
HAL Id: hal-02315319
https://hal.science/hal-02315319v1

Submitted on 15 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards the Prediction of Semantic Complexity Based
on Concept Graphs

Rémi Venant, Mathieu d’Aquin

To cite this version:
Rémi Venant, Mathieu d’Aquin. Towards the Prediction of Semantic Complexity Based on Concept
Graphs. 12th International Conference on Educational Data Mining (EDM 2019), Jul 2019, Montreal,
Canada. pp.188-197. �hal-02315319�

https://hal.science/hal-02315319v1
https://hal.archives-ouvertes.fr

Towards the Prediction of Semantic Complexity Based on
Concept Graphs

Rémi Venant
Le Mans University

LIUM - EA 4023, Le Mans Université
72085 Le Mans, Cedex 9, France
remi.venant@univ-lemans.fr

Mathieu d’Aquin
Insight Centre for Data Analytics

National University of Ireland
Galway

mathieu.daquin@insight-centre.org

ABSTRACT
The evaluation of text complexity is an important topic in
education. While this objective has been addressed by ap-
proaches using lexical and syntactic analysis for decades, se-
mantic complexity is less common, and the recent research
works that tackle this question rely on machine learning al-
gorithms that are hardly explainable and are not specifically
designed to measure this variable. To address this issue, we
explore in this paper the engineering of novel features to
evaluate conceptual complexity. Through the construction
of a knowledge graph that captures the concepts present
in a text and their generalized forms, we measure different
graph-based metrics to express such a complexity. Eventu-
ally, early-stage evaluations based on a well-known public
corpus of students’ productions show that the use of these
metrics significantly improves performance compared to a
state-of-the-art binary neural network classifier.

Keywords
semantic complexity, concept complexity, knowledge graph,
features engineering, neural network, machine learning

1. INTRODUCTION
In Technology Enhanced Learning, the evaluation of the
complexity of textual material underlies several activities.
For instance, assessments in language classes are based, am-
ong other things, on the measurement of the learners’ abil-
ities to deal with different grammatical structures or to use
the most precise vocable to express their thoughts. An-
other example can be found in learning resources indexa-
tion. Merlo [4] and Openstax1 are two projects that aim at
offering fine-grain information retrieval functionalities and
automatic recommendation systems for educational objects
based on their metadata, including their level of difficulty.

Complexity is usually related to readability, a concept de-
fined as the “total sum of all those elements within a given

1https://openstax.org

piece of printed material that affect the success a group of
readers have with it” [5]. Thus, readability depends on both
the object (the text) and the subject (the reader), whereas
complexity is commonly characterized by a function whose
output does not differ from one reader to another [11, 21].

Many research works in Natural Language Processing (NLP)
sought out a way to measure the complexity of a text, and
to predict the category (e.g. the level of difficulty) it should
fall into. Most of them, nevertheless, focus on lexical and
syntactic evaluation to achieve their objectives. Alongside
the recent progress in machine learning, and more specifi-
cally in deep learning, another approach to text classifica-
tion arouse, based on semantic relationship of words within
a text [17]. While offering outstanding performance, these
predictive models are not easily explainable [28]. However,
to provide this property is of importance to increase the
confidence a user gives to these systems [1], and would allow
to improve the usability of predictive models. For instance,
a tutoring system designed for learning a foreign language
would benefit from such a model, that is able not only to
assess the complexity of a student’s writing, but also to give
suggestions on how to improve it.

Hence we propose in this paper a novel approach to measure
semantic complexity with a model based on explainable fea-
tures: we exploit the semantic web to build the conceptual
representation of a text within an ontological graph, that
we use to compute a set of metrics. In order to validate our
model, we focus here on the following research questions:

• Is a model based on our sole metrics able to outperform
a state-of-the-art model of semantic complexity?

• Does the extension of a state-of-the-art predictive mo-
del with our engineered features improves its perfor-
mance?

In this paper, we answer these questions in the context of
complexity assessment of students’ productions in English as
a foreign language. The first section is dedicated to related
work in complexity assessment, in order to select a state-of-
the-art model to compare to. We describe then the pipeline
we designed to build a conceptual graph from a text and
convert it into a vector, before going into the details of the
17 metrics that compose the vector. The fourth section is
dedicated to the analysis of our model, in order to answer
the research questions we defined previously.

Rémi Venant and Mathieu d'Aquin "Towards the prediction of
semantic complexity based on concept graphs" In: Proceedings of
The 12th International Conference on Educational Data Mining
(EDM 2019), Collin F. Lynch, Agathe Merceron, Michel
Desmarais, & Roger Nkambou (eds.) 2019, pp. 188 - 197

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 188

2. RELATED WORK
Complexity, as a function of the text only [29], is involved
in different tasks related to education. Classification of re-
source materials has become an important topic with the
growth of open education and MOOCs [15], in order to pro-
vide suitable recommendations to a learner [3]. Learner eval-
uation would also benefit from such a function. Checking
mistakes is not enough to assess the writing skill of a stu-
dent; one also needs to measure the ability to express more
complex thoughts, with the use of precise concepts [19]. A
last instance of a task that requires complexity assessment is
text simplification, a process that aims at providing a sim-
pler version of a text by reducing its complexity, without
removing its substantial content [25].

These objectives require computational models in order to
classify them or to measure a value of complexity according
to the needs. Different categories of metrics are involved to
build such models, and most of the current research works
rely on surface, syntactic and lexical features [8, 7, 24]. Sur-
face level features provide basic statistical measures such as
the number of characters or words. Lexical features tar-
get the structure of sentences, such as the average number
of verb phrases per sentences or the number of dependent
clauses [21]. Finally, syntactic features are based on the
recognition of terms to compute metrics such as the aver-
age number of synonyms of words. Other morphological
values (i.e., based on the structure of text) can be found.
Siddharthan [29] proposed to measure discourse complexity
to evaluate whether connections between text segments are
vague or weak. In addition, Davoodi [8] used coherence fea-
tures, that refer to the grammatical and lexical links which
connect linguistic entities together, in order to include the
influence of discourse structure on text complexity assess-
ment. Similar features can be found in [24], who evaluated
the lexical cohesion and the level of argumentation.

