ
a2{2

q´q
“ O

J‚

QJ‚,βpτβ
a2{2

q

)
.

�

4. Convergence for squared GFF initial occupation profile

We use the notations of the previous section. First we will check that the condition (1.3) is

satisfied by λ̌˚
0pxq “ φpaqpxq2.

Lemma 4.1. A.s. we have that
ż

inf Ipφpaqq
φpaqpxq´2dx “ `8,

ż sup Ipφpaqq

φpaqpxq´2dx “ `8.

Proof. Conditional on inf Ipφpaqq, pφpaqpinf Ipφpaqq ` xq{
?
2q0ďxď| inf Ipφpaqq|{2 is absolutely con-

tinuous with respect to a Bessel 3 process started from 0. So we only need to check that given
pρpxqqxě0 a Bessel 3 process started from 0,

ż

0

ρpxq´2dx “ `8.

For h ą 0, let χρ
h denote the first ”time” x when ρpxq reaches the level h. Then,

ż χ
ρ
1

0

ρpxq´2dx “
ÿ

kě0

ż χ
ρ

2´k

χ
ρ

2´k´1

ρpxq´2dx.

By the strong Markov property of ρ, the sum on the right-hand side is a sum of positive
independent terms. Moreover, by Brownian scaling satisfied by ρ, these terms are identically
distributed. So the sum is a.s. infinite. �

Now we consider J‚ “ Zn “ 2´nZ, and J˚ “ Z˚
n “ Zn X Ipφpaqq. Let

X
pnq
t “ βpQZn,βq´1p2ntq.

11



Lemma 4.2. The process

pXpnq

p2´nQZn,βpτβ
a2{2

q´tq
, φpaqpxq2 ´ 2ℓβ

τ
β

a2{2

pxq ` 2ℓβ
pQZn,βq´1pQZn,βpτβ

a2{2
q´2ntq

pxqq

x P Z
˚
n, 0 ď t ď p2´nQZn,βpτβ

a2{2
q ´ 2´nQZn,βpτβ

a2{2
´ qTZ˚

n,β,aqq,
interpolated linearly outside x P Z˚

n, converges a.s. in the uniform topology to

pβ
τ
β

a2{2
´t
, φpaqpxq2 ´ 2ℓβ

τ
β

a2{2

pxq ` 2ℓβ
τ
β

a2{2
´t

pxqq
xPIpφpaqq,0ďtď qTβ,a

as n Ñ `8.

Proof. One needs to show that, on one hand, as n Ñ `8, a.s. pQZn,βq´1p2ntq converges to t

uniformly on r0, τβ
a2{2

s, and on the other hand qTZ˚
n,β,a converges a.s. to qT β,a.

The first convergence comes from the fact that

2´n
ÿ

xP2´nZ

ℓ
β
t pxq

converges to

t “
ż

R

ℓ
β
t pxqdx

uniformly on compact intervals of time.
The second convergence comes from the fact that pminZ˚

n,maxZ˚
nq is a non-decreasing se-

quence of intervals converging to Ipφpaqq, and thus, a.s., for n large enough, qT β,a “ qTZ˚
n,β,a. �

Let qX˚pnq
t “ qXZ˚

n

2nt be the self-repelling jump process on Z˚
n, accelerated by the factor 2n. It

is the same process as in Theorem 1.3, but with a random initial occupation profile

λ̌
˚pnq
0 pxq “ λ̌

Z˚
n

0 pxq “ φpaqpxq2, x P Z
˚
n.

We will show that qX˚pnq
t converges in law as n Ñ `8 to our self-repelling diffusion. For this we

will use a method that appears in [LST19], and construct a discrete analogue of the divergent
Bass-Burdzy flow.

Proposition 4.3. Given φpaq, let qX˚pnq
t be the process on Z˚

n defined above, and

λ̌
˚pnq
t pxq “ φpaqpxq2 ´ 2n`1

ż t

0

1 qX˚pnq
s “x

ds, x P Z
˚
n.

Then, as n Ñ `8, the process

(4.1) p qX˚pnq

t^2´n qQZ
˚
n
, λ̌

˚pnq

t^2´n qQZ
˚
n

pxqqxPZ˚
n ,tě0,

interpolated linearly outside x P Z˚
n, converges in law to the self repelling diffusion

p qX˚
t^ qT˚ , λ̌

˚
t^ qT˚ pxqqxPIpφpaqq,tě0

with qX˚
0 “ 0 and the initial occupation profile λ̌˚

0pxq “ φpaqpxq2. In particular, by combining
with the identity in law of Corollary 3.3 and with Lemma 4.2, one gets the Theorem 1.4.

Proof. From Corollary 3.3 and Lemma 4.2 we already know that the process (4.1) has a limit
in law, but we want another description of the limit, which we will obtain by convergence. We
will need the triple

pφp0qpxq2, βt, φpaqpxq2q
xPR,0ďtďτ

β

a2{2

,

jointly distributed as in Ray-Knight identity (Theorem 1.1). We will also assume that all of the
qX˚pnq
t are defined on the same probability spaces, embedded in βt as in Corollary 3.3.

