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Abstract

Using a divergent Bass-Burdzy flow we construct a self-repelling one-dimensional
diffusion. Heuristically, it can be interpreted as a solution to an SDE with a singular
drift involving a derivative of the local time. We show that this self-repelling diffu-
sion inverts the second Ray-Knight identity on the line. The proof goes through an
approximation by a self-repelling jump processes that has been previously shown by
the authors to invert the Ray-Knight identity in discrete.
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1 Introduction and presentation of results

Ray-Knight identity on R

We will construct a continuous self-repelling one-dimensional diffusion, involved in
the inversion of the Ray-Knight identity on R. We start by recalling the latter.

Given a > 0, (¢(*)(z)).,er will denote a massless Gaussian free field on R conditioned
to be a at x = 0, that is to say (¢ (z)/v/2)z=0 and (¢(*) (—x)/+/2).=0 are two independent
standard Brownian motions starting from a/+/2.
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Inverting the Ray-Knight identity on the line

Theorem 1.1 (Ray-Knight [25, 19, 15, 26, 23, 31]). Fixa > 0. Let (8;):>0 be a standard
Brownian motion starting from 0 and let ¢° (z) be its local time process. Let 752/2 be the
stopping time

Thh p = inf{t > 067 (0) > a*/2}.

Let (¢9)(x)),cr be a massless Gaussian free field on R conditioned to be 0 at x = 0,
independent from the Brownian motion 3. Then the field
(@D @)/2+ 75 (@))rer

7—(12/2
has the same law as the field (¢*) (2)?/2)ser.

The original formulation of Ray [25] and Knight [19] is different. It states that
(/°, (2))e0 is a squared Bessel process of dimension 0, starting from a2/2 at z = 0
Ta2

a=/2
(see also [26], Section XI.2). (¢(0)(x)2/2)z>0 is by definition a squared Bessel process
of dimension 1, and by additivity property of squared Bessel processes, (¢(?(z)%/2 +

(°, (x))a>0 is a squared Bessel process of dimension 1 = 1 + 0, starting from a2/2 =
Ta2/2

0 + a?/2, the same as (¢(*)(2)?/2),=0. In Theorem 1.1 we use a reformulation of the Ray-
Knights identity that generalizes to a much wider setting, such as any discrete electrical
network, and continuum setting in dimension 2 and 3 after a Wick renormalization of the
square of the GFF [15, 23, 31]. It also makes the connection to Brydges-Frohlich-Spencer-
Dynkin’s isomorphism [6, 11, 12] and Symanzik’s identities in Euclidean Quantum Field
Theory [28, 29, 30].

Theorem 1.1 provides a way to couple on the same probability space the triplet
(¢, 3, ¢(®). We formalize this in the following definition.

Definition 1.2. Fix a > 0. We say that the triplet (¢(°), 3, (*)) satisfies a Ray-Knight
coupling if the following conditions are satisfied.

* The process (¢\")(x)).er is distributed like a massless Gaussian free field on R
conditioned to be 0 at x = 0.
e The process (f;)=o is a standard Brownian motion on R starting from 0.
* The processes ¢'9) and § are independent.
e Foreveryzre R,
¢ (2)* = ¢ (2)* + 207, (a).
a2/2
» For every = € R such that (¢(®))? is strictly positive on [0, 2], respectively [z,0], one
has ¢()(x) > 0. For all other z € R, ¢() (z) = ¢(O) ().

It follows from Theorem 1.1 that ¢(*) in a Ray-Knight coupling is distributed like a
massless Gaussian free field on R conditioned to be a at z = 0.

Inversion of the Ray-Knight identity

Given a Ray-Knight coupling of (gb(o), B, QS(“)), we are interested in the conditional law
of the stochastic process (B7ﬁ2 _,), knowing ¢(®).
a</2

The Ray-Knight identity of Theorem 1.1 generalizes to discrete electrical networks
and symmetric Markov jump processes on them [15, 23, 31]. This is known as second
generalized Ray-Knight identity. The inversion in the discrete setting was done in
[27, 20]. This inversion involves a nearest neighbor self-repelling jump process on the
network. More precisely, the jump rate at time ¢ from a vertex x; to a neighbor x5 is
given by

SIS

(®(22)* — 2L¢(2))

C(x1,x
(0 2) ()2 — 2Ly ()

) (1.1)

W=

EJP 26 (2021), paper 96. https://www.imstat.org/ejp
Page 2/25


https://doi.org/10.1214/21-EJP657
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Inverting the Ray-Knight identity on the line

where C(z1, z2) is a fixed conductance, L;(z;) is the time spent at z; by the jump process
before time ¢, and @ is a field on the vertices, considered as an initial condition. In the
inversion of Ray-Knight ® is random, distributed as a discrete Gaussian free field. In
Section 3 we detail this in the setting of a discrete subset of R. Also note that this self-
repelling jump process with jump rates (1.1) is up to a time change the vertex-diminished
jump process (VD]P) studied in [27, 7].

If one takes a one-dimensional fine mesh lattice and renormalizes the jump rates
(1.1), then on a purely formal level, without dealing with the convergence or the meaning
of the terms involved, one gets the following equation for a continuous self-repelling
diffusion:

dX; = dW; + “%53: log(A¢()) % dat”, Ae(@) = Xo(z) — 20y(). (1.2)

T=AX¢

There )?t is a continuous stochastic process on an interval I, Ay a continuous function
from [ to (0, +0), W, is a standard Brownian motion and ly(z) is the local time process
of Xt We will call ), the occupation profile at time ¢. Our process Xt is defined up to a
finite time

T = sup{t > 0|A,(X;) > 0}.

We will also assume that
. sup [ .
J Mo(z) tda = +oo, f () tde = +oo (1.3)
inf I

and say that )\, is admissible. This is a condition for not reaching the boundary of I in
finite time. )v(t is a self-repelling process that tends to avoid places it has visited a lot, yet
we will see that a.s. it will eventually exhaust the occupation profile at some location in
finite time 7. As we will further see, this self-repelling process appears in the inversion
of the Ray-Knight identity in the continuous one-dimensional setting.

The equation (1.2) is not a classical SDE. It is not immediately clear how to make

sense of the drift term 0 log(A¢(z)) dt as z — {;(x) will not be differentiable

for t > 0, and moreover there will not be a change of scale under which it will be
differentiable for all ¢ > 0. So the problem is not only to solve (1.2) by an approximation
scheme, the problem is already to give an appropriate meaning to being a solution to
(1.2). The equation (1.2) is also somewhat misleading, as we believe that a solution )v(t
would not be a semi-martingale, admitting an adapted decomposition into a Brownian
motion plus a drift term with zero quadratic variation, but with an infinite total variation.
See [18, 21] for a discussion on this point.

However, it turns out that the equation (1.2) is in some sense exactly solvable, and
in this paper we will give the explicit solution which involves a divergent bifurcating
stochastic flow of diffeomorphisms of R introduced by Bass and Burdzy in [3]. Our
construction here is similar to that of [21], where we introduced a reinforced diffusion
constructed out of a different, convergent, Bass-Burdzy flow.

Heuristic reduction to a Bass-Burdzy flow

Next we explain a non-rigorous heuristic derivation of an explicit solution to (1.2). A
similar heuristic appears in the introduction to [21].

Assume that for ty > 0, X’t(t") is a continuous process coinciding with X, on [0, 0],
and after time ¢y continues as a Markovian diffusion with infinitesimal generator

EJP 26 (2021), paper 96. https://www.imstat.org/ejp
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In other words, there is no additional self-repulsion after time ¢y. Then after time %,
Xt(to) is a scale and time changed Brownian motion. Given Sy, an anti-derivative of ;| L

(S, ()_(t(t“)))tzto is a local martingale. By further performing the time change
du = Ay (X)) 2t

we get a standard Brownian motion.