With these features, predictive models of complexity have
already shown good performances. For instance, a SVM
binary classifier using 117 parameters that belong to these
categories of features achieved to classify Swedish texts ac-
cording to their complexity with an accuracy of 98.9% [12].
Although widely used, surface and syntactic features work
only on the structure of the text, while lexical features, using
a base of knowledge for word recognition do not provide any
semantic to these words. Thus, a few projects proposed dif-
ferent ways to add semantic information to their model. A
good example of the different approaches to semantic com-
plexity can be found in [6], who proposed a mixed model
using a wide range of different operators, a few of them be-
ing related to semantics. Indeed, they used Latent Semantic
Analysis (LSA), Latent Dirichlet Allocation (LDA), and a
Word2Vec model to extract semantic features.

LSA [9] and LDA [2] are traditional machine learning tech-
niques well-known for their efficiency to extract the topics
of a text. Thus, a predictive model of complexity based on
either LSA or LDA will detect the main topics of a text and
use them to assess complexity. This method is then based
on the assumption that some topic are more complex than
others. There are, however, two disadvantages with this as-
sumption. First, the model will fit the distribution of topics
among the texts from the dataset used to train and test it,

which can be detrimental to its generalizability. Also, we
assume here the texts that deal with the same topics are of
the same complexity, an hypothesis that may be wrong.

In a different way, words embedding models such as Word2Vec
[23] or GloVe [27] learn geometrical encodings of words from
their co-occurence information. Both model achieve to cap-
ture the semantics of“analogy”. For instance, computing the
difference between vectors of words “king” and “queen”, then
adding the vector of “princess” would give a result whose the
closest known vector would be the one of the word “prince”.
Both models perform well on different kinds of tasks, such as
semantic relatedness (to predict the degree of semantic sim-
ilarity between two words) or concept categorization. These
models seem also to provide the best results in capturing
semantic complexity [17].

Unfortunately, these techniques project words into an ab-
stract linear space, mathematically meaningful, but hardly
understandable. If we can have insights of the vectors’ re-
lationships at the scale of words, as with the example given
previously, their interpretations regarding complexity remains
limited. At the scale of a text, where we usually compute
the average vector of words, we do not know any method to
interpret the resulting vector regarding the text complexity.

3. CONCEPTUAL GRAPH PIPELINE
Within the field of semantic analysis, the manipulation of
concepts within a text is inherent to its complexity [18].
For instance, when concepts are numerous, abstracts, or not
closely related to each other, readers may suffer from access-
ing their prior knowledge to understand the text [10]. We
propose here a concept-based approach of feature engineer-
ing to assess semantic complexity.

An ontology (or knowledge graph) is a powerful model to
represent concepts and their relationships. With the growth
of research in the semantic web, cross-domain description
of the world became available, and one of the most known
nowadays is DBpedia2. DBPedia is a crowd-sourced project
to provide an open knowledge graph based on the informa-
tion available in several Wikimedia3 projects. It provides
thus the description in a structured and linked way of var-
ious concepts (e.g.: persons, places, organizations, movies,
etc.). The English version describes more than 4 million
entities so far, and localized versions are provided in 125
languages. Also, everything described in DBPedia is an en-
tity structured through several ontologies (e.g., the DBPedia
ontology, schema.org or YAGO). Our work is based on the
exploitation of DBPedia and its ontologies to (i) capture con-
ceptual entities from a text, (ii) build a concept graph that
includes entities and their higher-order concepts, and (iii)
transform the graph into a vector of features. We designed
a pipeline to achieve these tasks, whose implementation in
Python is open source and publicly available4. The pipeline,
shown in Figure 1, is built over 5 main components: (i) a
text preprocessor, (ii) an entity extractor, (iii) a concept
enhancer, (iv) a graph builder and (v) a graph vectorizer.

2https://wiki.dbpedia.org/
3https://www.wikimedia.org/
4https://github.com/afel-project/pySemanticComplexity

189 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

Figure 1: Text to Concept Vector Pipeline.

These software components can be launched separately, ei-
ther in a stream or batch mode, to support distributing
computing. Before we present them in the following sub-
sections, we need to clarify the vocabulary we use to deals
with concepts and concept graphs. A concept extracted from
a raw text is named entity, to follow the vocabulary of
DBpedia. An entity is related to some types, which are
its direct higher-order concepts. Types are classes defined
in the ontologies. A higher-order concept is a more ab-
stract concept (i.e., a generalization of the concept). Within
the ontologies, multiple inheritance relations exist between
classes, and allow to structure the concepts they express in
term of orders of abstraction. For instance, the “1965 ford
mustang” is an entity with a type “collection car”, whose
one of the higher-order concept is “car”, generalized itself
into “vehicle”, then finally “object”.

3.1 Text preprocessor
Given a text document in a unicode format, this component
(i) cleans it, with the deletion of forbidden characters, such
as null or backspace, then (ii) splits the text into paragraphs
(a prerequisite for the entity extractor that cannot process
long text). The text preprocessor also computes the number
of words (used for some of the metrics at the end of the
pipeline) and the offset for each paragraph (used to locate
entities within the whole text).