We introduce p qS˚pnq
t q

0ďtď2´n qQZ
˚
n
a family of maps R Ñ R, parametrized by t. For a given n,

the family is characterized by the following:
12



‚ For all x such that x and x ` 2´n are in Z˚
n, and for all t P r0, 2´n qQZ˚

n s,
qS˚pnq
t px ` 2´nq ´ qS˚pnq

t pxq “ 2´nλ̌
˚pnq
t pxq´ 1

2 λ̌
˚pnq
t px ` 2´nq´ 1

2 .

‚ qS˚pnq
0 “ 0.

‚ For every x P Z˚
n, t ÞÑ qS˚pnq

t pxq is constant on each time interval on which qX˚pnq
t “ x.

‚ For each x P Z˚
n, t ÞÑ qS˚pnq

t pxq is continuous.

‚ For each t, qS˚pnq
t is interpolated linearly between points of Z˚

n.

‚ Below minZ˚
n and above maxZ˚

n, x ÞÑ qS˚pnq
t pxq has constant slope 1.

By construction, x ÞÑ qS˚pnq
t is continuous strictly increasing. We see qS˚pnq

t as a time-dependent

change of scale. For x P Ipφpaqq and t P r0, τβ
a2{2

q, set

S̄˚
t pxq “

ż x

0

pφpaqprq2 ´ 2ℓβ
τ
β

a2{2

` 2ℓβ
τ
β

a2{2
´t

q´1dr.

x ÞÑ S̄˚
t pxq is an increasing diffeomorphism from Ipφpaqq to R. Clearly, we have the following

Lemma 4.4. A.s. qS˚pnq
t pxq´ qS˚pnq

t p0q converges to S̄˚
t pxq´S̄˚

t p0q uniformly for px, tq in compact

subsets of Ipφpaqq ˆ r0, τβ
a2{2

q. Similarly, a.s. py, tq ÞÑ p qS˚pnq
t q´1py ` qS˚pnq

t p0qq converges to

py, tq ÞÑ pS̄˚
t q´1py ` S̄˚

t p0qq uniformly on compact subsets of R ˆ r0, τβ
a2{2

q.

Let be M
pnq
t “ qS˚pnq

t p qX˚pnq
t q. Let t˚pnq

minZ
˚
n,maxZ˚

n
be the first time qX˚pnq

t hits minZ˚
n or maxZ˚

n.

Lemma 4.5. The process pM pnq

t^t
˚pnq

min Z
˚
n,max Z

˚
n

^2´n qQZ
˚
n

qtě0 is a local martingale in the filtration of

pφpaq, qX˚pnq

t^2´n qQZ
˚
n
, t

˚pnq

minZ
˚
n ,maxZ˚

n
1
t

˚pnq

min Z
˚
n,max Z

˚
n

ďt
q.

Proof. Indeed, consider the stopping times for the above filtration: t
˚pnq
k the first time qX˚pnq

t

performs k jumps, and

(4.2) qT ˚pnq
ε “ suptt ě |λ̌˚pnq

t p qX˚pnq
t q ą εu.

Then |M pnq

t^t
˚pnq
k

^ qT˚pnq
ε ^2´n qQZ

˚
n

| is bounded by

k2´npmin
Z

˚
n

λ̌
˚pnq
0 ^ εq´1.

To see that pM pnq

t^t
˚pnq
k

^ qT˚pnq
ε ^t

˚pnq

min Z
˚
n,max Z

˚
n

^2´n qQZ
˚
n

qtě0 is a martingale, observe that at time t, if

qX˚pnq
t “ x P Z˚

nztminZ˚
n,maxZ˚

nu, qX˚pnq
t jumps left with rate

22n´1 λ̌
˚pnq
t px ´ 2´nq 1

2

λ̌
˚pnq
t pxq 1

2

,

and then M
pnq
t decreases by

2´nλ̌
˚pnq
t px ´ 2´nq´ 1

2 λ̌
˚pnq
t pxq´ 1

2 ,

and qX˚pnq
t “ x P Z˚

n jumps right with rate

22n´1 λ̌
˚pnq
t px ` 2´nq 1

2

λ̌
˚pnq
t pxq 1

2

,

and then M
pnq
t increases by

2´nλ̌
˚pnq
t px ` 2´nq´ 1

2 λ̌
˚pnq
t pxq´ 1

2 ,
13



so the average variation of M
pnq
t is 0. �

Next we will apply a time-change which will make pM pnq

t^t
˚pnq

min Z
˚
n,max Z

˚
n

^2´n qQZ
˚
n

qtě0 into a mar-

tingale with normalized variance. Let be

U pnqptq “
ż t

0

1

2
λ̌˚pnq
s p qX˚pnq

s q´ 3

2

´
λ̌˚pnq
s p qX˚pnq

s ´ 2´nq´ 1

2 ` λ̌˚pnq
s p qX˚pnq

s ` 2´nq´ 1

2

¯
ds.