Then it is reasonable to assume that near time ¢, )Z't is close to X'(t”) The idea is
to let the change of scale depend on time. Assume there is a flow of changes of scales
S; : I — R, such that S, is an anti-derivative of A;!, and such that S;(X;) is a local
martingale. Consider u(t) the time change given by

du = Xt ()\(/vt)izdt,

and ¢(u) the inverse time change. Assume that, by analogy with the Markovian case,
St(u) (Xt(u))u=0 is a standard Brownian motion (B,).>0. Let 21 < 2 € I. Then

d ~ = dt d
G =) = G [ A

X (% )2
= (X2 %L1$1<XS<IQQAS(XS) ds
= 20,(X)2 N (X)) 2
= 21

(1.4)

Ty <Xt <T2
r1<Xi<wmo

21§t(u) (21)<Bu<Si(u)(w2)"

This implies that St (u)(z) is of form

du = 1§t(u)(ib)>B“ - ]‘gt(u)(z)<Bu + f(u)’

for some function f(u) not depending on x € I. Further, it is reasonable to assume that
the left and the right sides of X; play symmetric roles, and thus f(u) = 0. Then, we get
that

du = 15}(“,)(1)>Bu - 1§t(71,)(z)<Bu.
This is an equation studied by Bass and Burdzy in [3]. In the sequel we will construct )v(t
out of the flow of solutions to the above equation.

Note that if in the equation (1.2), one replaced the 5 in front of — (9 log(A(x)) % dt
r=

by a different positive constant, one would not get an as simple expllclt solution. Indeed
the cancellation of powers of )\t (Xt) as in (1.4) would not occur.

Construction of a self-repelling diffusion out of a divergent Bass-Burdzy flow

The divergent Bass-Burdzy flow is given by the differential equation

(1.5)

Y, (1 ifY,>B,,
du | 1 ifY, <B,

where B,, is a standard Brownian motion starting from 0. The behavior at times when
Y. = B, is not specified. It is shown in [3] that given an initial condition, there is a.s.
a unique solution defined for all positive times that is Lipschitz continuous. Moreover,
these Lipschitz continuous solutions form a flow of increasing C' diffeomorphisms of R,
(\ffu)u>0. For the properties of this flow, we refer to [3, 18, 2].
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Define .
gu = (\IJu)_l (Bu)

(\I/u)u>0 satisfies a bifurcation property [3]: there is a finite random value ypir € R, such
that for y > ypir, W, (y) > B, for u large enough, and lim, o U, (y ) = 40, for y < yus,
¥, (y) < B, for u large enough and lim;. ¥, (y) = —o0, and {u > 0|V, (yuir) = B.} is
unbounded. Moreover,

Yoit = lim &,
u——+00

The process (£,)u=0 admits [3, 18] a family of local times A, (y) continuous in (y, u), such
that for any f bounded Borel measurable function on R and u > 0,

| " v = | 1Ry

Moreover, these local times are related to the spatial derivative of the flow as follows:

0« -
@\Ifu(y) =1+2A,(y).

0~ 0~
—V,(y) and —(¥,)~1(y) are locally 1/2 — ¢ Holder continuous in y.

dy dy
Next we give the construction of )v(t out of the flow (\\I;u)uzo-

Forall u > 0, A, (y),

Definition 1.3. Let xg € I. Let be the change of scale
So(z) = J o(r)~tdr, zel,
xo

and 5“51 the inverse change of scale. Consider the change of time t(u) from u to t (and
u(t) the inverse time change) given by

dt = Xo (S5 (€)1 + 28, (€,)) 2du. (1.6)
Let
~ +w -~ ~ ~ ~ ~
T— [ A3y 6020+ 2Ra(6)

Set X, = §gl(éu(t)), fort e [0,T).

We will call (B,).>0 the driving Brownian motion of )v(t.
Note that

N¢
Il

+00 o . o .
j So(87 1 (E)2(1 + 2K, (€,) 2du

0

+00 o o o
) f So(55 )21 + 2K, (4)) 2 Ko ()dy

1 by \/_ X p—
— 5| R0l @R~ 1+ 2Kn) iy

1 = s <5
< i(iipofu_llbgfogu) sup Ao

[S5 " (infuz0 €u),55 * (SuP, =0 €u)]

Since &, converges at +o and thus has a bounded range, T < +w a.s. The process )Z't
has local times

li(@) = Ro(@)(1 = (1 + 28, (So(@))) 7).

EJP 26 (2021), paper 96. https://www.imstat.org/ejp
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Indeed, for f a measurable bounded function on 7,

~ -

t1 - u(tl) - . - ~ v
f f(Zydt = f (85 Eugey))dt f PG )R8 (E0)2 (L + 2Ku(€0) " 2du
0 0

(t1)  _ 9 - -
f j B )08 )2 (1 + 2K (1)~ 2du Ko (9)dy
- J FE ) M0E )2 (1 — (1 + 2K ey () )y

= 3 L F@) Ao (@) (1 — (1 + 2K,y (So(@))) ) da.

Set
}\t(.’t) = 5\0 — 2[%({1}) = 5\0(1‘)(1 + 2Au(t)(S()((E)))_1.
A posteriori, the change of time (1.6) is

dt = 5\13()\(/})26[’[1/.
We see that for all ¢ € [0,7) and z € I, X;(z) > 0. Note that vf = (So)~Y(ypit). Moreover,

lim, (X)) = lim Xo(ywie) (1 + 2K, (ypi)) ™+ = 0,
t— u—+
as limy_, 4 o [v\u(ybif) +0 (see Section 4 in [18]). . 5
Also note that if one sets S; = Wyt © So, then 5, (X,) = By, and (S,, #(X,, 7))t=0 is
a local martingale. Moreover,

2 8w = Row) ™ (1 + 2K, (Bo(a)) = Aela) ™!

So, §t is a time-dependent change of scale indeed satisfying the properties postulated
previously in our heuristic.

Statement of the results

Now, let us see why ()v(t, 5\t) can be interpreted as solution to the equation (1.2), with
initial condition (z, 5\0). We will give an explanation in terms of discrete approximations.
Let J(W = 27"Z A I. Let )v(t(") be a continuous time discrete space self-interacting
nearest neighbor jump process on J(), defined by the jumps rates from z to z + 027",
o € {—1,1}, at time ¢, equal to

;\in)(a: +027m)2
A ()3

22%—1

(1.7)

)

where .

A (@) = Ko@) =20 (), G (x) = 2" f L _yds.
L
Let

Yv’s(” = sup{t > O|)\(")( (")) > e}, e >0, t;J])(Tl) = inf{t > O|)Z't(") € {min J("),maxJ(")}}.
(n)

5y to avoid considering what happens after )v(t(") hits

We introduce the stopping time ¢
the boundary of the domain J(™).
If there were no self—interaction, that is to say in (1.7) )\E") were replaced by )\g, the
process would converge in law as n — +0 to a solution of the SDE
1 .
dX; = dW; + §6m log(Ao(x)) dt.
r=X¢

In our case with self-interaction, we have the following:

EJP 26 (2021), paper 96. https://www.imstat.org/ejp
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Theorem 1.4. With the notations above, for all ¢ > 0 the family of process

) ) x(n) 5 ()
(T2 A oy ) g A o (%)) zesm 20
€ 21(n) € 21(n)

converges in law as n — 4+ to

~ ~ v

(Te, X,y o7 Mg (%))zer =0,
where )?t is given by Definition 1.3 and

T. = sup{t > 0|\ (Xy) > ¢},
provided that )v(é") converges to )v(o. In particular,

(n) T (n
t@](n) > TE( )

with probability converging to 1. The convergence in law is for the topology of uniform
convergence on compact subsets of I x [0,+c0). The spatial processes on J () are
considered to be linearly interpolated outside J(™).