3.2 Entity Extractor
The entity extractor aims at extracting DBpedia entities
from a given list of paragraphs. In order to extract such
entities from a text, this component interacts with DBPedia
through the REST interface exposed by DBPedia Spotlight5,
a tool that performs named entity recognition [22]. Given a
text, and quality parameters (i.e., promience, topical perti-
nence contextual ambiguity and disambiguation confidence),
the service returns a list of DBPedia entity URIs with their
position in the text and some quality metrics. Thus, from

5https://www.dbpedia-spotlight.org/

a list of paragraphs, this pipeline stage retrieves a set of
DBPedia URI with their positions in the document.

3.3 Concept Enhancer
This stage takes a list of entities and, for each of them, re-
trieve (i) its related types (second-order concepts), (ii) the
number of entities that point to it (#linksIn) and (iii) the
number of entities it points to (#linksOut). As we explained
before, the entities in DBPedia are represented in a knowl-
edge graph, where entities are linked each other, and de-
scribed through different ontologies. #inLinks and #out-
Links are computed based on the relationship between enti-
ties in DBpedia.

In order to retrieve all these types for the list of entities, the
component interrogates a SPARQL Endpoint. SPARQL (re-
cursive acronym which means SPARQL Protocol and RDF
Query Language) is a SQL-like query language to retrieve or
manipulate data in the RDF (Resource Description Frame-
work) format, used in DBPedia. The concept enhancer
fetches in a first request all the types that are related to
each entity of the list. Two others requests are achieved to
compute #linksIn and #linksOut for each entity. Finally
this stage returns the list of entities enhanced with their
types and the two basic metrics.

3.4 Graph Builder
The role of the graph builder is twofold: (i) to retrieve the
higher-order concepts related to types given along with the
entities, and (ii) to build an acyclic graph of all concepts.

The higher order concepts are the super-classes of the types
that have been previously retrieved. Indeed, the ontologies
used in DBpedia provide a hierarchical structure of classes,
where each class may have one or several parent classes. In
other words, a concept C may have one or several parents
(higher-order concepts), that generalize C and its sibling.

In order to retrieve theses higher-order concepts, the graph
builder does not need to interact with any DBPedia end-

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 190

Figure 2: Example of a Concept Graph.

point. This component loads directly the structure of on-
tologies, which are RDF files that can be locally processed.
In our pipeline, we exploit the three most used ontologies
in DBPedia: the DBPedia ontology, schema.org and YAGO.
For each given type that belongs to one of the three on-
tologies, the graph builder recursively retrieves its parent
concepts. As a result, the component constructs a set of
pairs <child concept, parent concept> and, with the given
list of entities, builds a concept graph of the text.

This graph is an acyclic graph composed of two kinds of
vertices: entities (that appear in the text) and higher-order
concepts (classes from the ontologies). An entity vertex has
the following attributes: (i) the DBpedia URI, (ii) the list
of positions in the text (word index) (iii) the #linksIn value
and (iv) the #linksOut value.

While an entity may appear several times in the text, it is
represented as a single vertex in the graph. However, its dif-
ferent positions are recorded in its attributes. The other ver-
tices (higher-order concepts) contain only their URI. In or-
der to ensure the graph is connected (a mathematical prop-
erty required to compute some of the features explained in
the following section), an abstract highest-order vertex is
inserted and linked to any vertex that does not have any
higher-order concept.

We illustrate in Figure 2, an example of a graph computed
from the text “This computer has a powerful graphic card
that is suitable for video games and machine learning.”. En-
tity nodes are colored in red, while higher-order concepts are
in green (the abstract highest-order concept is in blue). In
this example, the Spotlight API extracted 4 entities from the
DBpedia ontology: “video game”, “computer”, “video card”
and “machine learning”. The green nodes on the graph are
then classes of this ontology that generalize the concepts
they are connected to. Thus, a video game is a software,
which is a work, whose generalized concept is a thing.

3.5 Graph Vectorizer
Giving the graph, and the number of words computed in
the first stage of the pipeline, this last component applies
several calculus in parallel to produce 17 metrics. The values
are embedded in an vector, which is the final output of the
pipeline. This vector can be used afterwards as an input for
a predictive model on conceptual complexity.

4. CONCEPT COMPLEXITY METRICS
In this section, we explain the metrics that highlight spe-
cific information about the conceptual complexity, based
on the structure of the generated graph. The 17 metrics
computed by the pipeline are the following: (i) #concepts,
(ii) #distinctConcepts, (iii) conceptsByWords, (iv) distinct-
ConceptsByWords, (v) µTypes, (vi) σTypes, (vii) µlinksIn,
(viii) σlinksIn, (ix) µLinksOut, (x) σLinksOut, (xi) #nodes,
(xii) Radius, (xiii) Diameter, (xiv) Density, (xv) Assortativ-
ity, (xvi) µTextDensity and (xvi) σTextDensity. We details
them in the following subsections.

4.1 Basic Concept Metrics
The first four metrics are measures based on the entities
extracted from the text. #concepts is the total count of
concepts the entity extractors retrieved, while #distinct-
Concepts is the number of the different concepts extracted.
These metrics are based on the assumption that the more
concepts a text deals with, the more complex it is.

Since these features might be correlated to the size of the
text (which, as explained later, was not the case in our ex-
periments, but still might be), we also propose concepts-
ByWords and distinctConceptsByWords, the ratio be-
tween #concepts and #distinctConcepts respectively, and
the number of words.

4.2 Concept Connection Metrics
The six following indicators relate the direct properties of
the concepts that appear in the text. µTypes and σTypes
are respectively the mean and standard deviation of the
number of types per entity. As explained before, each con-
cept extracted from the text is linked to its types (i.e. its di-
rect higher-order concepts). We suppose here that the more
an entity has types, the more concepts of higher-order are
required to explain it, and thus the more complex this entity
is. We use the two basic statistic descriptors to capture that
notion at the scale of a document.

