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A SIMPLE PROOF OF CONVERGENCE FOR
AN APPROXIMATION SCHEME FOR COMPUTING
MOTIONS BY MEAN CURVATURE*

GUY BARLES' AND CHRISTINE GEORGELIN'

Abstract. We prove the convergence of an approximation scheme recently proposed by Bence,
Merriman, and Osher for computing motions of hypersurfaces by mean curvature. Our proof is based
on viscosity solutions methods.

Key words. motion by mean curvature, approximation scheme, viscosity solutions

AMS subject classifications. 65N12, 35K65, 53C21, 76T05

1. Introduction. Recently Bence, Merriman, and Osher [4] proposed a very
simple (and therefore very tricky) approximation scheme for computing motions of
hypersurfaces by mean curvature. The aim of this work is to rigorously show that
the discrete motion computed by this scheme actually converges to the continuous
motion by mean curvature in some suitable sense.

We first describe the Bence, Merriman, and Osher scheme. Let €y be a smooth
bounded domain in JRY; one wants to approximate the motion of T’y = 8¢ with a
normal velocity equal to its mean curvature. We denote by h > 0 the size of the time
step and we compute for n € IN functions up(.,nh) defined in RY in the following
way.

e Initialize the process by setting

up(z,0) = 1o, — log in RN,
e Define up(.,nh) by induction through the formula
up(z, (n + 1)h) = sign(S(h)un(., nh)(z)),

where the sign function is defined by sign(t) = 1 if ¢ > 0, —1 otherwise and where
S(.) stands for the semigroup associated with the heat equation.
In other words, at each time step, solve the heat equation

(1) %—IZ’—szo in RN x (0,h)

together with the initial data
w(z,0) = up(z,nh) in RN,
Then define ux (., (n + 1)h) by

1 ifw(z,h) >0,
—1 otherwise.

un(@, (n + 1)h) = {

This algorithm generates functions up(.,nh) for n € IN and open sets 7, defined by

N
up(z,nh) = lor, —1(on e in R".
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APPROXIMATION OF MOTIONS BY MEAN CURVATURE 485

We prove here that, when h — 0, the discrete motion T'g — I'*, = 8QF, converges in
a suitable sense to the motion 'y — T';, which is the motion with a normal velocity
equal to mean curvature.

To be more specific, we first briefly recall a few facts on the recent approach to the
problem of motions of fronts. In a series of articles, Evans and Spruck [10] (see also
Chen Giga, and Goto [5]) give a rigorous justification of numerical ideas introduced
by Osher and Sethian [13] for defining and studying a weak notion of motions of fronts
by mean curvature (and, in [5], by other types of geometrical law of propagations).
This is the so-called level set approach, which can be described in the following way.
Using the notion of viscosity solution of Crandall and Lions [8], it is possible to give
a suitable sense to the equation

du (D?>uDu|Du)

(2) — —Au+

T Dup? 0 in RN x (0,400) ,

and to prove that the associated Cauchy problem is well posed in the space of uni-
formly continuous functions. We refer the reader who is not familiar with viscosity
solutions to the “user’s guide” of Crandall, Ishii, and Lions [7].

We now denote by u the unique solution of (2) associated with the initial data

(3) u(z,0) = d(z,To) in R,

where I'g = 8Qg and d is the signed distance to I'y which is positive inside Q¢ and
negative outside.

The basic result, in this framework, is that the sets Q; = {u(.,t) > 0} and
I = {u(.,t) = 0} do not really depend on the choice of the initial data provided it
assumes the same strict signs as d(z,Tg) in RN . Therefore the evolution of the level
set To = {u(.,0) =0} — I'y = {u(.,t) = 0} is purely geometrical since it depends only
on I'p and on the sign of the initial data, which make clear the expressions “inside I'g”
and “outside I'g.” Moreover one can easily check that, in the case of smooth solutions
(typically uo smooth with a smooth O-level set and for small time) the motion of T
is indeed a “strong” motion by mean curvature.

However, this approach faces a difficulty due to the fact that I'; may become
“fat”: this is the so-called nonempty interior difficulty. This difficulty—but not only
this one—will cross our problem in the following way, explained by a result from
Barles, Soner, and Souganidis (2]

THEOREM 1.1 ([2]). There ezists a unique solution of (2) with initial data 1o, —
loe iff Uyso Tt X {t} = 0{(z,?); u(z,?) > 0} = 8{(z,t); u(z,t) < 0}.