Next we state how our self-repelling diffusion is related to the inversion of the
Ray-Knight identity of Theorem 1.1.
Theorem 1.5. Let a > 0 and (¢(“)($))16R be a massless Gaussian free field on R condi-
tioned to be a atx = 0. Let I(¢(*)) be the connected component of 0 in {x € R|¢(® (z) > 0}.
For z € I(¢?)), set \i(z) = ¢(¥)(z)?. Then a.s. \} satisfies the condition (1.3). Let
()v(t*, j‘f(x))xel(wa)),ostsf* be the process, distributed conditionally on (¢(*)(x))er, as
the self repelling diffusion on I (aﬁ(“)), starting from 0, with initial occupation profile 5\(";,
following Definition 1.3. Let be the triple

((Z)(O) (m)Qa ﬁtv ¢(a) (x)Q)xe]Rpgthﬁzm s
Jjointly distributed as in the Ray-Knight coupling (Definition 1.2). Let be
T =70, , —supft € 0,72, ,1|6 (8;) = 0 and Vs € [0,1), B, # Bi}-

Then the couple
(X}, ot ($)2)ze]R,O<t<f*

has the same distribution as

(8.9

a2/2 —t? ¢(a) (-’17)2>EE]R70<,5<1‘3,@ .

The notation (X, \#(z),T*) is reserved to the case of the initial occupation profile
A\ (x) = ¢{9) ()2, so as to to avoid confusion with the case of generic ).
Note that Theorem 1.5 also trivially implies that the triple

(Xt*7 ¢(a) (I)Qv ;\:tk (x))me]Ryogtg’f* (18)

has the same distribution as

( 5752/2_t’ 6 (2)2, 60 (2)? + ggf%_t(x))weRyogt@ﬁ,a. (1.9)
Moreover, since the law of (8. s _,),.,.,s is the same as that of (8;),_,..» , we have

a2/2 SV a2)2 S22

that (1.8) is also distributed as

(B, 0 ()%, 61 (2)* + %fﬁz (z) = 2€f($))weﬁ,o<t<Tﬁm

a2/2
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where
Tﬁ’a = ll'lf{t € [07 Tf2/2]|¢(0) (ﬁt) =0andVse (ta T§2/2]7 Bs # ﬁt}

We prefer the time-reversed presentation (1.9) as we imagine the Brownian path
(Bt)g<1<,# being reconstructed from its end by starting from the final condition
=USTa2)2

(6 (@)?)sen for (6@ (2)? + 26/ () ser.

One could also extend the definition of the self-repelling diffusion to metric graphs,
where it is again related to the inversion of the Ray-Knight identity. The proof would be
essentially the same as for an interval. We won'’t detail it here. A metric graph is obtained
by replacing in an undirected graph each edge by a continuous line segment of certain
length, corresponding to the resistance of the edge. For background on Markovian
(non-selfinteracting) diffusions on metric graphs, see [4, 14, 36]. The Gaussian free field
on metric graphs was introduced in [22], in relation with isomorphism theorems.

Other works on self-interacting diffusions in dimension one

Now let us review some other works on self-interacting diffusions in dimension one
and their relations to ours. Two other Bass-Burdzy flows appeared in construction of
self-interacting diffusions. First, in [34] it was shown that the flow of solutions to

@y
du = 1v,>B,

was related to the Brownian first passage bridge conditioned by its family of local times
and to the Brownian burglar [35]. There the problem is similar to ours, i.e. constructing a
Brownian motion with some conditioning on its family of local times, yet it is different and
the processes obtained are different. Then, in [21] we constructed a linearly reinforced
diffusion on R out of the flow of solutions to

dY,
“ = —1y,-p, +1lv,<B,,
du

that is to say the signs are opposite to those in (1.5). The reinforced diffusion in [21] can
be considered as a dual of the self-repelling diffusion in the present paper.

Our self-repelling diffusion is different from the Brownian polymer models studied in
[10, 8,9, 24, 32, 5, 17], as here the interaction of the moving particle with the occupation
profile occurs locally, at zero range, and is not an average over positive ranges. In other
words, we do not mollify the occupation profile prior to taking its derivative. Also, for
that reason, we do not expect our process to be a semi-martingale as the above Brownian
polymer models, but only a Dirichlet process in the sense of Follmer [16], admitting an
adapted decomposition into a continuous local martingale and zero quadratic variation
drift, with the drift term not necessarily of bounded variation (see also [18] and [21]).
Our process is also different from the true self-repelling motion (TSRM) introduced by
T6th and Werner in [33], as our process, unlike the TSRM, has the Holder regularity
of a Brownian motion and does not exhibit a 2/3 scaling exponent. We do not know if
our process is related to the continuum directed random polymer introduced by Alberts,
Khanin and Quastel in [1].

Organization of the article

We will first prove Theorem 1.5, as well as Theorem 1.4 in the particular case when
the initial occupation profile is random, given by the square of the free field. The proof
relies on the restriction of continuous processes to discrete subsets and on taking the
limit of discrete space processes inverting Ray-Knight in the discrete setting. On one
hand these discrete space processes are embedded into a standard Brownian motion. So

EJP 26 (2021), paper 96. https://www.imstat.org/ejp
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the limit exists a priori and is a Brownian path. On the other hand one can construct out
of the discrete space processes discrete analogues of the divergent Bass-Burdzy flow
converging to the latter. Further, the proof of Theorem 1.4 for general occupation profile
will follow out of a path transformation as in Proposition 2.1 (1).
The reason why we do not proceed directly to the proof of Theorem 1.4 for general
occupation profile is that we need tightness and need the ratio
)\i’:)ﬁn) (z+27)

A g (@)

to converge to 1 as n — +oo, uniformly in (,t) on compact subsets. For ¥ = (¢(*))? this
is achieved by embedding the discrete space self-repelling processes into a Brownian
motion.

Our article is organized as follows. In Section 2 we will give some properties of our
self-repelling diffusion. In Section 3 we will recall how the self-repelling jump processes
of Theorem 1.4 appear in the inversion of the Ray-Knight identity on discrete subsets of
R. This is a result obtained in [20]. Using this we will prove in Section 4 the Theorem
1.5 and the particular case of Theorem 1.4 when \o(z) = A\i(z) = ¢(*)(x)2. In Section 5
we will prove Theorem 1.4 in general.

2 FElementary properties of the self-repelling diffusion

First, we give some elementary properties of ()Z't, At (%)) er.0<i<F- They are straigh-

forward and come without proofs. For proofs of analogous statements, see Proposition
2.4 in [21].
Proposition 2.1. (1) Let I and I* be two open subintervals of R. Let be ;\0 and 5\5
two admissible initial occupation profiles on I, respectively I*, and (X, \e(2)) ,c; o<p<iv
()Z't', A () yere 0<i<i» the corresponding self-repelling diffusions, starting from z, €
1, respectively z§ € I*. One can go from one to the other by a deterministic path
transformation. More precisely, let

So(z) = J No(r)tdr,x eI, So(x) = J No(r)"tdr,x e I°.

xo g

Let t — 60°(t) be the change of time
de* (t) = A5((55) ™" 0 So(X3))* Ao (X,) " 2dt.

Then then process ((55)—1 o 5“0()\5(9.)71(0),;\(9.)71@)(1;1 o v(}(x)))

same law as (X, ;\;(x))xel',ostsf"
(2)(Strong Markov property) For any T' stopping time for the natural filtration of
(X, . 7)t=0, such that T < T a.s., the process (Xt ¢, \r14+(x)) conditional on

sel* 0<t<o(T) Das the

wel 0<t<T—T"
the past before T, is a self-repelling diffusion with inital occupétjon profile Ap.

(3) Let a < b € I such that a < 9 < b. Let t,; be the first time t that )?t hits
a or b. We consider the stopping time t,; A T. Given a Brownian motion (By)us0-
Let U'®) e (0,+w] the first time B, — u hits So(b), whenever this happens. Let
UiSo(@) g (0, +c0] the first time B, + u hits Sy(a), whenever this happens. Then

P(tay < T,X,,, = b) = P(US0) < gtSoa)y,

Ptoy < T, X, , = a) = P(US@ < 15®),
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Pty > T) = P(UTS0®) = y+¥(@) — 4o0).
In particular,
P(toy <T,Xy,, =b) =Pty <T,Xs,, = a)
if and only if

X

b . o o o
j Ror)~dr = 5o(8) < |50(a)] = J So(r)~tdr.

o a
Next we state that our self-repelling diffusion depends continuously on the initial
occupation profile.
Lemma 2.2. Let (I),>0 be a sequence of open subintervals of R such that

nlirfw inf I, = inf I € [—o0, +0), nlirfw sup I = supI € (—o0, +0].