For each entity in our graph e, we also have #linksIn, the
number of links that go from entities of the global DBPedia
knowledge graph to e, and #linksOut, the number of links
that go from e to others entities of that same graph. We
compute then two statistic descriptors for each indicator at
the document level. µlinkIn, σlinkIn are respectively the
mean and standard deviation of the number of entities in
DBPedia that point to the entities of the document, while
µlinkOut and σlinkOut are about the entities in DBPedia
that are pointed by the entities of the document. We sup-
pose here that the more relations an entity has with others,
the more popular it is, and the less complex it might be.

4.3 Concept Abstraction Metrics
The next five metrics take into account the whole concept
graph: the entities, their types and the higher-order con-
cepts retrieved recursively from the ontologies.

#nodes is the total number of nodes in the graph. The
higher it is, the more concepts have been used or the more
specific they are (i.e., the more higher-order concepts there
are to specify them).

191 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

Figure 3: Examples of radius and diameters.

For the next metrics a formalism is required. Let G = (V,E)
the definition of a graph G with V the set of vertices (the
concepts) and E the set of edges. Let ∀(u, v) ∈ V 2, d(u, v)
the distance between the nodes u and v: the number of edges
in the shortest path. Since our graph is connected (thanks
to the abstract higher-order concept node) and undirected,
we have the following properties:

∀(u, v) ∈ V 2, d(u, v) ≥ 1, d(u, v) = d(v, u) (1)

Interpreted in our context, the distance between 2 concepts
shows how close they are from each other. Since concepts
are linked by their higher-order concepts, the distance is the
length of the path from one concept c1 to another concept c2,
going through their closest common higher-order concept.
Thus, the distance measures how much we have to generalize
to find the common inherent concept to relate c1 and c2.

ε is the eccentricity of a vertex v. It is defined as the greatest
distance between v and any other vertex of the graph.

∀v ∈ V, ε(v) = max
u∈V

d(v, u) (2)

In our context, the eccentricity for a concept c1 gives a mea-
sure of how far this concept is from the others.

4.3.1 Radius and Diameter
Based on this eccentricity, the radius rG is the minimum
eccentricity of any vertex in the graph.

rG = minv∈V ε(v) = minv∈V [maxu∈V d(v, u)] (3)

At the opposite, the diameter of a graph dG is the maxi-
mum eccentricity of any vertex in the graph.

dG = maxv∈V ε(v) = maxv∈V [maxu∈V d(v, u)] (4)

On the one hand, the diameter highlights the “spreadness”
of concepts: the more unrelated and specific concepts we
have, the higher the diameter will be. On the other hand,
the radius points to the “compactness” of concepts out: the
more the concepts are closely related to each other, the lower
the radius will be. Note that the radius is not strictly the
opposite of the diameter; both metrics measure information
that are not theoretically linearly dependent. To have an
insight of their meaning, Figure 3 shows different simple
graph structures with their radius and diameter.

4.3.2 Density

The density of a graph stresses how much nodes are con-
nected to each other. A graph is dense if the number of
edges is close to the maximal possible number of edges. The
opposite is a sparse graph, that has few edges. The density
is computed by the following equation:

0 ≤ DG =
2|E|

|V |(|V | − 1)
≤ 1 (5)

Here, a concept graph with a high density implies that con-
cepts and higher-order concepts are closely related to each
other. The text may deal with many different concepts, but
many of them share parents concepts and so on. Density
may then be a factor of discrimination regarding two texts
that have similar numbers of concepts, but with one using
concepts from a unique domain while the other one deals
with varied concepts.

4.3.3 Assortativity
Following Newman [26], the assortativity measures in a
graph the similarity of connections with respect to the ver-
tice degree. The degree is the number of connections (the
number of edges) a vertex has to other vertices. Mathemat-
ically, the assortativity is the Pearson correlation coefficient
of degree between all pairs of vertices. It is computed by the
following equation:

AG =
2
∑

i jiki −
1
2
|E|−1(

∑
i ji + ki)

2∑
i (j2i + k2i)− 1

2
|E|−1(

∑
i ji + ki)2

(6)

where ji, ki are the degrees of the vertices at the ends of the
ith edge, in a graph with |E| edges.

Because AG is a correlation coefficient, it lies between −1
and 1. When it is close to 1, the graph shows a perfect
assortative mixing: the vertices in the network that have
many connections tend to be connected to the other vertices
with many connections. When AG is close to -1, the graph is
disassortative: the nodes that have many connections tend
to be linked to the nodes with few connections. When AG is
close to 0, the graph is non assortative: there is no particular
correlation between node connections and their degree.

Because in our concept graphs, concepts (vertices) are con-
nected only by their relationship of abstraction (a parent
concept being a more general concepts), a positive assorta-
tivity would signify that the more parents a concept requires
to be defined, the more grand-parents these parents have.
Under the hypothesis that the more higher-order concepts
we need to define a concept c, the more complex c is, the
assortativity may be a candidate metric to evaluate com-
plexity: a graph with a high assortativity may highlight a
text that deals with very complex and precise concepts.

Compared to the µTypes indicator, which is only computed
on the basis of entity types, this metric takes into account
the whole graph. For instance, if the text uses very narrowed
concepts, that have only few types, which are however de-
fined by many higher-order concepts, µTypes would be low,
but assortativity may be close to 1.

4.4 Concept Organization Metrics
While the previous metrics are about the graph only, they do
not take into account the positions of the different entities

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 192

within the text. Although they provide conceptual infor-
mation about the overall document, they lack giving insight
about the evolution of complexity at a local level. For in-
stance, a paragraph that deals with closely related concepts
may be simpler than a paragraph that manipulates different
unrelated concepts. Thus two texts that handle similar con-
cepts, but with a different structure, may have a different
complexity. In order to capture such information, we have
built a metric based both on the concept graph and on the
positions of the entities within the text.