Let qU pnq “ U pnqpt˚pnq

minZ
˚
n,maxZ˚

n
^ 2´n qQZ˚

n q. By considering the rate of jumps and the size of

jumps of M
pnq
t , we immediately get the following:

Lemma 4.6. The process ppM pnq

t^t
˚pnq

min Z
˚
n,max Z

˚
n

^2´n qQZ
˚
n

q2 ´U pnqptq ^ qU pnqqtě0 is a local martingale

in the filtration of pφpaq, qX˚pnq

t^2´n qQZ
˚
n
, t

˚pnq

minZ
˚
n,maxZ˚

n
1
t

˚pnq

min Z
˚
n,max Z

˚
n

ďt
q.

Let be
Zpnq
u “ M

pnq

pU pnqq´1puq
.

Lemma 4.7. pZpnq

u^ qUpnq
quě0 is a martingale in the filtration of pφpaq, Z

pnq
u , qU pnq1 qUpnqďu

q. More-

over, for any 0 ď u1 ă u2,

(4.3) ErpZpnq

u2^ qUpnq
´ Z

pnq

u1^ qUpnq
q2|φpaq, pZpnq

u q0ďuďu1
, qU pnq1 qUpnqďu1

s “

Eru2 ^ qU pnq ´ u1 ^ qU pnq|φpaq, pZpnq
u q0ďuďu1

, qU pnq1 qUpnqďu1
s,

or equivalently, ppZpnq

u^ qUpnq
q2´u^ qU pnqquě0 is a martingale in the filtration of pφpaq, Z

pnq
u , qU pnq1 qUpnqďu

q.

Proof. First not that, since pM pnq

t^t
˚pnq
k

^ qT˚pnq
ε ^t

˚pnq

min Z
˚
n,max Z

˚
n

^2´n qQZ
˚
n

qtě0 is a bounded martingale,

so is pZpnq

u^U pnqpt
˚pnq
k

^ qT˚pnq
ε q^ qUpnq

quě0. Moreover, with the sizes of jumps and the jump rates, one

sees that dU
pnq
t is the average squared variation of M

pnq
t during dt. So after the time change,

for Z
pnq
u ,

ErpZpnq

u2^U pnqpt
˚pnq
k

^ qT˚pnq
ε q^ qUpnq

´ Z
pnq

u1^U pnqpt
˚pnq
k

^ qT˚pnq
ε q^ qUpnq

q2|φpaq, pZpnq
u q0ďuďu1

, qU pnq1 qUpnqďu1
s “

Eru2^U pnqpt˚pnq
k ^ qT ˚pnq

ε q^ qU pnq´u1^U pnqpt˚pnq
k ^ qT ˚pnq

ε q^ qU pnq|φpaq, pZpnq
u q0ďuďu1

, qU pnq1 qUpnqďu1
s.

For a fixed u ě 0, pZpnq

u^U pnqpt
˚pnq
k

^ qT˚pnq

k´1
q^ qUpnq

qkě1 is a martingale parametrized by k P N˚. It

converges a.s. to Z
pnq

u^ qUpnq
and is bounded in L2, so the convergence is also in L2. It follows that

pZpnq

u^ qUpnq
quě0 is a martingale and (4.3). �

For ε ą 0 and n P N˚, we consider qT ˚pnq
ε the time defined by (4.2). Let be p rZpn,εq

u quě0

the process, which up to time U pnqp qT ˚pnq
ε q ^ qU pnq coincides with Z

pnq
u , and after that time

continues as a standard Brownian motion started from Z
pnq

U pnqp qT˚pnq
ε q^ qUpnq

, conditional of that

value independent of everything else.

Lemma 4.8. As n Ñ `8, the pair pφpaq, rZpn,εq
u quě0 converges in law, for the uniform con-

vergence on compact subsets, to pφpaq, Buquě0, where pBuquě0 is a standard Brownian motion
started from 0, independent of φpaq.

Proof. The convergence of p rZpn,εq
u quě0 to pBuquě0 follows from Theorem 1.4, Section 7.1 in

[EK86]. To apply it, we use the following:
14



‚ p rZpn,εq
u quě0 is a martingale.

‚ pp rZpn,εq
u q2 ´ uquě0 is a martingale by Lemma 4.7.

‚ The jumps of p rZpn,εq
u qu are bounded by 2´npminZ˚

n
λ̌

˚pnq
0 ^ εq´1, and in particular

lim
nÑ`8

E

”
max
uě0

p rZpn,εq
u ´ rZpn,εq

u´ q2
ı

“ 0.

The independence of pBuquě0 from φpaq follows from the fact that the above listed three condi-

tions hold after conditioning by φpaq. �

We stress that in Lemma 4.8 we neither require pBuquě0 to be defined on the same proba-

bility space as the qX˚pnq
t and pφp0qpxq2, βt, φpaqpxq2q

xPR,0ďtďτ
β

a2{2

, nor the convergence to be in

probability.