On each I, we consider ;\é" an admissible occupation profile, and we assume that for all
K compact subset of I,

lim sup |Ag — Agf| = 0.
k— 400 Kl

I In
Let (X;*, \* (x))mejk,ogtgf%

profile ;\(I)k. We assume that limy_, o )v(é’“ = )V(O € I. Then, as k — +0,

be the self-repelling diffusion on I, with initial occupation

(XTx A

tATI? e ATk (m)>$€1k,t20

converges in law to

()?mfv )‘tAT(x))zeI,tzo,

where the convergence is for the uniform topology int € [0, 4+c0), and uniform on compact
subsets of I for x.

Proof. This is an immediate consequence of Definition 1.3 and Proposition 2.1 (1). If
moreover all of the processes (X/*, A\ (@) per, 0<t<inn and ()Z’MT, A, 7 (2))aer t0 are
constructed of the same driving Brownian motion (Bw)uso (Definition 1.3), then the
convergence is a.s. Indeed, one uses the same process (gu)@(), and the change of scale
and change of time functions involved in the construction of (X;*, A!* (@) per, 0<t<iin

converge as k — +00. O

3 Inversion of the Ray-Knight identity on a discrete subset

Consider the triple
((b(O) (m)Qa /8t7 ¢(a) (x)Q)x’E]R,Ogth:Qm s

jointly distributed as in the Ray-Knight coupling (Definition 1.2). Let [ (gb(“)) be the
connected component of 0 in {z € R|¢(®) (z) > 0}.

Let Ef (x) be the family of local times of the Brownian motion ;. Let J* be a countable
discrete subset of R, containing 0, unbounded in both directions. Consider the change of
time

QUF(t) = ), ().
zel*®
Define X!* = B(gr*.#)-1(q), Where (Q”"#)~1! is the right-continuous inverse of Q”"#. It
is a nearest neighbor Markov jump process on J*, with jump rate from a vertex z; to a
neighbor x5 equal to the conductance

1
C(xl,.’lig) = 72|1’2 — x1| .

(3.1)
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Given z € J*, A" (x) will denote

q

A (@) = 6O + 2y (2) = @) 42 [ e

Next, for ¢ = 0, Ogj' will denote a function from pairs of neighbor vertices in J* to
{0,1}. Given x; < x2 two neighbors in J*, we will say that the edge {x1, 2} is open (at
time ¢) if OY ({z1,22}) = 1 and closed if O} ({x1,22}) = 0. O} ({x1,22}) is defined as
follows:

:ﬂ.
Op ({1131, 1’2}) = 1¢(“>(ac)2 has no zeroes on [z1,22]°

J° _
Oq ({xl’ x2}) - 1:1)(0) (m)2+2€fQ (z) has no zeroes on [z1,z2]’

18~ 1(a)

By construction, ((’)g’)t>o is a family non-decreasing in q.

Next we state that the joint process (XJ°, A", 0I"),- is Markovian and give the
transitions rates. For details we refer to Theorem 8 in [20].
Proposition 3.1. (X;f’ , )\g' , Ogj')q% is a Markov process. Let 1 and x5 be two neighbors
inJ*. If X} = xy, then:

« XI* jumps to z; with rate (2|zz — 21])~'. O} ({z1, 22}) is then set to 1 (if it was not
already).
« In case OY ({x1,22}) = 0, OF ({21, 22}) is set to 1 without X" jumping with rate

exp(—|za — 1| I (1) 2AY (22) 7). (3.2)

1 A (22)2
1

2|wy — @1 [ NJ® (1)

Forx e J°,
q

AV (2) = N (2) + 2f 1o, dr.
0

Proof. If X g' jumps through the edge {x1, 2}, then §; crosses the interval delimited by
and z», and then the local time of 3, on this interval is positive, and thus (’)f;' ({z1,22}) =1
after the jump.

As described in Section 2 in [20] and in particular in Theorem 8, the conditional
probability that O ({21, 25}) = 0, given (X", AI" (2))e1+ 0<r<q, and that O} ({z1, 2}) =
0, and that XJ* has not crossed the edge {z, x>} before time ¢, equals

exp(Ca1, 22) A (21)FN] (22)F — Clar, 22N (1) 2N (22) %),

q

where C(z1,x2) is given by (3.1). Thus, the rate (3.2) is obtained as

b L (1 B exp(C(x1, 22) A (21) 2N (22) 7 — Clar, 22)(A) (21) + 2Aq)2 A ($2)5)>
Ag—0+ Ag exp(C(z1, x2) A} (xl)%/\§° (1}2)% — C(z1,22)A) (xl)%)\g' (.’L‘g)%)

O

The fields ¢(©) and ¢( restricted to J* are discrete Gaussian free fields on J*. The
triple
(¢(O) (1’)2, X(}]] ) ¢(a) ($)2)I€J',O<q§QJ.’B(Tﬁ )

a2/2
satisfies the Ray-Knight identity on the discrete network J*. So in [20] one can find
a procedure inverting this Ray-Knight identity in the discrete setting. It corresponds
to a time reversal of the process of Proposition 3.1 from stopping time QP (7'52 /2).

This is explained in Section 3 in [20], in particular in Proposition 3.4 there. Note that
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the introduction of the variables (9‘” , as in [20], allows for a simpler expression of
the inversion procedure. This is related to the fact that ¢(9) (z1)¢(® (z3) > 0 whenever
O} ({x1,22}) = 1. The inversion procedure that does not keep track of the variables
(’);f' is presented in [27], and it involves more complicated expressions with conditional
expectations of relative signs.

Let J be a finite subset of R containing 0. Let us consider the continuous time discrete
space self-repelling nearest neighbor jump process on J, which has been introduced
in [20]. Let \} be a positive function on J. We consider the process ()v(;f, A (@))zen,q20,
where X ;]” is a nearest neighbor jump process on J, starting from 0, with time-dependent
jump rates from x; to a neighbor x5 in J given by

2|z — 21| Xg(wl)

1
2
) (3.3)
2

and
q

Al (@) = N (z) — 2L lgy_,dr. (3.4)
Let be O7 be a the random time coupled to ()V(g, Al (2))ze1,4>0 in the following way. If J

is reduced to {0}, then we set é‘]] = (. Otherwise, QJ is the first time ¢ when the integral

f 2 <|XJ1 mlz)h);(eXp“Xg‘x|_1§f(m)5ﬂf(5ff)5>—1)‘1>dr (3.5)

hits an independent exponentlal random variable of mean 1. The notation z < X J means
that z is a neighbor of X U in J. We will further explain where the definition of QJ comes
from. Note that a.s. the time Q7 fires before one of the )\g( x) reaches 0. This is due to
the fact that

1 _
VK >0, L Y] (exp(KrY/2) — 1)~ Ldr = +o0.

Next we describe the process (X ﬁ' , 5%'7(5‘3.)112() introduced in Section 3.3 in [20].

(531' is a function from pairs of neighbor vertices in J* to {0,1}. Given z; < z3 two
neighbors in J*, we set

Og ({$17x2}) = 1¢(“)(m)2 has no zeroes on [z,z2]*

~

X ;]1]‘ is a nearest neighbor jump process on J°. X %’ =0. ForzeJ°,
NYJ°® ( ) 2 q YT q
Ay () = ¢ () —2J0 1}?£.=mdr=)\0 (m)—2f0 1§£.=xdr.