Let N ⊂ V the subset of vertices that contains the entities.
As we explained in the previous section, the entities include
the list of the positions of their occurrences. Let occ(e)i ∀e ∈
N the position of the ith occurrence of the entity e in the
text. We define the function sp of two entities that returns
the shortest path in the text between the two concepts.

∀(n,m) ∈ N2, sp(n,m) = min
i,j
|occ(n)i − occ(m)j | (7)

On the basis of sp, we define the textual density td between
two entities as the product of their graph distance d and
the opposite of their textual distance td, normalized by the
product of the graph diameter DG and the text length LT .

∀(n,m) ∈ N2, td(n,m) =
d(n,m)

DG
· 1− sp(n,m)

LT − 1
(8)

Since 0 ≤ d(n,m) ≤ DG and 0 ≤ sp(n,m) ≤ LT − 1, we
have 0 ≤ td(n,m) ≤ 1. When td is near 0, the concepts
are either semantically very close, or unrelated and far to
each other in the text. When td is close to 1, the con-
cepts are semantically far to each other but appear closely
in the text. At the document scale, we compute then the two
last metrics µTextDensity and σTextDensity that are re-
spectively the mean and standard deviation of the textual
density of all pairs of entities.

5. CONCEPTUAL COMPLEXITY ASSESS-
MENT EVALUATION

In this section, we seek to evaluate the performance of a clas-
sifier that predicts complexity, based on the concept metrics
defined above. In order to analyze the impact of our features
on such predictive models, we carried out several rounds of
evaluation. We started building a binary classifier based on
the state-of-the-art features to obtain a model of reference.
To answer our first research question, “Could a model based
on our sole metrics outperform a state-of-the-art predictive
model of semantic complexity?”, we trained another classi-
fier that uses our conceptual complexity features only and
compared it with the first one.

Afterwards, we considered the second question: “Does the
extension of a state-of-the-art predictive model with our en-
gineered features improves its performance?”. To compare
two models, one being an extension of the other, we trained
our two models on the same splits of data (within a cross-
validation procedure) and compared the two lists of mea-

sures of performance with a statistical test to assess whether
the performances of the extended model was significantly
higher than the performances of the first one.

Finally, since results were positive with respect to question 2,
we trained a last classifier based on syntactic, lexical and
semantics features, to evaluate how well it could perform
for the specific task of predicting the overall complexity of
learner’s productions.

5.1 Dataset
All models here were trained on an extract of the EF-Cam-
bridge Open Language Database [16, 13]. This database
is a text corpus of documents written by adult learners of
English as a foreign language. In this study, we use a subset
of this database, that includes 41 626 essays.

Human examiners evaluated these essays in order to assess
the learners’ level of knowledge defined in the global scale
provided in the Common European Framework of Reference
for Languages6. This scale define 6 levels of knowledge (i.e.:
A1, A2, B1, B2, C1 and C2), that describe skills in reading,
listening, speaking and writing. Regarding this last domain
of competency, A1 and A2 levels target beginners: they can
interact in a simple way, using familiar everyday expressions
and very basic phrases. Independent users belong to the B
level group. Compared to level groups A and C, this group
presents a clear difference between its two levels. While B1
users can produce simple connected texts on topics that are
familiar, B2 users are able to write clear and detailed text
on a wide range of topics and give their point of view on
a topical issue. Finally, C1 and C2 levels target proficient
users, that can handle complex subjects and produce clear,
well-structured and detailed texts.

Thus, in this dataset, examiners labeled learners’ essays with
one of these levels. Although there is no formal description
about the evaluation process, the definitions provided in the
global scale of the framework relate to the different kind of
complexity we exposed earlier (i.e.: syntactic, lexical and se-
mantic). For this study, we define two categories of writings
based on these labels. The documents evaluated with a level
between A1 to B1 are considered in the G1 group, while the
documents evaluated with a level between B2 to C2 belong
to the G2 group.

Outliers were removed from the dataset. They were defined
here as the documents where the number of words were be-
low the first centile or above the last one, or where the num-
ber of concepts were again, below the first or above the last
centile. Since the distribution of documents between G1 and
G2 was skewed, we reduce the dataset to obtain an equal
proportion of samples in each group. The baseline score of a
binary classifier is then 0.5 for accuracy, precision or recall.

Also, we detected a potential bias in the dataset, as the
samples in G2 tend to be longer (in numbers of words)
than the ones in G1. To prevent our models from repro-
ducing that bias, we filtered all conceptual features we ex-
plained previously that would present a significant correla-

6https://www.coe.int/en/web/common-european-
framework-reference-languages/level-descriptions

193 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

tion (r ≥ 0.75, p-value < 0.003) with the length of the text
(p-value was computed using the Bonferroni correction since
we computed different statistical tests, which raise then the
risk to produce a statistical type I error). It appears that
none of the 17 features were significantly correlated to the
length of the text as much as this threshold. Finally, we ex-
amine the potential relationship between pairs of features,
to assess their independence and to avoid training our mod-
els with correlated features. We looked for strong significant
correlations: r ≥ 0.9 with p-value ≤ 0.0004 (again, p-value
was computed using the Bonferroni correction). It appears
that only #concepts and #distinctConcepts are strongly
correlated (r = 0.936). We then decided to remove the latest
feature from our models for this dataset.

5.2 Baseline Model Evaluation
In order to produce a baseline binary classifier of seman-
tic complexity, we applied the following methodology: (1)
compute a 300 dimensional average vector for each sample
based on pre-trained Glove vectors ; (2) train different types
of classifiers using 5-folds cross validation, with default hy-
perparameters for each of them; (3) select the model that
provides the best f1 score; (4) split the whole dataset into
one subset for hyper parameters tuning (90%), and one sub-
set for final testing (10%); (5) tune the hyper parameters of
this model using a grid search 10-folds cross validation and
(7) test the final model on the last subset.