This result will play a crucial role in our convergence result. Indeed, the problem
with initial data 1g, — lgg turns out to be the problem approximated by the Bence,
Merriman, and Osher scheme. Since Theorem 1.1 means that this problem is not
well posed if the empty interior difficulty occurs, we will get the full convergence only
when it doesn’t occur. In fact, the condition appearing in Theorem 1.1 is stronger
than saying that the set | ), I+ X {t} is of empty interior: it rules out configurations
where some part of the set {u = 0} remains included in the interior of the set {u > 0}
or the set {u < 0} for some time. On the contrary, if this condition holds, this means
that the position of the front is known as soon as we know which points are inside
the moving front, i.e., the set {u > 0}, or which points are outside the moving front,
i.e., the set {u < 0}. A general discussion of this condition and the nonempty interior
difficulty is given in [2] and several results are given that ensure that this condition
holds for motion by mean curvature and also for different types of motions.



486 GUY BARLES AND CHRISTINE GEORGELIN

To state our result, we use the classical notation in the theory of viscosity solutions

liminf, up, (z,t) = liminf wug(y,nh)
y—z
nh —t

and

lim sup* uy (z,t) = limsup ux(y, nh) .
i 2 4

Our result is given in the following theorem.
THEOREM 1.2. Let §; and I'; be defined as above. Then, for allt >0

liminf, up(z,t)=1 inQy,

limsup® un(z,t) = -1 in (QUTL).

Theorem 1.2 shows that the scheme gives the correct answer by putting 1 in the
region inside the front ({u > 0}) and —1 in the region outside the front ({u < 0}).
Conversely, a natural question is whether the regions where uy, goes to 1 and —1 are
exactly the regions inside and outside the moving front, respectively. In general, the
answer is no as it can be seen easily if the front develops an interior. In fact, the
answer is yes if and only if the condition of Theorem 1.1 holds. In this case, we have
the following more precise corollary, which explains in which sense the discrete front
converges to the continuous one. To state it, we denote by F the set | J,,o ¢ X {t}
and by F" the set |J, o ), % {nh}.

CoRrROLLARY 1.3. If ;5o x {t} = 8{(z,t); u(z,t) > 0} = 8{(=,?t); u(z,t) <
0}, then F* converges to F in the sense of the Hausdorff distance.

The proof of Theorem 1.2 relies on the general approach for proving convergence
of numerical schemes by viscosity solutions methods presented in Barles and Sougani-
dis [3]. The surprising fact here is that the difficulty comes from the consistency
requirement on the scheme and the main step in our proof will be to prove this con-
sistency.

After our work was completed, we learned that L. C. Evans [9] obtained the same
result using a nonlinear semigroup approach. Our difficulty with the consistency
requirement appears in his work for the determination of the infinitesimal generator
of the limiting semigroup. Computations related to ours have also been made by P.
Mascarenhas [12], who checked that for smooth initial fronts the speed is correct,
which is again related to our consistency difficulty.

2. On the definition of viscosity solutions for the mean curvature equa-
tion. The aim of this section is to give definition equivalent to the classical one since
we need it to prove the consistency of the scheme. Definition 2.1 recalls the classical
one.

DEFINITION 2.1. A locally bounded upper semicontinuous (usc) (respectively,
lower semicontinuous (lsc)) function u (respectively, v) is a viscosity subsolution
(respectively, supersolution) of (2) iff V¢ € C?(RNx (0, +oc)), if (z,t) € RV x (0, +00)
is a local mazimum point of u — ¢, one has

99

(D*¢Dg|D9)
at

. [Da?

(z.5) - (Ag - J@H <0 if D(z.t) £0,
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or

(5) %(I’ t) - Ad)(l‘, t) + )\min(Dzé(z’t)) < 0 Zf D¢(I,t) =0,

where )\mm(D2 @(x,t)) is the least eigenvalue of D?¢(z,t). (Respectively, V¢ € C?(IRNx
(0, +00)), if (z,t) € RN x (0,400) is a local minimum point of v — ¢, one has

2,

(6) %(m,t) - (A¢> = (ﬂ%jf%’@)(at) 20 if Do(z,t) #0,
or

(7) %?(z:,t) — A¢(2,t) + Amax(D?¢(x,1)) 2 0 if Dé(z,t) =0,

where Amax(D?@(z,t)) is the principal eigenvalue of D?¢(z,t).)

This definition comes from the general definition of viscosity solution for discon-
tinuous Hamiltonians first given by Ishii [11] (See also the “user’s guide” [7]). Here
we have to treat the discontinuity which appears in the equation for D¢(z,t) = 0.
We recall that, in this definition, we may replace “local” by “global” or “local” by
“local strict” and “global” by “global strict” without changing the notion. We will
often use this capability.