Let be, for t P r0, qT β,as,

Uptq “
ż t

0

pφpaqpβ
τ
β

a2{2
´s

q2 ´ 2ℓβ
τ
β

a2{2

pβ
τ
β

a2{2
´s

q ` 2ℓβ
τ
β

a2{2
´s

pβ
τ
β

a2{2
´s

qq´2ds,

and
qT β,a
ε “ suptt ě 0|φpaqpβ

τ
β

a2{2
´s

q2 ´ 2ℓβ
τ
β

a2{2

pβ
τ
β

a2{2
´s

q ` 2ℓβ
τ
β

a2{2
´s

pβ
τ
β

a2{2
´s

q ą εu.

Clearly, we have the following:

Lemma 4.9. For all ε ą 0, a.s., qT ˚pnq
ε converges to qT β,a

ε , U pnqptq^U pnqp qT ˚pnq
ε q^ qU pnq converges

to Uptq ^ Up qT β,a
ε q uniformly on r0,`8q, and pU pnqq´1puq ^ qT ˚pnq

ε ^ t
˚pnq

minZ
˚
n,maxZ˚

n
^ 2´n qQZ˚

n

converges to U´1puq ^ qT β,a
ε uniformly on r0,`8q.

Next, for u P r0, qU pnqq, we define

qΨpnq
u pyq “ qS˚pnq

pU pnqq´1puq
˝ p qS˚pnq

0 q´1pyq, y P R.

By simple computation, we have the following:

Lemma 4.10. For u P r0, qU pnqq such that Z
pnq
u “ Z

pnq
u´ , we have the following expressions and

bounds for
B

Bu
qΨpnq
u pyq:

‚ if qΨpnq
u pyq “ Z

pnq
u ,

B
Bu

qΨpnq
u pyq “ 0;

‚ if qΨpnq
u pyq P pZpnq

u , qS˚pnq
0 p qX˚pnq

pU pnqq´1puq
` 2´nqq,

0 ă B
Bu

qΨpnq
u pyq ă

2λ̌
˚pnq

pU pnqq´1puq
p qX˚pnq

pU pnqq´1puq
` 2´nq´ 1

2

λ̌
˚pnq

pU pnqq´1puq
p qX˚pnq

pU pnqq´1puq
´ 2´nq´ 1

2 ` λ̌
˚pnq

pU pnqq´1puq
p qX˚pnq

pU pnqq´1puq
` 2´nq´ 1

2

;

‚ if qΨpnq
u pyq ě qS˚pnq

0 p qX˚pnq

pU pnqq´1puq
` 2´nq,

B
Bu

qΨpnq
u pyq “

2λ̌
˚pnq

pU pnqq´1puq
p qX˚pnq

pU pnqq´1puq
` 2´nq´ 1

2

λ̌
˚pnq

pU pnqq´1puq
p qX˚pnq

pU pnqq´1puq
´ 2´nq´ 1

2 ` λ̌
˚pnq

pU pnqq´1puq
p qX˚pnq

pU pnqq´1puq
` 2´nq´ 1

2

;

‚ if qΨpnq
u pyq P p qS˚pnq

0 p qX˚pnq

pU pnqq´1puq
´ 2´nq, Zpnq

u q,

0 ą B
Bu

qΨpnq
u pyq ą

´2λ̌
˚pnq

pU pnqq´1puq
p qX˚pnq

pU pnqq´1puq
´ 2´nq´ 1

2

λ̌
˚pnq

pU pnqq´1puq
p qX˚pnq

pU pnqq´1puq
´ 2´nq´ 1

2 ` λ̌
˚pnq

pU pnqq´1puq
p qX˚pnq

pU pnqq´1puq
` 2´nq´ 1

2

;
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‚ if qΨpnq
u pyq ď qS˚pnq

0 p qX˚pnq

pU pnqq´1puq
´ 2´nq,

B
Bu

qΨpnq
u pyq “

´2λ̌
˚pnq

pU pnqq´1puq
p qX˚pnq

pU pnqq´1puq
´ 2´nq´ 1

2

λ̌
˚pnq

pU pnqq´1puq
p qX˚pnq

pU pnqq´1puq
´ 2´nq´ 1

2 ` λ̌
˚pnq

pU pnqq´1puq
p qX˚pnq

pU pnqq´1puq
` 2´nq´ 1

2

.

For ε ą 0, let rΨpn,εq
u pyq be defined as follows. For u P r0, U pnqp qT ˚pnq

ε q ^ qU pnqs, rΨpn,εq
u pyq “

qΨpnq
u pyq. For u ą U pnqp qT ˚pnq

ε q ^ qU pnq, rΨpn,εq
u pyq is a divergent Bass-Burdzy flow driven by rZpn,εq

u

(which is then a Brownian motion) satisfying

rΨpn,εq
u pyq ´ rΨpn,εq

U pnqp qT˚pnq
ε q^ qUpnq

pyq “
ż u

U pnqp qT˚pnq
ε q^ qUpnq

p1rΨpn,εq
v pyqą rZpn,εq

v
´ 1rΨpn,εq

v pyqă rZpn,εq
v

qdv.