Glove is an unsupervised machine learning algorithm used
to compute vector representation for words, proposed by
Stanford University [27]. Based on the word-to-word co-
occurence statistics obtained from a corpus, GloVe computes
a representation of words into a vector space. In our case,
we did not train such a model from scratch on our dataset,
but used pre-trained words vectors available online 7. These
vectors were computed from the 2014 corpus of Wikipedia
and the 5th edition of English Gigaword 8, in a 300 dimen-
sions space. For each sample from our dataset, we computed
the mean of the tokenkized words vectors, using 0 padded
vectors for unknown words. The tokenization process was
achieved using the NIST Tokenizer9.

The main scoring metric we used to evaluate our models is
the f1-score. This metric takes in account both precision
and recall through the following formula: 2 · P · R/(P +
R), given the precision P (the ratio between the number of
true positives and the sum of the number of true positives
and false positives) and the recall R (the ratio between the
number of true positives and the the sum of the number of
true positives and false negatives). This metric is a value
between 0 (the worst) and 1 (the best).

In step 2, we tested 10 different models. Each model was
a pipeline made of two stages: a pre-processing stage to
standardize features by removing the mean and scaling to
unit variance, and the classifier stage. The results for the
classifiers selection are shown in Table 1. The best classifier
was the multilayer perceptron (MLP); it achieved the best f1
score, but also the best average accuracy. MLP is a type of

7http://nlp.stanford.edu/data/glove.6B.zip
8https://catalog.ldc.upenn.edu/LDC2011T07
9http://www.nltk.org/ modules/nltk/tokenize/nist.html

Table 1: Glove-based Models Performances.

Classifier µF1 µAccuracy
MLP (1 hidden layer of size 100) 0.936 0.935

SVC with rbf kernel 0.936 0.934
K-nearest neighbors 0.917 0.910

SVC with polynomial kernel (d=2) 0.916 0.911
Quadratic discriminant 0.907 0.905
SVC with linear kernel 0.899 0.897

Random Forest (100 estimators) 0.896 0.892
AdaBoost 0.865 0.862

Gaussian Naive Bayes 0.826 0.811
Decision Tree 0.811 0.810

feedforward neural networks composed of at least one hidden
layer of nodes, where each node in the hidden and output
layers uses a nonlinear activation function [14].

In the last step, we tuned the following hyperparameters of
the MLP model, given with their set of evaluated values: (i)
the activation function (logistic, hyperbolic tangent or Rec-
tified Linear Unit), (ii) the regularization term α (0.0001,
0.001, 0.01, 0.1 or 1.0), (iii) the size of each hidden layer
(100 or 200), (iv) the number of hidden layers (1 to 5), (v)
the learning rate (constant or adaptive) and (vi) the solver
used for the weight optimization (adam or lbfgs).

We tested the different combinations of hyperparameters
with a grid search 10-folds cross validation on a stratified
subset of 90% of our dataset, using the mean test f1 value
as the scoring method. The best configuration appears to
be a MLP with one hidden layer of 200 nodes using a ReLU
(Rectified Linear Unit) activation function, an α value of
0.01 with an adaptive learning rate and an adam solver.

Table 2: Test Scores of the Baseline and Concept Based
Models.

Score Baseline M. Values Concept M. Values
F1 0.937 0.888

Accuracy 0.939 0.889
Precision 0.982 0.894

Recall 0.896 0.882

Eventually, we tested that classifier on the remaining 10%
of our dataset. The different metrics are exposed in the
column “Baseline M. Values” of Table 2. The Precision-
Recall curve is illustrated in Figure 4a. Overall, this baseline
classifier shows better precision than recall. As we can see on
Figure 4a, recall tends to drop quickly as precision goes over
0.9. Recall is defined as the ability for the classifier to avoid
false negatives. In our context, recall is thus the ability for
the model to avoid predicting a text as being simple while it
is in reality complex. In other terms, this models is better
at predicting a text as being complex, than predicting a text
as being simple.

5.3 Concept Based Model Evaluation
On the basis of the pipeline architecture elicited previously,
we trained and tested an equivalent model that works with
our 16 elicited engineered features only. The model is then
composed of a standardization stage and an MLP classifier

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 194

(a) Baseline Model. (b) Concept Features-Only Model.

Figure 4: Precision-Recall Curves of Baseline and Concept Features-Only Models.

with the previous selected hyperparameters. This model was
trained in a stratified 10-folds cross validation on 90% of the
dataset and tested with the remaining 10%. The results are
given in the third column of Table 2. The Precision-Recall
curve is illustrated in Figure 4b.

Using only the conceptual graph-based features, we can see
that this model is worst than the baseline one to predict
complexity. The drop of score value is around 5% for F1
and accuracy, and 8% for the precision. In conclusion, to
answer to our first research question, using the features we
proposed only, we cannot outperform a model based on the
state-of-the-art semantic features to predict complexity.

5.4 Baseline and Mixed Model Comparison
Whereas the model based on conceptual features failed to
outperform the baseline classifier, these metrics might still
add information that are not present from the state-of-the-
art semantic features. Thus, we need to study whether a
classifier would do better with both sets of features.

In order to assess such a result, and because the two classi-
fiers will not be independent, we need to evaluate whether
the performance scores of these classifiers have a significant
difference of mean. We trained two classifiers, CLbase and
CLmixed with the same architecture than the one selected
previously: a standardization pre-processing stage chained
to a MLP classifier with the former chosen hyperparameters.
CLbase is the baseline classifier that uses the Glove features
only, while CLmixed uses both Glove and our conceptual
graph-based features. In order to compare the difference
of performances, we evaluated our classifiers with the same
splits of a stratified 10-fold cross validation scheme.