We need an equivalent definition which eliminates, at least partially, the difficulty
related to the fact that D¢(z,t) may be equal to 0.

PROPOSITION 2.2. A locally bounded usc (respectively, lsc) function u (respectively,
v) is a viscosity subsolution (respectively, supersolution) of (2) iff it satisfies (4) and

(5" gf (x,t) <0 if D¢(z,t)=0 and D3?¢(z,t)=0,
respectively, (6) and
(7" aaf(x t)>0 i Dé(z,t)=0 and D3¢(z,t)=0.

The result of the proposition implies that no property has to be satisfied when
D¢(z,t) = 0 and D?@(z,t) # 0; this will simplify our checking of the consistency
requirement.

Proof. We treat only the subsolution case since the other one is completely anal-
ogous. Let u be a locally bounded function which satisfies (4) and (5'). Let ¢ be a
C2-function on R" x (0,+c0) and (z,t) be a strict local maximum point of u — ¢.
The only difficulty is when D¢(z,t) = 0 and ‘D?¢(z,t) # 0 since no property is a
priori supposed to be satisfied by w in this case.

In this case, we consider the function

.4
Yol 0, t) = u(a,t) - ZH

- d(y,t),

where ¢ is a parameter devoted to go to 0. Since (z,t) is a strict maximum point of
u — ¢, one proves easily that there is a sequence (z¢, ye, te) of local maximum points
of 1. converging to (z,z,t). We have in the y variable the classical properties of a
local maximum point

4(535 - ys)lxs - yslz
>

Dé(ye, te) =
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and

Te _y€|2Id_ 8(376 _ys)® (ze _ys)

£ £

4
D2¢(ysyte) > - |

Two cases may occur.
1. D¢(ye,te) = 0. This implies z. = y.. We fix y = y. and we argue in the
z-variable: using that u satisfies the property (5) we get

o
4 8_(;;(1/57 ts) <0,
but since D?¢(ye,t.) > 0, this implies
0% 2
E(ysat!?) - A¢(y51ts) + )\min(D ¢(y57t€)) S 01

and we complete the proof by letting € go to 0.
2. D¢ (ye,te) # 0. We remark that (z.,t.) is a maximum point of

IIE - y5|4 _

(z,t) — u(z,t) — .

¢(‘,L‘ - (IE - ys)vt)v
and using (4), we obtain

0¢
E(ysvts) - (A(ﬁ I

We conclude by letting € go to 0, remarking that

.. . (D*¢D¢|D9)
hmEmf Do

(D*¢D¢|D¢)

|D¢|2 )(yEatE) <0.

(y&" te) 2 )‘min(D2¢(y7 t))

The proof is complete. O

3. The convergence proof. We borrow here arguments from [3] to be as self-
contained as possible.

The main step consists in proving the following proposition.

PROPOSITION 3.1. The functions limsup* up and liminf, up are, respectively,
viscosity sub- and supersolutions of (2).

We first complete the proof of Theorem 1.2 assuming that the result of Proposition
3.1 holds. The basic tool is the “uniqueness” result of [2]. Indeed, if u is defined as
in the introduction and if we denote by sign* and by sign, the usc envelope and the
Isc envelope, respectively, of the sign function in IR, it is proved in [2] that

1 if u(z,t) >0,
—1 otherwise,

sign* (u(z, t)) = {

and

1 ifu(z,t) >0,
—1 otherwise,

sgn. (u(z. ) = {

are the maximal subsolution and the minimal supersolution, respectively, of (2) with
initial data lg, — lg. Therefore any subsolution v and any supersolution w of (2)
with initial data 1o, — log satisfy

v(z,t) < sign*(u(z,t)) in RN % (0,+00) ,
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and
w(z,t) > sign, (u(z,t))  in RY x (0,+0) .

We apply these inequalities to limsup* u; and liminf, wy, respectively:

(8) lim sup® ux(z,t) < sign*(u(z,t)) in RN x (0,+00),
and
©) liminf, ux(z,t) > sign, (u(z,t)) in RN x (0,400).

Since uy, takes values in {—1,1}, inequality (9) implies that liminf, up = 1 in ; =
{u > 0} while inequality (8) implies that limsup* ur = —1 in {u < 0}. The proof of
Theorem 1.2 is complete. O

Notice that another consequence of (8) and (9) is that, where lim sup* up(z,t) = 1,
sign*(u(z,t)) = 1 or equivalently u(z, t) > 0 and, in the same way, sign, (u(z,t)) = -1
or u(z,t) < 0 where liminf, up(z,t) = —1. If the condition of Theorem 1.1 holds, the
set (J;50 't X {t} just appears as the boundary of the sets where up goes respectively
to 1 and —1 and our result is really complete in this case. Otherwise, we lose some
information: if | J,5 o T+ x {t} has a nonempty interior, we do not know the asymptotic
behavior of uy on it. If there are parts of the moving front inside the interior of the
sets {u > 0} or {u < 0}, they can be dropped out by the scheme.