Let z; and z» be two neighbors in J°. If)v(g' = z; and (7);]1]'({901,:52}) =1, then:

. X I° jumps to z, with rate
1 A (2)
202y — z1| NI (21)

Nl Nl

. 55'({x1, r3}) is set to 0 with rate

1 A (22)

|z — 21] :\;‘1]'(:101)

-1

[N S

(exp(\xg — xl\_lj\g.(xl)%j\g. (xg)%) — 1)

X £;0 jumps instantaneously jumps to x5 or stays in x; depending on which of the

two vertices remains connected to 0 by open edges in X ;}I'.
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~ e Yoyie

The process (X J°, \)°, 0"

7 \g 2 Jq=0 is defined up to time

or = sup{q = 0|/\J( p )>O}.

By construction, X g' is always in the same connected component induced by open edges

in O g' as the vertex 0. ((7) g.)ogqgél’ is a non-increasing family. It is easy to see that a.s.

)v(g' (Q7") = 0 and the edges adjacent to 0 are closed in (5‘]5.“..

_Letbe J* = J*n I(¢@)), I(¢¥) being as in Theorem 1.1. We consider the process
(XTI, A (2)) yeys oege o following the definition (3.3), (3.4) and (3.5), with J = J*,
XI* =0, and )?,f* = ¢@(x)?, z € J*. By construction, )?g' takes values in J*. One
can couple (X g.’:\g.’é‘g.)osqsé‘”' and ()v((‘]]]*,Xg*(x))mj*’ogqg@* such that on the event
0% +£ 0 (i.e. J* not reduced to {0},

O™ =sup{g = 0[O0} =0T},

and
w e e
Vge[0,Q" ], X =X .

Q" is the first time q when one more edge of J* is closed in 0 g'. Note that after time
0" the processes )Z';IH* and X g' do not coincide anymore.

Proposition 3.2 (Lupu-Sabot-Tarreés [20], Proposition 3.4). With the notations above, the
process
N~ J. VJI bl J].
(Xq a)‘q 7Oq )qugéﬂ'
has the same law as the time-reversed process

J* Je
(XQJ"*ﬁ(sz/Q)*q’/\QJ' (w2 -0 Oar o:2, ) -ao<a<@ 2, )

In particular, by considering (X g‘,j\ﬁ',@g')o . up to time O™ we get the
following:

Corollary 3.3. Let TY*.8:2 be 0 if J* is reduced to {0}, and otherwise,

<q<@’

TV e = 75, Jp—sup{t € [0, 72 )8 € (min J* max J*), 6 (8,) = 0 and Vs € [0,t), Bs # B}
Then, the joint law of

% J°
(7 ’¢(a)( ): XQ”' B(rh 29) q)xﬂ*aOSqSQ'“"ﬁ(sz/z)—Q'“'*ﬁ(‘rfz/z_f‘]*‘ﬁ'a)

is the same as the joint law of

u ~ ok
(J*7¢( )(m)ng );ceJI*,OSqSé'”*'

Proof. The identity comes from Proposition 3.2 and the fact that, in case J* is not
reduced to {0},

QY (rfy — TV ) = 1nf{q>o|o;f' or

and QY A( /2)}’

Q" () = QP (el = T

— sup {q € [0, (L NION e i 1y = Obe i 2/2)}. .

2/2)*11
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4 Convergence for squared GFF initial occupation profile

We use the notations of the previous section. First we will check that the condition
(1.3) is satisfied by \¥(z) = ¢(®)(z)2.
Lemma 4.1. A.s. we have that

sup I(¢(*))
J ¢ ()" 2dw = +o, J ¢ (2)"2dx = +o0.
inf I(¢(2))

Proof. Conditional on inf I(¢(®)), (¢ (inf I(¢\*)) + )/v2)o<r<|int 1(4(0)) /2 1S absolutely
continuous with respect to a Bessel 3 process starting from 0. So we only need to check
that given (p(z))z>0 a Bessel 3 process starting from 0,

Lp(x)_Qdaj = 40.

For h > 0, let x} denote the first “time” = when p(z) reaches the level h. Then,

fo Y o) 2 = > f p(a)"2dx.

k=0 Xg—k—l
By the strong Markov property of p, the sum on the right-hand side is a sum of positive
independent terms. Moreover, by Brownian scaling satisfied by p, these terms are
identically distributed. So the sum is a.s. infinite. O

Now we consider J* = Z,, = 27"Z, and J* = Z* = Z,, n I(¢\?). Let

Xt(n) = B(an,ﬁ)—l(znt).

Lemma 4.2. The process

(n) a 2 B B
Xz aqens(ra, o @ @) =26, (@) + 26 g y-s (@anon(rt, -2ty @)

a?/2 a?/2

zeZE,0<t< (27Q%F(rh, ) — 2P (rh, , — T#Pa)), (4.1)

a2?/2 /2

interpolated linearly outside x € Z¥, converges a.s. in the uniform topology to
(/87—[{ ) ¢(a) (T)Q - 2£56 (z) + 265& _ (x))ze]( (@), 0<t<T B (4.2)
a2/2 Ta2/2 Ta2/2 t [ )7 U=

asn — +o.

Proof. One needs to show that, on one hand, as n — +o0, a.s. (Q%"#)~1(2"t) converges

X

to ¢ uniformly on [0, 752/2], and on the other hand T%% . converges a.s. to 772,
The first convergence comes from the fact that

2 Y ()
T€E2~"Z
converges to
t=| 6 (z)dx
R

uniformly on compact intervals of time.
The second convergence comes from the fact that (min Z*, max Z¥) is a non-decreasing

sequence of intervals converging to [ (¢(“)), and thus, a.s., for n large enough, Tha —
TZ5:Be, O
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Let X*(") int be the self-repelling jump process on Z#, accelerated by the factor
2™, It is the same process as in Theorem 1.4, but with a random initial occupation profile

N () = 37 (@) = 69 (@), 0 € .

We will show that )Z't* ) converges in law as n — +o0 to our self-repelling diffusion. For
this we will use a method that appears in [21], and construct a discrete analogue of the
divergent Bass-Burdzy flow.

Proposition 4.3. Given ¢(%), let )v(t*(”) be the process on Z defined above, and

t
3O@) = 0@ =2 | Ay ds, wezi

Then, as n — +o0, the process

()?*(n) ;\*(n)

ta2-nQZE g a2—n OLH

() ezt 1500 (4.3)

interpolated linearly outside x € Z¥, converges in law to the self repelling diffusion
(Xf*/\ T*’ )\;kA T* (x))IGI@’(a))’t?O

with )v(g‘ = 0 and the initial occupation profile \}(z) = ¢(*) ().

Before proceeding to the proof of Proposition 4.3, let us explain how it implies
Theorem 1.5.

Proof of Theorem 1.5. On one hand, according to Proposition 4.3,

(X N () (4.4)

veZ¥ 0<t<2—n O%h

converges in law to

(Xt*7 5‘2‘ (‘r))zel(¢(a))70<t<'f* . (45)

On the other hand, according to Corollary 3.3, (4.4) has the same distribution as (4.1).
According to Lemma 4.2, (4.1) in turn converges a.s. to (4.2). This means that (4.5) has
the same distribution as (4.2), which is exactly what we want. O

Proof of Proposition 4.3. From Corollary 3.3 and Lemma 4.2 we already know that the
process (4.3) has a limit in law, but we want another description of the limit, which we
will obtain by convergence. We will need the triple

(¢ 0)( )? 5:&7(25 ( )Q)mER,OStSTfZ/Q’

jointly distributed as in the Ray-Knight coupling (Definition 1.2). We will also assume
that all of the X;k (") are defined on the same probability spaces, embedded in j; as in

Corollary 3.3.
We introduce (S*(n))(]<t<2*“ézilf a family of maps R — R, parametrized by ¢. For a

given n, the family is characterized by the following:

« For all z such that z and = + 27" are in Z#, and for all ¢ € [0,27 " Q%]
SEM (4 27m) — §F () = 27 XF ()2 X (g 4 27y s

.« S0 0) = 0.