The results for the 4 metrics (F1, accuracy, precision and
recall) for CLbase and CLmixed on each fold are given in
Table 3. The metrics observed for CLmixed seem to be better
than CLbase. However, to assess whether this difference is
significant, we proceed a paired sample Student’s T-test,
since the measurements of each classifier were applied on
the same splits of data.

The Table 4 presents the statistical results of the paired
T-test. The null hypothesis is that the pairwise difference
between the two tests for each metrics is equal. With the
degrees of freedom df = 9 (as we achieved 10 measures),

and a p-value of 0.05, the t-table value is 1.812. For each
metrics, we can see on Table 4 than the computed t-value
has a absolute value above 1.812. We can then rejected the
null hypothesis that there is no difference between means
for each metrics. In conclusion, adding conceptual graph-
based features to Glove features improve significantly the
performance scores of our complexity classifier. We therefore
answer positively to our second research question.

5.5 Extended Complexity Classifier
Thus, conceptual graph-based complexity features can in-
crease the performances of complexity classifiers, while im-
proving the explainability of the model. In our context of
evaluating learners’ production in English to assess their
complexity, we eventually would like to test how a complete
classifier, using not only semantic features but also syntactic
and lexical ones, would perform.

In that last part, we trained and tested a supervised classi-
fier that predicts complexity based on the previous semantic
features, and syntactic and lexical features proposed in [20],
that appears to be the state-of-the-art metrics so far. We
removed the ones strongly correlated with the length of the
text, as our dataset presents a potential bias of categorical
distribution over the text length. We ended up with 30 syn-
tactic and lexical features, 300 features from Glove and 17
conceptual features. The classifier has the same architecture
as those trained before.

The results for the test are presented in table 5, while the
Precision-Recall curve is illustrated in Figure 5. With high
scores in both precision and recall, this model seems to be
suitable to assist teachers in their assessment of complexity.

6. CONCLUSION AND PERSPECTIVES
At the core of several learning related activities, the as-
sessment of complexity is a task of importance. This topic
has been broadly studied through the structural analysis of
texts, with the design and evaluation of lexical, syntactic
or morphological measures. The consideration of semantic
metrics, however, is still scarce. Recently, word embedding
techniques have demonstrated their promising potential to
design powerful predictive models of semantic complexity,
but lack explainability. In order to overcome this obsta-
cle, we proposed an approach based on the exploitation of
existing knowledge graphs to generate a graph representa-

195 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

Table 3: Comparative Scores of Baseline and Mixed Classifiers.

CLbase scores CLmixed (Mixed) scores
F1 Acc. Prec. Rec. F1 Acc. Prec. Rec.

0.943 0.943 0.940 0.947 0.954 0.954 0.958 0.949
0.950 0.950 0.946 0.955 0.962 0.962 0.966 0.957
0.938 0.937 0.926 0.951 0.947 0.946 0.934 0.960
0.947 0.947 0.937 0.957 0.952 0.951 0.945 0.959
0.947 0.947 0.933 0.963 0.953 0.953 0.952 0.953
0.941 0.940 0.930 0.952 0.946 0.946 0.937 0.956
0.944 0.945 0.945 0.944 0.955 0.955 0.951 0.959
0.947 0.947 0.939 0.955 0.958 0.958 0.956 0.960
0.954 0.954 0.952 0.956 0.965 0.965 0.965 0.964
0.941 0.940 0.920 0.964 0.956 0.955 0.947 0.964

Table 4: Paired T-test Results between Scores of Baseline
and Mixed Classifiers.

Scores Computed t-value
F1 -9.230

Accuracy -9.271
Precision -6.303

Recall -1.922

Table 5: Test Scores of the Extended Complexity Classifier.

Score Value
F1 0.970

Accuracy 0.969
Precision 0.956

Recall 0.984

Figure 5: Precision-Recall Curve of the Extended Complex-
ity Classifier.

tion of a text, whose concepts are exposed and related each
other through their abstractions. We suggested 17 metrics
computed from this concept graph to highlight intelligible
information about the semantic complexity of the text.

We evaluated our proposition within the context of learners’
productions for a European certification of English as a for-
eign language. We observed that a word embedding based
classifier still tends to surpass a model relying solely on our
features. Nevertheless, a classifier that uses these two sets
of features together outperforms significantly the previous
ones. At last, we proposed a classifier using these seman-
tic metrics but also syntactic and lexical features. Tested in
our context of learners’ evaluation, its performances seem to
make it suitable to assist human examiners in their tasks.

Eventually, we found, at the time of writing, a similar ap-
proach to ours, based on the DBPedia knowledge graph to
measure conceptual complexity [30]. Authors used concepts
extraction in the context of text simplification. Although
not based on a concept graph as we did, the metrics they pro-
posed may be also relevant for our domains of application.
We will then integrate them to our model shortly. While first
results obtained are promising, we have to dig into the anal-
ysis of each metric we suggested, in order to evaluate their
power of discrimination regarding the conceptual complex-
ity. This work will allow us to validate the interpretation
of the features we proposed. At a longer term, it will of-
fer opportunities to consider a proactive usage on users to
assist them in their learning activities. Assessing complex-
ity is also of importance for learning resources indexing, to
provide useful recommendations. Since this domain of ap-
plication is different from the present context of study, we
will consolidate a dataset of learning objects and then re-
produce the experimentation to evaluate how our approach
generalizes to other tasks.

7. REFERENCES
[1] O. Biran and K. McKeown. Human-Centric

Justification of Machine Learning Predictions. In
Twenty-Sixth International Joint Conference on
Artificial Intelligence, pages 1461–1467, California,
2017. International Joint Conferences on Artificial
Intelligence Organization.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. Journal of machine Learning
research, 3(Jan):993–1022, 2003.