Now we turn to the proof of Proposition 3.1. We detail only the case of lim sup* us,
since the other one is completely analogous. Curiously the difficulty will come from
the consistency requirement, which is usually the easiest property to be checked.

We set T = limsup* uy. Let ¢ be a smooth test function and let (z,t) € RN x
(0,400) be a strict global maximum point of % — ¢. Since the notion of viscosity
solution is local, we may assume without loss of generality that

(10) liminf ¢(z,t) =400 .
|x|4+t——4o00

This property will eliminate any difficulty coming from the unboundedness of the
domain.

If u(x,t) = —1, since u is usc and takes values in {—1,1}, then = —1 in a
neighborhood of (z,t) and thus

o¢

D¢(z,t) =0, D%*¢(z,t) >0, =

(z,t) =0,

and therefore we have

%(m,t) — Ad(z,t) + Amin(D?¢(z,t) < 0.
The conclusion is obtained in the same way if (z,t) is in the interior of the set {7 = 1}.
So we may assume that (z,t) is at the boundary of this set.

We first notice that limsup® u; = limsup*® u} and therefore we can work as well
with u}. By Lemma A.3 in the Appendix in Barles and Perthame [1] and because of
(10), there is a subsequence (z,nh) converging to (z,t) such that

up(Th, nuh) — &(zh, nuh) = By (up, — @) ,
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and
u}*l(xha nhh) —* 1 :

We use here the fact that uj is usc and this is the reason for considering it.

Since uy, takes its values in {—1, 1}, the convergence of uj(zp,nrh) to 1 implies
that u} (zp,nph) = 1 for h small enough. Moreover, for such h, the fact that (z,,nh)
is a maximum point reads

up(z,nh) < 1— ¢(zh, nrh) + ¢(z, nk),
for all z € RN and n € IN.
The consequence is the following: if u} (z,nh) = 1, necessarily ¢(z,nh)— ¢(zn, nph)
> 0 and finally
u}(z,nh) < sign*(¢(z,nh) — d(zh, nrh)).

If u} (z,nh) = —1, the same inequality is true. Moreover we notice that, since

un(z, nph) = sign* (S(A)ur(., (np — 1)h))(z) in RV,
we clearly have

un(z,nrh) < sign* (S(A)uk(., (nn — 1)A))(z) in RY,
and finally, since the right-hand side is usc,

uji(z,nph) < sign® (S(h)uj (., (np, — 1)h))(z)  in RY.

Therefore, using this property for £ = z, and according to the monotonicity of
S(h) and the sign function, we have

1 = uj(zp,nph) < sign® (S(h)u;;(., (np, — 1)h))(:vh)
< sign* (S(h)[sign* (&(., (nn — 1)h) — ¢(zn, nrh))](zn)),

and this is equivalent to
(11) S(h)[sign*(&(., (nr — 1)h)) — &(zh, nrh))|(zn) = O.

The remainder of the proof consists of proving that this last inequality implies

99 (D*¢D¢| Do) :
(12) 2ot - (86 + D )@ <0 if Do(z,t) £ 0,
or
o¢ : 2
(13) EE(x’t) <0 if D¢(z,t) =0and D*¢(z,t) =0,

according to the equivalent definition we gave in Proposition 2.2.
Remark. By the construction of the scheme, uy, is Isc and therefore the arguments
for the supersolution are simpler (construction of minimum point, etc.).
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4. Consistency of the scheme. To simplify the proof of (12) and (13), we are
going to replace the sign function by the function (sign(z) + 1)/2. Essentially —1 will
be replaced by 0, 1 remains 1, and the central role of 0 is now played by % We denote
below by C%! (IRN x (0,+00)) the space of C2 functions in = and t with Lipschitz
continuous second derivatives.

We prove the following proposition.