» Foreveryx e Z}, t — S:‘( )( ) is constant on each time interval on which X = .
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« For each z € Z¥, t — 5" (z) is continuous.

» For each?t, §t* ™) js interpolated linearly between points of Z}.

* Below min Z?* and above max Z¥, x — 52‘(”)(1‘) has constant slope 1.
By construction, z — §t* "™ is continuous strictly increasing. We see §t* ™ as a time-
dependent change of scale. It has been constructed in such a way that the process
(S (X7#™)), is a local martingale; see Lemma 4.5 further below.

For z € I(¢(*) and t € [0, 7%/2), set

a

st = [0 -2, w2, )

0 Ta2/2 Ta2/2_

x — S¥(z) is an increasing diffeomorphism from I(¢(?) to R. Clearly, we have the
following

Lemma 4.4. A:s. 57" () — §¥(0) converges to Sf (x) — S (0) uniformly for (x,t) in

compact subsets of I(¢(*)) x [0,752/2). Similarly, a.s. (y,t) — (SF™)=1(y + ¥ (0))

converges to (y,t) — (SF)~*(y + S}(0)) uniformly on compact subsets of R x [0, 752/2).

Let be M™ = ¥ (X ™). Let t;g:,? be the first time X;"" hits min Z* or max Z?.
*(n)

-+ to avoid considering what happens after X ™) hits

We introduce the stopping time ¢
the boundary of the domain Z?.

(n)
Lemma 4.5. The process (th:‘z(;)mfnézi

n

)i>0 is a local martingale in the filtration of

o*(n) *(n)
(6, XtAz—néZ;“, oz 1tfz(i)<t)'
Proof. Indeed, consider the following stopping times for the above filtration: t,’:(") the
first time )v(:‘(n) performs k jumps, and

T = sup{t > |5\;k(n) ()v(t*(n)) > e} (4.6)

Then |M™ . - «|is bounded b
| t/\t:(mATE*(n)/\t:kZ(Z)/\2*"'QZ§§ | y

Olin

k27" (min 5\8‘(”) Ae)L
VA

n

Moreover,
sup 1500 A THO) 0 5D genGEE ) 9o o
kelN,e>0 n n
To see that (M () )t=0 is a martingale, observe that at time ¢, if

tAt;:(") ATE*(”) /\tj;%) A27T éﬁf

)Z't*(”) = x € ZX¥\{min Z*, max Z*}, th*(n) jumps left with rate

2n—1 5\:5(”) (z — 27“)%

A ()t

i

and then M™ decreases by

[N

2_”5\::(77,) ((E _ 2—n)—%5\:‘(”) (!L‘)_ ,
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and )V(t*(") = z € 7} jumps right with rate

22n—1 }‘:(n) (LL’ + 2—n)%

and then M™ increases by

so the average variation of Mt(”) is 0. O

Next we will apply a time-change which will make (M (”z* ) pgmn 7 )t=0 into a mar-

tingale with normalized variance. Let be
t
U (1) = J %;:w@:(n))% (R (K —97m)=2 4 R0 (K3 4 97~ ) s,
0

Let (™ = y™ (tzgfk) A277 ézi)‘ By considering the rate of jumps and the size of jumps
of Mt("), we immediately get the following:

Lemma 4.6. The process ((Mf("z*(n) pn 7 )2 — U™ (t) A U™) 5 is a local martingale
in the filtration of (¢(®, X (") oy ’fé*)lt*(;)gt).
ZTL
Let be

Lemma 4.7. (Z( )u<n>)“>0 is a martingale in the filtration of (¢(“),Z,(L"),Lvl(”)la(”)Su).
Moreover, for anyO < uy < Us,
E[(Z") oy = 2 0216 (28 ocucun U ™D 100, ] =
Efus A um up A Z/V{(n)|¢(a)’ (levz))oéuéu“u( )1a(ﬂ)<u 1, @7

or equivalently, the process ((Zf;i)a(n))z —u AU™), > is a martingale in the filtration of
(¢(a)7 Z1(Ln) ) u(n) 117{(n)gu)'

Proof. First not that, since (Mt(”) )¢=0 is a bounded martingale, so

£V FE ) o n 32

‘n

Ju=0. Moreover, with the sizes of jumps and the jump rates,

is the average squared variation of Mt(

; (n)
is (Z - .

( unUM (5 AFFY A7 ()
(n)

one sees that dU,

change, for Z\",

(n) _ 7(n) (a
]E[(Zu2/\U<")(t;:(")ATj(”>)/\Z/V{(") ZUI/\U(">(t*(rL)AT*(rL) /\Z/{(”)) |¢

") during dt. So after the time

(qun))oéuémvg(n)lz/v{(n)gul] =
Eluy A UM M A TH) A0 — gy A UM (A T A ) g
(Zgn))oiuéul’u(n)lz,v{(n)gul]'

(n) . . . %
For a fixed u > 0, (ZU/\U(")(t*(") ) i ,Jk>1 is a martingale parametrized by k € IN*.

It converges a.s. to Z (n) and is bounded in L2, so the convergence is also in L2, It

ALL(P)

follows that (Z(")M(n) )@0 is a martingale and (4.7). O
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For e > 0 and n € IN*, we consider 72" the time defined by (4.6). Let be (Z{""),0

the process, which up to time U (Tf (")) A U™ coincides with Z&"), and after that time
(n)

D) (F)) A7) conditional of

continues as a standard Brownian motion starting from Z
that value independent of everything else.
Lemma 4.8. As n — 4+, the pair (¢(‘1),ZS"’E))U>0 converges in law, for the uniform

convergence on compact subsets, to (¢(“)7 B,)us>0, where (B,,).>0 is a standard Brownian
motion starting from 0, independent of ¢(®).

Proof. The convergence of (Z(Ln’e))uzo to (By)us0 follows from Theorem 1.4, Section 7.1
in [13]. To apply it, we use the following:

. (25,"76))»“20 is a martingale.

o ((Z{"9)2 — u)ys is a martingale by Lemma 4.7.

« The jumps of (Z\")), are bounded by 27" (mingx A" A £)=1, and in particular
lim E[max(éﬁ"’g) — Zl(ﬁ’g))Q] =0.

n—+o0 u=0

The independence of (B,).>o from ¢(® follows from the fact that the above listed three
conditions hold after conditioning by @), O

We stress that in Lemma 4.8 we neither require (B, ).>0 to be defined on the same
probability space as the Xt*(") and (¢ (z)?2, B, 0¥ (z)?)

gence to be in probability.
Let be, for t € [0, T79],

zeR.0<t<s?, » DOT the conver-
O<t<T),

t
U = [ @6, =20, (B )+ (B ) s,

-
0 a?/2 2 a2/2 2

and

(B,s

T = suplt > 00 (B,s =200 (B )+, ) = e

a2/2 a2/2 0228
Clearly, we have the following:

Lemma 4.9. For all ¢ > 0, a.s., T&'™ converges to T, UM (t) A UM (TF™) A 11
converges to U(t) AU (T5+%) uniformly on [0, +o0), and (U™)~ (u) A T2™ /\t:g%) A2 QL
converges to U~ (u) A T/ uniformly on [0, +0).

Next, for u e [O,Zj(”)), we define

T (y) = S 0 (S5 M), yeR.