Lemma 4.11. For all ε ą 0, as n Ñ `8, the family

(4.4) pφpaqpxq, rZpn,εq
u , rΨpn,εq

u pyq, prΨpn,εq
u q´1pyqqxPR,yPR,uě0

converges in law to, for the topology of uniform convergence on compact subsets, to

pφpaqpxq, Bu, qΨupyq, pqΨuq´1pyqqxPR,yPR,uě0,

where pBuquě0 is a standard Brownian motion started from 0, indpendent of φpaq, pqΨuquě0 is

the divergent Bass-Burdzy flow driven by pBuquě0, and ppqΨuq´1quě0 the inverse flow.

Proof. For this, first we will show the tightness of the family. For the tightness of prΨpn,εq
u pyqqyPR,uě0,

we use that, for u ď U pnqp qT ˚pnq
ε q ^ qU pnq,

rΨpn,εq
u pyq “ p qS˚pnq

pU pnqq´1puq
˝ p qS˚pnq

0 q´1pyq ´ qS˚pnq

pU pnqq´1puq
p0qq

´ p qS˚pnq

pU pnqq´1puq
p qXpnq˚

pU pnqq´1puq
q ´ qS˚pnq

pU pnqq´1puq
p0qq ` rZpn,εq

u ,

each term having a limit in law by Lemmas 4.4, 4.8 and 4.9, and that after time U pnqp qT ˚pnq
ε q ^

qU pnq, rΨpn,εq
u is already a Bass-Burdzy flow. Similarly for pprΨpn,εq

u q´1pyqqyPR,uě0. Further, because
of the idenitities and bounds of Lemma 4.10, any subsequential limit of (4.4) is of form

pφpaqpxq, Bu, Ψ̄upyq, pΨ̄uq´1pyqqxPR,yPR,uě0,

where pBuquě0 is a standard Brownian motion started from 0, indpendent of φpaq, and

(4.5) Ψ̄upyq “
ż u

0

p1Ψ̄vpyqąBv
´ 1Ψ̄vpyqăBv

qdv,

and thus by the uniquennes proved in [BB99], Theorem 2.3, pΨ̄uquě0 is the divergent Bass
Burdzy flow driven by pBuquě0. To get (4.5), we used that

λ̌
˚pnq

t^ qT˚pnq
ε

px ` 2´nq

λ̌
˚pnq

t^ qT˚pnq
ε

px ´ 2´nq
“

φpaqpx ` 2´nq2 ´ 2ℓβ
τ
β

a2{2

px ` 2´nq ` 2ℓβ
pQZn,βq´1pQZn,βpτβ

a2{2
q´2nt^ qT˚pnqq

px ` 2´nq

φpaqpx ´ 2´nq2 ´ 2ℓβ
τ
β

a2{2

px ´ 2´nq ` 2ℓβ
pQZn,βq´1pQZn,βpτβ

a2{2
q´2nt^ qT˚pnqq

px ´ 2´nq

a.s. converges to 1 as n Ñ `8, uniformly in t and uniformly for x in compact subsets of
Ipφpaqq. �
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We are now ready to finish the proof of the Proposition 4.3. By construction,

qX˚pnq

pU pnqq´1puq^ qT˚pnq
ε ^t

˚pnq

min Z
˚
n,max Z

˚
n

^2´n qQZ
˚
n

“ p qS˚pnq
0 q´1˝prΨpn,εq

u^U pnqp qT˚pnq
ε q^ qUpnq

q´1p rZpn,εq

u^U pnqp qT˚pnq
ε q^ qUpnq

q.

We have that the process pp qS˚pnq
0 q´1 ˝ prΨpn,εq

u q´1p rZpn,εq
u qquě0 converges in law to the process

pp qS˚
0 q´1 ˝ pqΨuq´1pBuqquě0, which appears in Definition 1.2, and out of which one constructs

qX˚pnq
t by the change of time

U˚ptq “
ż t

0

λ̌˚
s p qX˚

s q´2ds, t P r0, qT ˚q.

We will also denote
qT ˚
ε “ suptt ě 0|λ̌˚

t p qX˚
t q ą εu.

We use the fact that, as n Ñ `8, the joint processes

(4.6) p qT ˚pnq
ε ^ t

˚pnq

minZ
˚
n ,maxZ˚

n
^ 2´n qQZ˚

n , U pnqp qT ˚pnq
ε q ^ qU pnq,

qX˚pnq

t^ qT˚pnq
ε ^t

˚pnq

min Z
˚
n,max Z

˚
n

^2´n qQZ
˚
n
, λ̌

˚pnq

t^ qT˚pnq
ε ^t

˚pnq

min Z
˚
n,max Z

˚
n

^2´n qQZ
˚
n

pxq,

U pnqptq ^ U pnqp qT ˚pnq
ε q ^ qU pnq, pU pnqq´1puq ^ qT ˚pnq

ε ^ t
˚pnq

minZ
˚
n ,maxZ˚

n
^ 2´n qQZ˚

n qxPZ˚
n ,tě0,uě0

converges a.s. to

p qT β,a
ε , Up qT β,a

ε q,
β

pτβ
a2{2

´tq^pτβ
a2{2

´ qTβ,a
ε q

, φpaqpxq2 ´ 2ℓβ
τ
β

a2{2

pxq ` 2ℓβ
pτβ

a2{2
´tq^pτβ

a2{2
´ qTβ,a

ε q
pxq,

Uptq ^ Up qT β,a
ε q, pUq´1puq ^ qT β,a

ε qxPIpφpaqq,tě0,uě0.