PROPOSITION 4.1. If (¢x)n is a sequence of smooth functions bounded in C*!
and converging locally in C*! to a function ¢ and (zh,tn) is a sequence of points
converging to (z,t) € RN x (0,4+00) s.t. ¢n(zh,tn) =0 then, if Do(z,t) # 0,

.1 (1 1 |zn =yl
1 f =— ——]d
1mh1r1 hl/2 (2 (4mh)N/2 /{¢'l("th_h)20} exp( ah ) Y

i 8¢ .. . (D*¢D¢|Dg)
> sy o A4 o )=

Moreover, if Dg(z,t) = 0 and D?¢(z,t) = 0 and if the inequality

1 1 / |z — y|2>
1 1 exp(——2—2-)dy <0
2 (4mh)N2 J s, (tn—h)>0} ( 4

holds for a sequence of h converging to 0, then

o¢

We first complete the proof of Proposition 3.1 using the result of Proposition 4.1.
We first notice

1 + sign*
S(h) (=525 ) (4. (s = 1B) = (. k)
1 / |z — y[?
=— exp| ———— )dy.
(4mh)NT2 J{4(. (nn=1)h)=8(mn,mnh)20) ( 4h )
And therefore (11) reads
1 / lzp — y[? 1
TRy T exXpl——=——Jdy & z ,
(4mh)NT2 J (. (mn=1)m)=b(zn,mnh)20} ( 4 ) 2
or equivalently
1 1 / |zn — yI?
- exp| ———=— )dy < 0.
2 (4mR)N2 J 0 (mn=1h) = g(an mih) 20} ( 4h )

Now we apply Proposition 4.1 with ¢x(z,t) = ¢(z,t) — ¢(zn,nrh), tn = nih and
xp. If D@(z,t) # 0 then

1 /1 1 |lzs, — yl?
>1 f - — pl————>—)d
02 lminf 277 (2 (4wh)N/2 /{m‘(..th—h)zm exp( 4h ) Y

1 o0 (D2¢D¢|D¢)
2 5 /mDe@ D] (E |Dg[? )‘I’”'

~ A+
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And finally

9¢

9¢ (D*¢D¢|D¢)
ot

() - (86 -

)(m,t) <0.
The conclusion is even easier in the case when D¢(z,t) = 0 and D?¢(z,t) = 0.
Proof of Proposition 4.1. In the integral, we make the change
Y—Zh
z="——,
2vh
and we set = v/h. The integral becomes
7 |
(7T)N/2 {on(zn+2nz,th—102)>0}

Then we examine the function ¢y (x5, + 292, t, —n?). Since or(zh,tr) = 0 and ¢y,
is bounded in C?!, we have

exp(—|z|*)dz .

Sn(zh + 202, th — 1%) = 20(ph, 2) + 27 ((Ahz, z) = an + O(nlz +1%)(Jz* + 772)) :
where pp, Aj, ap are identified as

Ph = Don(zh, tn) ,

Ah = D2¢h($h,th) )

and

We use now the change Z = Opz where Oy, is a matrix of rotation chosen in such a way
to have Oppp = B1(1,0,...,0) where 8, = |pn|- Moreover we may assume without
loss of generality that Oy converges to a matrix of rotation O. In the new variables,
the set {¢n(zp + 2nz,t, — n*) > 0} becomes the set

{28121 + 207 ((442,2) — o + O(lZ] + n2) (312 + %)) 2 0},

where Ah = O;LAhO;I.

From now on, we will denote the new variable by z instead of z. Dividing the
function that we consider by 27, which is a positive number, the above set can again
be written as

{Buz1 +((Anz,2) - an+ O(nlz] + 1) (|22 + %)) > 0}
We first treat the case when D¢(z,t) # 0. Since 8, = |Dop(zh,tn)| — |Do(z,t)]

as h — 0, By is strictly positive if A is small enough. Therefore, dividing the expression
inside by B, the set

{8121 +1((Anz,2) = an + O(nlz] +°)(12? + 7)) 2 0},
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may again be replaced by
Ul 7 2 2 2
{21 + — ((Ahz,z) —an+ O(|z| +7°)(|z|* +n )) > O} .
Br

Moreover, thanks to the local convergence of ¢, to ¢ in C%!, one has

Ay — A,
and
ap —a
as h — 0, where A = OD2¢(z,t)0~! and a = %%%’(m,t) . So the set we consider can

finally be written as

{zl = % ((Az,2) - a+ O(mlz] + 7)1 + %) + o(1)(|2* + 1)) 2 0} '

So within some perturbation terms, we are essentially interested in the behavior
for s close to 0 of the function ¢ defined by

1
p(s) = ———/ exp(—|z[*)dz,
(M2 Jorsptayzo) (=1=%)

where 9(z) = (Az,2) —a, a € R, and A = (4;;);; is a symmetric matrix. This
behavior is described in the following lemma.
LEMMA 4.2. One has

1 1 1 = -
p(s) = 3~ ﬁ (a - E(TT‘(A) - Am))s + o(s).
We first prove Lemma 4.2. Because of the symmetries one sees easily that ¢(0) =
%. To get the next term, we are going to prove that ¢ is differentiable at 0 and
compute ¢’'(0).
The function ¢ can be written as
1 » 1 / o
§)=—+= exp(—|z|“)dz = —=+= 1 x exp(—|z|*)dz.
o) = | el = o [ s e (1)

To prove that ¢ is a C* function of s, instead of computing its derivative in the sense
of distributions, we approximate ¢ by @, defined by

we(s) = —E—/ l(1 +tanh)(%§¢(z)) exp(—!z]Z)dz .