By simple computation, we have the following:
Lemma 4.10. Foru € [0,1{™) such that Z{" = Zf;i), we have the following expressions

G~ n
and bounds for ~— b )(y):

ou
oY (n n 0 % n
e if B (y) = 25, a—u\p& )(y) = 0;
- U (y) € (287, 55 (K 27,
0 §n
0< %‘I’SL '(y)
< UE) =)\ (U))~1(u) .
y*(n) *(n) _ny—1 y*(n) > (n -1
A1 Ky = 2778+ Ny o Ky + 2778
EJP 26 (2021), paper 96. https://www.imstat.org/ejp
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- iU (y) = S X L 27
0 ~
) —
2 Y (W)
#(n) F(n) “ny-d
2A (i)~ 1<u>(X(U(n>) <>+2 ) .
L (n) v*(n) o —1 (1) —ny—1’
/\(U("))*l(u)(X(U("))*l(u) -2 : +/\(U<">) 1(u)(X(UW)*l(u) +27m)7E
e it () € (S5 (XA Ly — 27 28,
J % n
0> (Tu‘l’q(t ) (y)
Sx(n) —ny—1
> 2N 1 Ky 1 ~ 27 .
{*(n) v#(n) —ny—1 {*(n) v¥(n) _ny—1"
Awmy-1wE @m0y = 2772 T A g w X ey @ T2 72
< iU () < SXE L — 27
d -
ZgM™(y) =
2 Y W)
vk (n —ny—1
—2\ ) 10 )(X<*r§<3>) vy 277
*(n) 2 Y ) o) T
N (X =277 E AR g Ky -y + 277

(Um)=H () N (U )=1 (u)
Fore > 0, let \Tl("’s)( ) be defined as follows. For u e [0, U™ (TF™) Az, T () =
\Tlg")( ). For u > U™ (TF™) A 1™, B () is a divergent Bass-Burdzy flow driven by

Z&" ¢} (which is then a Brownian motion) satisfying

U
T(e) () _ gy(me) _ N N 1. N
v () \IJU(")(TE*(n))AZ/{V(”> () JU(”)(TE*(M)AZ;W(l‘lfi’L’a)(y)>Z§"’E) l‘llr(u"’”(y)<Z§"’5))dv'

Lemma 4.11. For alle > 0, as n — +0, the family
(61 (), Z&9, 509 (y), (D)7 () zer yer,uz0 (4.8)

converges in law to, for the topology of uniform convergence on compact subsets, to

(69(2), Bu, Vo (1), (W) " (1)) 2eR yeR w0,

where (B,).>0 is a standard Brownian motion starting from 0, independent of @,
(V. )us0 is the divergent Bass-Burdzy flow driven by (B, ).>0, and ((¥,)~!).>0 the inverse
flow.

Proof. For this, first we will show the tightness of the family. For the tightness of the
functions (¥4 (y))yer a0, we use that, for u < U™ (7™ A 77

B () = (S 1 © (55 W) = Sy 1. (O))

— (S 1y K 1) = Sty 1y O)) + 29,

each term havmg a limit in law by Lemmas 4.4, 4.8 and 4.9, and that after time
U (T 1™, §) is already a Bass-Burdzy flow. Similarly for (¥5"%)~(y))yer.us0.

EJP 26 (2021), paper 96. https://www.imstat.org/ejp
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Further, because of the identities and bounds of Lemma 4.10, any subsequential limit of
(4.8) is of form
(¢(a)($)7 B, \Ilu(y)7 (q}u)_l(y»ze]R,ye]R,u}m

where (B, ).>0 is a standard Brownian motion starting from 0, independent of #@, and

\iju(y) = L (1\ilu(y)>BU - 1\ilv(y)<Bv)dv7 (49)

and thus by the uniquennes proved in [3], Theorem 2.3, (\I’u)u>0 is the divergent Bass
Burdzy flow driven by (B, ).>0. To get (4.9), we used that

A (x+277)

t/\’lv"a*(") o
j\j/(\?;k(n) (x—27m)
(a) 9—"n)2 _ 9 3 9—n 2 B - 9—n
Pt ) 6752/2 @+ )+ E(QZ"'5)*1(QZ"’B(752/2)—2"MT*(”)) (+ )
a _9—n\2 _ B _9—n B8 _9—n
¢ )(x 27 2 52/2 (z—27) + 2K(QZ”'ﬁ)*l(QZ""3('{2/2)*2"15AT”‘(”))(x 27)

a.s. converges to 1 as n — +00, uniformly in ¢ and uniformly for = in compact subsets of
I(¢). =

We are now ready to finish the proof of the Proposition 4.3. By construction,

() . (g1 (e R Y
(U<n>)—1(u)ATE*<“’>At*Zﬁ)Az—ngZi'i (So™) ™ o uAU<n>(T:<(">)Au<n>) ( uAU«n)(T:‘("))Awm)
0! n

We have that the process ((S;")=1 o (F{")=1(Z{))),~0 converges in law to the
process ((S&)~1 o (¥,,)~}(Bu))us=0, which appears in Definition 1.3, and out of which one

constructs )Z';k ") by the change of time

t
U*(t):J NE(XF)2ds, te [0,T).
0

We will also denote
T# = sup{t > 0)AF(X}) > e}

g

We use the fact that, as n — +00, the joint processes

~ - -~ -
(T A t;‘%g A2 U (THM) A ()

*(n) {*(n)

XtATE*(n) /\t*(;> A2 QZ:': ’ t/\’lv“g*(n) /\t:Z(Z) A2~ ézﬁ (x)’

n

UM () A UD(TE) A ()1 u) A T A5 A2 Q2) 0o (4.10)

oz*

converges a.s. to

(T2, U(T9"),
—TBey ¢(a) (33)2 - %fﬂ (z) + 207 A G _ﬂa,a)(ﬂﬁ),

6 B _ B
(Ta2/2 PR (Ta2/2 a2/2 (Ta2/2 a2/2

Ut) A UTE), (U) " (W) A TP aer (@) 420 us0-

If we add to the family (4.10) the processes (¢(9)(z)?, B, () (z)?) s and

xER,O<t<7a2/2
((SEM) =1 o (BN =1(Z{"9))) 0, we get a tight family which has subsequential limits
in law as n — +0o0. Because of the constraints satisfied for finite n, any subsequential
limit in law will satisfy:

EJP 26 (2021), paper 96. https://www.imstat.org/ejp
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. j'/'s* — jfveﬁ,a'

% _ Tk
. ;= 6(7’([:2/2—1‘,) fOI' t < Te ;

. éfﬁz/ (z) — Efgz/ t(x) is the local time process of X} for t < 71*.
a</2 a</2

So we get the equality in law between

(X}, 0@ (I)Q)ze]R,OstSTs*

and

(/6(7—([:2/2_t)7 ¢(a) (x)Z)xER@Sthf’"’ .

Taking € — 0, we get the equality in law between

(X, 0l (x)Q)ze]R,OStST*

and
a 2
(6(7’52/2 —t)’ ¢( : () )$E]R70<t<fﬁ’“ ’

This finishes our proof.
Note that a posteriori, once the above identity in law established, one can show that

~

the Brownian motion (B, ).>0 driving the self repelling diffusion (X;*) g, <<+ Canbe

constructed on the same probability space as (¢ ()2, 8;, (@ (z)?) , and the
/2

zeR,0<t<7?,
a

(n) .
convergence of (ZuAU(")(T;k(n))AZ/VN"))u}O to (BuAU*(i*))@O can be upgraded from in law
as in Lemma 4.8 to almost sure. However, in our proof we avoid using that a priori, and

only rely on the convergence in law. O

Combining Theorem 1.5 and Proposition 2.1 (1) one immediately gets the following:
Corollary 4.12. Let be the triple

(6 (2)2, By, ¢! (I)Q)mEROQSTf?/Z ,

Jjointly distributed as in the Ray-Knight coupling (Definition 1.2) and let I(¢(a)) be the
connected component of 0 in {z € R|¢(*)(2) > 0}. Let I be another, deterministic, subin-

terval of R and )\, an admissible initial occupation profile on I. Let (X, ;\t(x))xel o<t<T

be the self-repelling diffusion on I with initial occupation profile 5\0, starting from xg € I.
Let

Si(x) = J: o () 2dr, x € 1(¢'Y), So(x) = Ja Ne(r)~Ydr,z e I.