If we add to the family (4.6) the processes pφp0qpxq2, βt, φpaqpxq2q
xPR,0ďtďτ

β

a2{2

and pp qS˚pnq
0 q´1 ˝

prΨpn,εq
u q´1p rZpn,εq

u qquě0, we get a tight family which has subsequential limits in law as n Ñ `8.
Because of the constraints satisfied for finite n, any subsequential limit in law will satisfy:

‚ qT ˚
ε “ qT β,a

ε ,

‚ qX˚
t “ β

pτβ
a2{2

´tq
for t ď qT ˚

ε ,

‚ ℓ
β

τ
β

a2{2

pxq ´ ℓ
β

τ
β

a2{2
´t

pxq is the local time process of qX˚
t for t ď qT ˚

ε .

So we get the equality in law between

p qX˚
t , φ

paqpxq2q
xPR,0ďtď qT˚

ε

and

pβ
pτβ

a2{2
´tq

, φpaqpxq2q
xPR,0ďtď qTβ,a

ε
.

Taking ε Ñ 0, we get the equality in law between

p qX˚
t , φ

paqpxq2q
xPR,0ďtď qT˚

and

pβ
pτβ

a2{2
´tq

, φpaqpxq2q
xPR,0ďtď qTβ,a .

This finishes our proof.
Note that a posteriori, once the above identity in law established, one can show that the

Brownian motion pBuquě0 driving the self repelling diffusion p qX˚
t q

xPR,0ďtď qT˚ can be constructed

on the same probability space as pφp0qpxq2, βt, φpaqpxq2q
xPR,0ďtďτ

β

a2{2

, and the convergence of

pZpnq

u^U pnqp qT˚pnq
ε q^ qUpnq

quě0 to pB
u^U˚p qT˚

ε qquě0 can be upgraded from in law as in Lemma 4.8 to
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almost sure. However, in our proof we carefully avoid using that a priori, and only rely on the
convergence in law. �

Combining Theorem 1.4 and Proposition 2.1 (1) one immediately gets the following:

Corollary 4.12. Let be the triple

pφp0qpxq2, βt, φpaqpxq2q
xPR,0ďtďτ

β

a2{2

,

jointly distributed as in Ray-Knight identity (Theorem 1.1) and Ipφpaqq be the connected com-
ponent of 0 in tx P R|φpaqpxq ą 0u. Let I be another, deterministic, subtinterval of R and λ̌0 an

admissible initial occupation profile on I. Let p qXt, λ̌tpxqq
xPI,0ďtď qT be the self-repelling diffusion

on I with initial occupation profile λ̌0, started from x0 P I. Let

qS˚
0 pxq “

ż x

0

φpaqprq´2dr, x P Ipφpaqq, qS0pxq “
ż x

x0

λ̌tprq´1dr, x P I.

Let t ÞÑ θptq be the change of time

dθptq “ λ̌0p qS´1
0 ˝ qS˚

0 pβ
τ
β

a2{2
´t

qq2φpaqpβ
τ
β

a2{2
´t

q´4dt.

Then then process

p qS´1
0 ˝ qS˚

0 pβ
τ
β

a2{2
´θ´1ptq

q, ppφpaqq2 ´ 2ℓβ
τ
β

a2{2

` 2ℓβ
τ
β

a2{2
´θ´1ptq

qpp qS˚
0 q´1 ˝ qS0pxqqq

xPI,0ďtďθp qTβ
a q

has same law as p qXt, λ̌tpxqq
xPI,0ďtď qT .

Remark 4.13. Note that the process pβ
τ
β

a2{2
´t

q
0ďtďτ

β

a2{2

has same law as pβtq0ďtďτ
β

a2{2

, so the two

processes can be interchanged in Theorem 1.4, Corollary 3.3 and Corollary 4.12.

5. Convergence for general initial occupation profile

In the sequel I, qXt, λ̌t will denote the general setting, qX˚
t and λ̌˚

t being reserved for the

case λ̌˚
0pxq “ φpaqpxq2. Next we show that a discrete space nearest neighbor self-repelling jump

process as in Corollary 3.3, but with general initial occupation profile, can be embedded into a
continuous self-repelling diffusion.

Proposition 5.1. Let J be a finite subset of R containing 0. Let λ̌J

0 be a positive function on

J. Let be p qXJ
q , λ̌

J

0pxqq
xPJ,0ďqď qQJ,the nearest neighbor self-repelling jump process on J introduced

previously ( (3.3), (3.4), (3.5)), started from 0. Let qmin J,max J the first time q when qXJ
q reaches

min J or max J.