T Jpn 2
By standard results, ¢, is a C! function of s and

' (s) = (71—);1\’/2 /JRN 2%(1 - tanhQ)(ESM)w(z) exp(—|z|*)dz .

To proceed in the computation, we remark that
1 o (21 + sY(2) 0 z1 + s¥(z)
(1 — ATeT\E/N_ 2 h)y (2L 2rAes
5(1 tanh )( ) 3 ((1 + tanh) ( . ))

£ z1
21 + s9(z) )s oY

1
—E(l—tanhZ)( . a—zl(z)-
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Now we use the equality

@e(t) — e(0) = /0 e’ (s)ds

which gives

t 1o} 21
we(t) — e(0) = (?)1]7/5/0 /JRN %52—1 ((1 - tanh)(w)>1/)(z) exp(—|z|?)dz ds

3

__—(W)IN/_Q/O /JRN 2—15(1 — tanh2)(z_1_+:pﬁ)sg—z(z)w(z)exp(_lzlz)dzds _

Then we integrate by parts in the z; variable in the first integral and, after using
Fubini’s theorem, we integrate by parts in s in the second one to get

e = pe®) =~y [ [ 2+ tanky (222D T gy exp( o) ) s

Z z)\ 0
_G)—lmt_/m:v %(I—Ftanh)(_l_-*_EL())a_z(z) eXp(—[z|2)dz

1 : 1 5 5 )
+_(7T)N/2/0 /RN 5(1—+—tanh)(%w(zwa—i(z)exp(—|z|~)dzds_

From the Lebesgue’s dominated convergence theorem, we infer that

1 t 5
_ ___ 1 / o -
@(t) — »(0) (7r)N/2/0 /};{N 1{zy+s9(2)>0} 71 (U(Z) exp( 2| ))dzds
1 o
_(_Tr)N_/zt/RN l{zx+tw(z)20}&:(z) exp(_|Z12)dz

I i ) dzd
TNE Jo S 1{z1+sw(z)20}a—zl(2)EXP(—IZI )dzds.

Since all the integrals over JRY are continuous functions of s or ¢, again because of
Lebesgue’s theorem, ¢’(0) exists and, by easy computations, we have

, 1 8
PO =~y B (M0l

Therefore
1 ' e
#(0) = (T)W/BN_l (0, ) exp(~|2'[2)dz’ ,
where 2’ = (22,...,2n8). _ }
Recall that ¥(0,z") = (AZ',2') — a where A = (A;;); ; and the equalities

1 112 1 _ 1

(OLE /JRH-1 zizj exp(—|7| ))dz = ——2\/7?613]',

for 2 < 4,7 < n and where §; ; = 0 if i # j, 1 otherwise. Fortunately we can compute
explicitly ¢’(0), which is given by
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The proof of Lemma 4.2 is complete.
Now we come back to the proof of Proposition 4.1. We have to consider the
integral

1 1
(m)N/2 /{‘If (2)>0} oxp(—lel)dz = (m)N/2 /]RN Lewa ()20 exp(—|z[*)dz,
hlz)2

where

Un(2) = 21 + 5 (A2 2) = a + Olnlz] + %) (af? + 1) + o(1) (27 + 1)) .
h

To prove the result, we are going to use a “localization type argument” and then a
“monotonicity type argument.”

Let us first describe the localization type argument. We set R = n~1/2 and split '
the integral in two terms:

1 . 2 - 1 2
e /JRN Lonezoy exp(=121)dz = ooy /BR L{wa(z)20) exp(—lz|) dz

1 o
+ (LG /B; Liw, ()20} €xp(~|2|*)dz.

The point is that the second integral of the right-hand side is estimated by
#/ exp(—|z|?)dz = o(n) .
(m)N/2 e

Moreover, if z € B, the O(1|z|) term in ¥}, is estimated uniformly in h by an O(nR)
and therefore is a o(1) term.