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 196

[3] V. Butoianu, P. Vidal, E. Duval, J. Broisin, and
K. Verbert. User Context and Personalized Learning:
a Federation of Contextualized Attention Metadata.
Journal of Universal Computer Science,
16(16):2252–2271, 2010.

[4] C. Cechinel, S. S. Alonso, M.-Á. Sicilia, and M. C.
de Mattos. Descriptive Analysis of Learning Object
Material Types in MERLOT. In Research Conference
on Metadata and Semantic Research, pages 331–341.
Springer, 2010.

[5] E. Dale, J. C. E. English, and 1949. The concept of
readability. Elementary English, 26(1):19–26, 1949.

[6] M. Dascalu, P. Dessus, S. Trausan-Matu, M. Bianco,
and A. Nardy. ReaderBench, an Environment for
Analyzing Text Complexity and Reading Strategies.
In International Conference on Artificial Intelligence
in Education, pages 379–388. Springer, 2013.

[7] M. Dascalu, G.-M. Gutu, S. Ruseti, I. C. Paraschiv,
P. Dessus, D. S. McNamara, S. A. Crossley, and
S. Trausan-Matu. ReaderBench - A Multi-lingual
Framework for Analyzing Text Complexity. In
European Conference on Technology Enhanced
Learning, pages 495–499. Springer, 2017.

[8] E. Davoodi and L. Kosseim. On the Contribution of
Discourse Structure on Text Complexity Assessment.
arXiv.org, Aug. 2017.

[9] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis. Journal of the American society for
information science, 41(6):391–407, 1990.

[10] C. A. Denton, M. Enos, M. J. York, D. J. Francis,
M. A. Barnes, P. A. Kulesz, J. M. Fletcher, and
S. Carter. Text-Processing Differences in Adolescent
Adequate and Poor Comprehenders Reading
Accessible and Challenging Narrative and
Informational Text. Reading Research Quarterly,
50(4):393–416, Oct. 2015.

[11] J. Falkenjack and A. Jönsson. Classifying easy-to-read
texts without parsing. In Proceedings of the 3rd
Workshop on Predicting and Improving Text
Readability for Target Reader Populations (PITR),
pages 114–122, 2014.

[12] J. Falkenjack, K. H. Mühlenbock, A. J. P. o. t. 19th,
and 2013. Features indicating readability in Swedish
text. In Proceedings of the 19th Nordic Conference of
Computational Linguistics (NODALIDA 2013), pages
27–40, 2013.

[13] J. Geertzen, T. Alexopoulou, and A. Korhonen.
Automatic linguistic annotation of large scale l2
databases: The ef-cambridge open language database
(efcamdat). In Proceedings of the 31st Second
Language Research Forum. Somerville, MA:
Cascadilla Proceedings Project, 2013.

[14] X. Glorot and Y. Bengio. Understanding the difficulty
of training deep feedforward neural networks. In
Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 249–256,
2010.

[15] Q. Han and F. Gao. Towards semantic learning object
metadata: mapping standard metadata specifications
to ontologies. In Proceedings of IEEE International
Conference on Teaching, Assessment, and Learning

for Engineering (TALE) 2012, pages H1C–12. IEEE,
2012.

[16] Y. Huang, A. Murakami, T. Alexopoulou, and
A. Korhonen. Dependency parsing of learner English.
International Journal of Corpus Linguistics,
23(1):28–54, May 2018.

[17] Z. H. Kilimci and S. Akyokus. Deep Learning- and
Word Embedding-Based Heterogeneous Classifier
Ensembles for Text Classification. Complexity,
2018(7):1–10, 2018.

[18] W. Kintsch, T. A. Van Dijk Psychological review, and
1978. Toward a model of text comprehension and
production. Psychological review, 85(5):363, 1978.

[19] B. Kopainsky, P. P. Dummer, and S. M. Alessi.
Automated assessment of learners’ understanding in
complex dynamic systems. System Dynamics Review,
28(2):131–156, Apr. 2012.

[20] X. Lu. Automatic analysis of syntactic complexity in
second language writing. International journal of
corpus linguistics, 15(4):474–496, 2010.

[21] X. Lu. Automated measurement of syntactic
complexity in corpus-based l2 writing research and
implications for writing assessment. Language Testing,
34(4):493–511, 2017.

[22] P. N. Mendes, M. Jakob, A. Garćıa-Silva, and
C. Bizer. Dbpedia spotlight: shedding light on the web
of documents. In Proceedings of the 7th international
conference on semantic systems, pages 1–8. ACM,
2011.

[23] T. Mikolov, K. C. 0010, G. Corrado, and J. Dean.
Efficient Estimation of Word Representations in
Vector Space. arXiv preprint arXiv:1301.3781, 2013.

[24] D. Napolitano, K. Sheehan, and R. Mundkowsky.
Online Readability and Text Complexity Analysis
with TextEvaluator. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics:
Demonstrations, pages 96–100, 2015.

[25] S. Narayan and C. Gardent. Hybrid simplification
using deep semantics and machine translation. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 435–445, 2014.

[26] M. E. Newman. Assortative mixing in networks.
Physical review letters, 89(20):208701, 2002.

[27] J. Pennington, R. Socher, and C. D. Manning. Glove -
Global Vectors for Word Representation. In
Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP),
pages 1532–1543, 2014.

[28] M. T. Ribeiro, S. Singh, and C. Guestrin. ”Why
Should I Trust You?”. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1135–1144. ACM,
2016.

[29] A. Siddharthan. A survey of research on text
simplification. ITL-International Journal of Applied
Linguistics, 165(2):259–298, 2014.

[30] S. Štajner and I. Hulpus. Automatic assessment of
conceptual text complexity using knowledge graphs. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 318–330, 2018.

197 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