Let ϕ “ ϕλ̌
J

0 be the Gaussian free field φpaq, with a “ λ̌
J

0p0q 1

2 , conditioned on φpaq being

positive on rmin J,max Js, and on φpaqpxq “ λ̌
J

0pxq 1

2 for all x P J. In other words, ϕ{
?
2 is

obtained by interpolating between values λ̌J

0pxq 1

2 {
?
2 for consecutive points x P J with independent

Brownian bridges conditioned on staying positive, and by adding below min J and above max J

two independent Brownian motions, the first one time-reversed, started from λ̌
J

0pmin Jq 1

2 {
?
2

and from λ̌J

0pmax Jq 1

2 {
?
2 respectively.

Let Ipϕq be the connected component of 0 in the non-zero set of ϕ. Let be p qXϕ
t , λ̌

ϕ
t pxqq

xPIpϕq,0ďtď qTϕ

be, conditional on ϕ, the self-repelling diffusion on Ipϕq, started from 0, with initial occupation

profile λ̌
ϕ
0 pxq “ ϕpxq2, qTϕ being the first time one of the λ̌

ϕ
t pxq reaches 0. Let tϕmin J,max J be the

first time t when qXϕ
t reaches min J or max J.

Let be

QJ,ϕptq “
ÿ

xPJ

ℓ̌
ϕ
t pxq,
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where ℓ̌
ϕ
t pxq “ pλ̌ϕ

0 pxq ´ λ̌
ϕ
t pxqq{2 is the local time process of qXϕ

t . Denote pQJ,ϕq´1 the right-
continuous inverse of QJ,ϕ. Then the process

(5.1) p qXϕ

pQJ,ϕq´1pqq
, λ̌

ϕ

pQJ,ϕq´1pqq
pxqq

xPJ,0ďqďQJ,ϕp qTϕq^QJ,ϕptϕ
min J,max J

q

has same law as

(5.2) p qXJ
q , λ̌

J

0pxqq
xPJ,0ďqď qQJ^qmin J,max J

.

Proof. For pλ̌J

0pxqqxPJzt0u not fixed, but random, distributed as pφpaqpxq2qxPJzt0u, φ
paq being condi-

tioned on being positive on rmin J,max Js, the identity in law is a direct consequence of Corollary
3.3 and Theorem 1.4. To conclude that the identity in law disintegrated according the values of

pλ̌J

0pxqqxPJzt0u also holds, it is sufficient to show that both sides of the identity, (5.1) and (5.2),

are continuous with respect to pλ̌J

0pxqqxPJzt0u. The continuity of the law of (5.2) with respect to

pλ̌J

0pxqqxPJzt0u is clear from the construction. As for (5.1), first the law of pϕpxqqxPrmin J,max Js,

hence the law of pλ̌ϕ
0 pxqqxPrmin J,max Js, depends continuously on pλ̌J

0pxqqxPJzt0u, and second, ac-

cording to Lemma 2.2, the law of (5.1) depends continuously on pλ̌ϕ
0 pxqqxPrmin J,max Js. �

Proof of Theorem 1.3. We will first consider the case of I bounded. Without loss of generality,

we assume that 0 P I and qX0 “ 0. We also slightly simplify by taking qXpnq
0 “ qX0 “ 0 for all n.

Using the notations of Proposition 5.1, let be Jpnq “ 2´nZ X I and ϕpnq the conditioned GFF

interpolating between pλ̌0pxq 1

2 qxPJpnq . By Proposition 5.1, we can take

(5.3) qXpnq
t “ qXϕpnq

pQJpnq,ϕpnq
q´1p2ntq

, λ̌
pnq
t pxq “ qXϕpnq

pQJpnq,ϕpnq
q´1p2ntq

pxq,

t ď 2´nQJpnq,ϕpnqp qTϕpnq ^ t
ϕpnq

min Jpnq,max Jpnq q,

where t
ϕpnq

min Jpnq,max Jpnq is the first time qXϕpnq

t hits min Jpnq or max Jpnq.

Lemma 5.2. As n Ñ `8, pϕpnqpxqqxPI converges in probability to pλ̌0pxq 1

2 qxPI for the topology
of uniform converge on compact subsets of I.

Proof. Indeed, givenK a compact subinterval of I and n large enough so thatK Ď rmin Jpnq,max Jpnqs,
one will obtain ϕpnq by first interpolating linearly between the values of pλ̌0pxq 1

2 qxPJpnq , the by

adding of order 2n independent bridges from 0 to 0 of duration 2´n, each conditioned by a
positivity event. The minimal probability of an event by which we condition will converge to 1
with n. Moreover, for an unconditioned bridge, the probability to deviate more than ε from 0
is Opexpp´k2nε2qq, for a constant k ą 0. This beats the 2n factor. �

Lemma 5.3. As n Ñ `8, the process p qXϕpnq

t^ qTϕpnq
^t

ϕpnq

min Jpnq,max Jpnq

, λ̌
ϕpnq

t^ qTϕpnq
^t

ϕpnq

min Jpnq,max Jpnq

pxqqxPI,tě0

converges in law to p qX
t^ qT , λ̌t^ qT pxqqxPI,tě0.