We now turn to the monotonicity type argument. We consider v > 0 and examine
the function

U(z) =2 + Bih(((/i—k'yj’d)z,z) —a+’y).

By the above remarks we know that, on Bpg,

Uh(2) = 21 + % ((Az,z) —a+o(1)[z? + 0(1)) _

Hence, for 7 and thus h small enough,
U(z) > ¥y(z) in Bg,

and therefore
L/ 1w, (z)>0} eXP(—Izlz)dz < _}'—/ Liw(z)>0 eXp(—lzIQ)dz-
()72 B {¥n(2)2 = (m)N/2 - 2

Finally, using our localization type argument backwards, we obtain

1 2 1 2
L /m L{wn ()20} exp(—z[*)dz < ()2 /IRN Liw(z)z0y exp(—|2]*)dz + o(n) .
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To conclude, we apply Lemma 4.2 to the integral of the right-hand side with
s= E’% We get

1 1
(14) (OLE /IRN 1w ()20 exp(=al*)dz < 5
1 1 g % _n +1 n n
(o jrnta- iy -3 V)2 e (2)
But the following properties hold true:
Tr(A) = Tr(0(D*¢(z,1)0~") = Tr(D*¢(z, 1)) = Ad(g, 1),
106
a= Ea(matx
andife=(1,...,0),
Ay1 = (Ae,e) = (D?¢(z,1)0%, O'e) = h}lflblg“(AhPh,Ph),
h
and, recalling that p, — Dé(z,t) and Ap — D?*@(z,1),
i=—_— 1 (p? ; -
Al,l - lD¢(I,t)l2 (D ¢($,t)D(D(I, t)’ D(D(Ivt))
Hence
1/1 1 lzn — y/? )
L} W exp| —B =Yg
7 (2 (4rh)N/72 /{ Sl tn )20} p( ah ) ¥
1 0¢ (D*¢D¢|Dg) n+1
SRR SN o NN W TG il s i _nt-
2 symmed (3~ @0~ —ipap DT 1) T,

for all ¥ > 0 and the first part of the proposition is proved.
Now we turn to the case when Dé(z,t) = 0 and D2?¢(z,t) = 0. This time 8, — 0
and we cannot argue in the same way. Several cases may occur.
1. Along some subsequence 3 # 0 and BUE — 0. In this case, we readily apply

the same argument as above. We are led to (14) and easy computations yield

B 1 1 |lzn — yI? ) 1 (09 n+1
Prf-____ - U N s —— (D ) -
1 (2 (4xh)N/2 /{%(A_th_h)zo}e"p( 4h ) g —zﬁ(at (z.6)-=3 7>+°(1)

for any v > 0 and the conclusion follows easily.
2. Along some subsequence 35 = 0 or E’ﬁ — +00. Assume by contradiction that

limy, ap = %%(z,t) > 0. Then the characteristic function of the set

{Bhr +n((Anz,2) — o+ Olnlzl + 1) 12" +)) 2 0}

which is the same as the set

[0 4 () - anok Ol + 7P 7)) 20
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converges almost everywhere to the constant function 0. Hence

1 / Izh_y|2
_ exp| ————— Jdy — 0,
(Arh)N2 J s, (tuh)z0) ( b )y

and this is a contradiction since this integral is greater than %

3. Along some subsequence 3, # 0 and ET% — [ > 0. Then the characteristic
function of the set

{8121 +n((4nz,2) - an + OGalzl + 7)1 + 7)) > 0},

which is the same as the set

{21+ 2 ((r2.) =+ Ol 4 7a ) 2 0},

converges a.e. to the characteristic function of the set

l
{21 - ig—f(a:,t) > O}.

But we know that

1 1 / |lzh — yl?
- exp{ ————— |dy < 0,
2 ()N Jign i tn-myzo} ( 4h )

and by letting h — 0, we deduce

1 1 / )

- — exp(—|z|*)dy < 0.
N/2

2 (471') / {zl—%%(z,t)ZO}

Consequently
—(z,t) <0.
5t (& <
and the proof is complete.

5. Convergence of the discrete moving front to the continuous one.
This section is devoted to the proof of Corollary 1.3. The first step is to prove the
following lemma.

LEMMA 5.1. Let Qg be a smooth bounded domain in RYN. If Qo C Bg for some
R >0 then Q!, C By for anyn € IN.

Proof. We first remark that if we initialize the scheme with a half-space domain,
ie.,

up(z,0) =1y — 1y in RN |
where H = {(p,z) > a} for some p € R" and a € IR, then for all n € IN
(15) up(z,t) = 1y — 1ge in RV .