Zo
Lett — 6(t) be the change of time

do(t) = Ao(S5" o ¢ (8.5

a2/2

PO, )

/2

Then then process

~

-1 & a)\2 3 ¥el
(SO © Sg (67—:2/2—971(16)% ((QS( )) - 2€7_52/2 + 2&.52/2,971@)

~ ~

)((S§) "o So(m)))er,OStSQ(Tf)

has the same law as (X, Xt(x))xel o<t

Remark 4.13. Note that the process (3,5 _,) s has the same law as (5;)
a2/2 2

ost<r’, ogtgrfz/z'
so the two processes can be interchanged in Theorem 1.5, Corollary 3.3 and Corollary

4.12.
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5 Convergence for general initial occupation profile

In the sequel I, )v(t, A will denote the general setting, )v(t* and 5\;" being reserved
for the case \¥(z) = ¢(®)(x)?. Next we show that a discrete space nearest neighbor
self-repelling jump process as in Corollary 3.3, but with general initial occupation profile,
can be embedded into a continuous self-repelling diffusion.

Proposition 5.1. Let J be a finite subset of R containing 0. Let 5\£ be a positive function
onJ. Let be ()v(g], Xg(a:))weiosqg@,me nearest neighbor self-repelling jump process on J
introduced previously ((3.3), (3.4), (3.5)), starting from 0. Let qp3 the first time ¢ when
)v(,f reaches min J or max J.

Letp = SDX(’; be the Gaussian free field ¢(*), with a = 5\%](0)%, conditioned on ¢ being
positive on [min J, max J], and on ¢® (z) = A} ()2 for all z € J. In other words, p/+/2 is
obtained by interpolating between values \}(z)z /y/2 for consecutive points x € J with
independent Brownian bridges conditioned on staying positive, and by adding below
min J and above max J two independent Brownian motions, the first one time-reversed,
starting from A} (min J)z /y/2 and from X! (max J)z /+/2 respectively.

Let I(p) be the connected component of 0 in the non-zero set of ¢. Denote by

(vaAf(x))I€](¢),(]<t<Tw
the process, which conditional on y, is distributed as the self-repelling diffusion on I(y),
starting from 0, with initial occupation profile \{ () = o(z)?, T being the first time one
of the \{ (z) reaches 0. Let t5; be the first time t when X7 reaches minJ or maxJ.

Let be

QM (t) = ) I (w),
zelJ
where (¥ (x) = (A?(z) — A?(x))/2 is the local time process of X{. Denote (Q*¥)~! the
right-continuous inverse of Q”*¢. Then the process
(X110 Maror-1 (@) (Paerose=@ro (Fo)a@ro ) .1
has the same law as

(X720 (%)) 3 02235 ngnr- (5.2)
Proof. For (A}(z)),ep (0} not fixed, but random, distributed as (¢*) (2)?) ,eq 0}, ¢*) being
conditioned on being positive on [min J, max J], the identity in law is a direct consequence
of Corollary 3.3 and Theorem 1.5. To conclude that the identity in law disintegrated
according the values of (5\3 (7)) zem o} also holds, it is sufficient to show that both sides of
the identity, (5.1) and (5.2), are continuous with respect to (A} (7)) zem o}~ The continuity
of the law of (5.2) with respect to (A}(2))en (o) is clear from the construction. As for
(5.1), first the law of (¢(2))ze[min 7,max 1], heénce the law of (O} (7)) ze[min J,max 7], depends
continuously on (Xg(x))mejv\{o}, and second, according to Lemma 2.2, the law of (5.1)

depends continuously on (A (2))e[min J,max 1]- O

Proof of Theorem 1.4. We will first consider the case of I bounded. Without loss of
generality, we assume that 0 € [ and )Z'O = 0. We also slightly simplify by taking
)v(é") = )V(O = 0 for all n. Using the notations of Proposition 5.1, let be J(™ = 27"Z ~ I
and ¢ the conditioned GFF interpolating between (A\o(z)? ),y . By Proposition 5.1,
we can take

(n)

) _ e 1 () = X%
Xy = X(Q.ﬂ(n)&(n)),l(%t)a At () X(Q_I(n)'q,(n)),I(Qnt)(z)7 (5.3)
_ J](n)7 (n) ,~ (n) (n)
t<27"Q7 P (TY Athim),
(n) ~ _(n)
where t%,, is the first time X/ hits min J) or max J™).
EJP 26 (2021), paper 96. https://www.imstat.org/ejp
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Lemma 5.2. As n — +, (¢ (z)),e; converges in probability to (A(z)?).e; for the
topology of uniform converge on compact subsets of I.

Proof. Indeed, given K a compact subinterval of I and n large enough so that K <
[min J (") max J (”)], one will obtain (™) by first interpolating linearly between the values
of (Ao(2)2),cy(m, then by adding of order 2" independent bridges from 0 to 0 of duration
27", each conditioned by a positivity event. The minimal probability of an event by which
we condition will converge to 1 with n. Moreover, for an unconditioned bridge, the
probability to deviate more than ¢ from 0 is O(exp(—k2"¢?)), for a constant k > 0. This
beats the 2" factor. O

SR Lo

Lemma 5.3. As n — +w, the process (X?

. . w (T >0 con-
EATe™ g2 e e (@))acr 20

3(n) 21(n)

~

verges in law to (X, 7, 5\“7‘(@)9@61,@0-
. (n) .
Proof. Indeed, by Lemma 5.2, (\] (z))zes converges in probability to (Ag(x))zes for
the topology of uniform convergence on compact subsets, the law of the self-repelling
diffusion depends continuously on the initial occupation profile (Lemma 2.2), and the

~

range of (X, )¢>o is a.s. a compact subinterval of I. O

Lemma 5.4. As n — +0o0, simultaneously with the convergence in law of Lemma 5.3,
we have that t > 2 7Q"" ¥ (t A o™
uniform topology.

Q) <
A t5iw) converges in law tot — t A T for the

Proof. To simplify, we will assume here that all the

~ (n) v ,(n)
¥ ®

n - n) \L))zel,t=0

() t/\T4’(n)At“p( ) ( )>

Fip(n) o
tATY Atal(") a3(n)

and ()Z'MT, me(x))ze[’go live on the same probability space, constructed from the same
driving Brownian motion (B,,),>0, independent of the (™ This is always possible to do.
Write

- (n) () > o(n) e <o MR CD)
27QN T ATET) = 27 Y (N (2) = A ) (@)
zeJ(n)
—n— v o™ N v ,(n) -
= 9! Z Ay (m)—)\O(x)—/\fATW(m(x)+)\“f(x))
zeJ (™)
427t Z (5\0(:5)—5\“:71(,@)).
zeJ(n)

We have that

zeJ(m)

converges a.s. to t A T, uniformly of [0, +00). Moreover,

27 Y 8 (@) = Ko@) = X () + A (@)

taTe(™
zeJ(n)
1 <o) . < () .
<Oy s 1867 @) = Jolw) = 3 () + 4, 5l

|I| being the length of I, and the right-hand side converges in probability to 0. Finally,

(n) ~ (n) . iy .
thJ(n) > T% ~ with probability converging to 1. O
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Lemma 5.5. Asn — +, the process

X {(n)

ta2=m QUM oM (Tl At“’((nj))’ ta2-n @I e (Felm) 1y
AN

o(n) (x))xej(ﬂr>,t>o

23

~ -

converges in law to (X, 7, A, #(%))zer,t>0-

Proof. This follows from (5.3), Lemma 5.3 and the convergence of

R TCOICY) S o
t—27"Q AT /\taj(n))

inlawtotrst AT (Lemma 5.4). O

To finish the proof of Theorem 1.4, observe that by Lemma 5.5,

P 3 ; X . .
2-nQIM oM (Fe(m) , pol >)( 2-n QI (M) (T g J))

21(n) o1(n)

converges in probability to Az ( vf) = 0, thus 7™ < 27 @7 ™ (T*"(n) A t(f;?;i)) with
probability converging to 1.

Finally, if I is unbounded, it is enough to consider an increasing family of bounded
subintervals of I which at the limit gives I, as the range of X a7 IS as. bounded. O
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