Proof. Indeed, by Lemma 5.2, pλ̌ϕpnq

0 pxqqxPI converges in probability to pλ̌0pxqqxPI for the topol-
ogy of uniform convergence on compact subsets, the law of the self-repelling diffusion depends

continuously on the initial occupation profile (Lemma 2.2), and the range of p qX
t^ qT qtě0 is a.s.

a compact subinterval of I. �

Lemma 5.4. As n Ñ `8, simultaneously with the convergence in law of Lemma 5.3, we have

that t ÞÑ 2´nQJpnq,ϕpnqpt^ qTϕpnq ^ t
ϕpnq

min Jpnq,max Jpnq q converges in law to t ÞÑ t^ qT for the uniform

topology.

Proof. To simplify, we will assume here that all the

p qXϕpnq

t^ qTϕpnq
^t

ϕpnq

min Jpnq,max Jpnq

, λ̌
ϕpnq

t^ qTϕpnq
^t

ϕpnq

min Jpnq,max Jpnq

pxqqxPI,tě0
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and p qX
t^ qT , λ̌t^ qT pxqqxPI,tě0 live on the same probability space, constructed from the same driving

Brownian motion pBuquě0, independent of the ϕpnq. This is always possible to do. Write

2´nQJpnq,ϕpnqpt ^ qTϕpnq q “ 2´n´1
ÿ

xPJpnq

pλ̌ϕpnq

0 pxq ´ λ̌
ϕpnq

t^ qTϕpnq pxqq

“ 2´n´1
ÿ

xPJpnq

pλ̌ϕpnq

0 pxq ´ λ̌0pxq ´ λ̌
ϕpnq

t^ qTϕpnq pxq ` λ̌
t^ qT pxqq

`2´n´1
ÿ

xPJpnq

pλ̌0pxq ´ λ̌
t^ qT pxqq.

We have that
2´n´1

ÿ

xPJpnq

pλ̌0pxq ´ λ̌
t^ qT pxqq

converges a.s. to t ^ qT , uniformly of r0,`8q. Moreover,

ˇ̌
2´n´1

ÿ

xPJpnq

pλ̌ϕpnq

0 pxq ´ λ̌0pxq ´ λ̌
ϕpnq

t^ qTϕpnq pxq ` λ̌
t^ qT pxqq

ˇ̌

ď p1 ` |I|q1
2

max
xPJpnq,sě0

|λ̌ϕpnq

0 pxq ´ λ̌0pxq ´ λ̌
ϕpnq

s^ qTϕpnq pxq ` λ̌
s^ qT pxq|,

|I| being the length of I, and the right-hand side converges in probability to 0. Finally,

t
ϕpnq

min Jpnq,max Jpnq ą qTϕpnq
with probability converging to 1. �

Lemma 5.5. As n Ñ `8, the process

p qXpnq

t^2´nQJpnq,ϕpnq
p qTϕpnq

^t
ϕpnq

min Jpnq,max Jpnq
q
, λ̌

pnq

t^2´nQJpnq,ϕpnq
p qTϕpnq

^t
ϕpnq

min Jpnq,max Jpnq
q
pxqqxPJpnq ,tě0

converges in law to p qX
t^ qT , λ̌t^ qT pxqqxPI,tě0.

Proof. This follows from (5.3), Lemma 5.3 and the convergence of

t ÞÑ 2´nQJpnq,ϕpnqpt ^ qTϕpnq ^ t
ϕpnq

min Jpnq,max Jpnq q

in law to t ÞÑ t ^ qT (Lemma 5.4). �

To finish the proof of Theorem 1.3, observe that by Lemma 5.5,

λ̌
pnq

2´nQJpnq,ϕpnq
p qTϕpnq

^t
ϕpnq

min Jpnq,max Jpnq q
p qXpnq

2´nQJpnq,ϕpnq
p qTϕpnq

^t
ϕpnq

min Jpnq,max Jpnq q
q

converges in probability to λ̌ qT p qX qT q “ 0, thus qT pnq
ε ă 2´nQJpnq,ϕpnqp qTϕpnq ^ t

ϕpnq

min Jpnq,max Jpnqq with

probability converging to 1.
Finally, if I is unbounded, it is enough to consider an increasing family of bounded subinter-

vals of I which at the limit gives I, as the range of qX
t^ qT pnq

ε
is a.s. bounded. �
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University, Ceremade, Paris, France

E-mail address: tarres@nyu.edu

22


	1. Introduction and presentation of results
	Ray-Knight identity on R
	Inversion of Ray-Knight
	Heuristic reduction to a Bass-Burdzy flow
	Construction of a self-repelling diffusion out of a divergent Bass-Burdzy flow
	Statement of the results
	Other works on self-interacting diffusions in dimension one
	Organization of the article

	2. Elementary properties of the self-repelling diffusion
	3. Inversion of the Ray-Knight identity on a discrete subset
	4. Convergence for squared GFF initial occupation profile
	5. Convergence for general initial occupation profile
	Acknowledgements
	References