Therefore we keep at the discrete level the fact that hyperplanes do not move since
they have zero mean curvature.
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To prove the lemma, it suffices to use solutions like (15) as supersolutions in the
scheme. Indeed since Qg C Bg, Qo C H, for all |e| = 1 where

H.={z € R"; (e,z) <R}.
Therefore
190—1QSS1HC—1H§ in RN .

But the scheme is order preserving and therefore we keep this inequality when we
iterate the scheme for the two initial data

up(.,nh) < 1g, — lge in RY,

for any n € IN. This inequality, which holds true for any |e|] = 1, yields
Qﬁh C ER. d

Now we turn to the proof of Corollary 1.3. From the results of Evans and Spruck
[10], we know that, since Qo is bounded, there is extinction, i.e., I, collapses in a
finite time denoted by t*. This information, in addition to Lemma 5.1, will allow us
to work on the compact set K = Bg x [0,¢* + 1].

We first recall that the Hausdorff distance between F and F" is given by

dist(F, F*) = max( max dist((:v,t),F);(me)ixF dist((:n,t),Fh)).
T,t)e

(z,t)eFH
To prove dist(F, F*) — 0, we are going to prove successively that

dist((z,t), F') — O,
R, s ((z,1), F)

and then

max_ dist((z,t), F*) — 0.
(z,t)EF
To prove the first property, we consider ¢ > 0 and set K. = {(z.t) € K;
dist((z,t),F) > €}. For any e > 0 K. is a compact subset of RN x (0,+00) and
the main remark is that the function (z,t) — sign(u(z,t)) is continuous on K since
it is locally constant on K. It is a classical remark in the theory of viscosity solutions
that the equalities

lim inf, up = limsup® up, = sign(u) on K.

imply the uniform convergence of uy to sign(u) on K. Since these functions as-
sume only the values +1 and —1, this means that uj = sign(u) on K. for h small
enough. In other words, for h small enough, the discrete front F? is included in the
complementary of K, in K, ie.,

F* ¢ {(z,t) € K; dist((z,t),F) <e},

and the proof of the first property is complete. Notice that we do not use, in this
case, the condition J,5o T x {t} = 8{(z,1); u(z,1) > 0} = 0{(=z. 1); u(z,t) < 0}.

We turn to the proof of the second property. The fact that F satisfies the above
condition implies that sign(u) is the unique solution of (2) with initial data la, —lag,
or equivalently that we have

(16) (sign*(u)), =sign,(v) in RN % (0, +00) ,
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and
(17) (sign*(u))* =sign*(u) in RN x (0, +00) .

In other words, the minimal solution is nothing but the Isc envelope of the maximal
one and in the same way the maximal solution is nothing but the usc envelope of the
minimal one.

On the other hand, we know that, for any subsequence h’ going to 0, the functions
u and u, respectively, defined by

T(z,t) = limsup up (y,nh),
y—o
nh' — ¢t

and

u(z,t) = lminf wuy (y,nh’),
131’ d:z:t

are viscosity sub- and supersolutions, respectively, of (2) with initial data 1o, — log.
Recalling that sign®(u) and sign,(u) are the maximal subsolution and the minimal
supersolution, respectively, we get the inequalities

(18)  sign,(u(z,t)) < u(z,t) < T(z,t) < sign*(u(z,t)) in RY x (0, +00) .

Applying successively the lsc envelope and the usc envelope to (18) and using (16)
and (17), we finally conclude that

liminf wp (y,nh') = sign, (u(z,t)),
Yy —2
77:;1,, —t

and

limsup up (y, nh') = sign*(u(z,t)) .
— T
nzl' —t

Now assume by contradiction that

Vh >0, max_ dist((z,t),F*) >r>0.
(z,t)eF

Since F is a compact subset of IR x (0, 4+00), there is a sequence denoted by A/ going
to 0 and points (zp,tp) € F s.t.

dist((zn,th), F*)>7r>0.

Extracting subsequences if necessary, we may first assume that (z.,%;/) converges
to some point (z,t) € F. Recall that F is a closed subset since it is exactly the set
{u = 0}. It is then clear that, again up to the extraction of a subsequence, we have
one of the following cases: either

for any ', up(y,nh') =1 if [y —zp |+ |0k’ —tp| <7,
Yy
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or
for any B’ , up(y,nh’) = -1 if [y —zp |+ [nh' —tpi| < 7.
Consider for example the first case (the other one is treated similarly). It implies

liminf wuy (y,nh’) = 1 =sign, (u(z,1)).
nyh' —t

This provides a contradiction since (z,t) € F and sign, (u(z,t)) = —1 on F. The
proof is complete.
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