
HAL Id: hal-02315240
https://hal.science/hal-02315240v1

Submitted on 14 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of immiscible two-phase flows based on a
kinetic diffuse interface approach

Tao Chen, Victor Chéron, Zhaoli Guo, Jorge César C Brändle de Motta,
Thibault Menard, Lian-Ping Wang

To cite this version:
Tao Chen, Victor Chéron, Zhaoli Guo, Jorge César C Brändle de Motta, Thibault Menard, et al..
Simulation of immiscible two-phase flows based on a kinetic diffuse interface approach. International
Conference on Multiphase Flow, May 2019, Rio de Janeiro, Brazil. �hal-02315240�

https://hal.science/hal-02315240v1
https://hal.archives-ouvertes.fr


10th International Conference on Multiphase Flow,
ICMF 2019, Rio de Janeiro, Brazil, May 19 – 24, 2019

Simulation of immiscible two-phase flows based on a kinetic diffuse interface approach

Tao Chen1,2, Victor Chéron3, Zhaoli Guo4, Jorge César Brändle de Motta3,

Thibault Ménard3 and Lian-Ping Wang2,5

1 SKLTCS, College of Engineering, Peking University, Beijing 100871, China
2 Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology,

Shenzhen 518055, Guangdong, China
3 COmplexe de Recherche Interprofessionnel en Aéothermochimie (CORIA),

Université de Rouen Normandie, CNRS, INSA de Rouen, Saint-Étienne du Rouvray, France
4 State Key Laboratory of Coal Combustion, School of Energy and Power Engineering,

Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
5 Department of Mechanical Engineering, University of Delaware, Newark, DE 19716-3140, USA

1601111553@PKU.EDU.CN; CHERONV@CORIA.FR; ZLGUO@HUST.EDU.CN; JORGE.BRANDLE@CORIA.FR;

TMENARD@CORIA.FR; LWANG@UDEL.EDU

Keywords: immiscible two-phase flow, homogeneous isotropic turbulence, gas kinetic scheme, diffuse interface

Abstract

A direct numerical simulation (DNS) code is developed to simulate immiscible two-phase flows based on the recently developed
discrete unified gas-kinetic scheme (DUGKS). This scheme simulates hydrodynamic equations of the quasi-incompressible
Cahn-Hilliard-Navier-Stokes system by the use of two mesoscopic distributions and the proper design of their equilibrium
distributions and source terms. Several immiscible two-phase flows are used to validate the scheme in both 2D and 3D,
including a stationary droplet in 2D and 3D, the Rayleigh-Taylor flows, and two-phase homogeneous isotropic decaying
turbulence. The results obtained by DUGKS are compared carefully to these from the literature and the ARCHER code, i.e.,
a Coupled Level Set - Volume of Fluid (CLSVOF) method. The comparisons indicate that DUGKS is a promising scheme for
direct numerical simulations of immiscible two-phase flows.

Introduction

Immiscible two-phase flows occur in a variety of industrial
processes such as emulsion, sprays, boiling, and cavitation.
These flows contain fluid-fluid interfaces involving exten-
sive topological changes which are coupled with flow fluc-
tuations at different scales. There detailed flow features are
difficult to be treated experimentally and computationally.
In recent years, numerical methods have served as a vital
research tool for probing flow structures and nonlinear dy-
namics in these complex flows. Most of these simulations
were performed based on the continuum (or macroscopic)
Navier-Stokes equations. Since the 1990s, mesoscopic meth-
ods based on the Boltzmann equation, such as the lattice
Boltzmann method and gas kinetic schemes, have also been
developed and applied to simulate these complex flows, with
various degrees of success.
In this paper, we consider a relatively new gas kinetic scheme
known as the discrete unified gas kinetic scheme (DUGKS)
(Guo et al. 2013, 2015). Based on the Boltzmann-BGK equa-

tion, Guo et al. developed the DUGKS scheme by combining
the advantages of both the lattice Boltzmann method (LBM)
and unified gas kinetic scheme (UGKS). In DUGKS, a model
Boltzmann equation is solved using an accurate finite vol-
ume formulation coupling tightly kinetic particle transport
and particle collisions. Compared to the lattice Boltzmann
scheme, DUGKS can more easily incorporate irregular meshes
and different kinetic particle velocity models. The scheme
has been applied to simulate single-phase homogeneous isotropic
turbulence (Wang et al. 2016) and wall bounded turbulent
flow (Bo et al. 2017).
Here we further explore the capabilities of DUGKS by inco-
porating non-ideal molecular interaction forces using the dif-
fuse interface formulation, so that the dynamics of fluid-fluid
interfaces can be simulated. Preliminary two-dimensional
simulations of the Rayleigh-Taylor instability, using this ap-
proach, have been reported in Zhang et al. (2018).
The primary objective of this work is to develop a three-
dimensional implementation of this two-phase DUGKS ap-
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proach, and validate the code by comparing the results from
the literature and from the CLSVOF method employed by
in the ARCHER code (Menard et al. 2007). The ARCHER
code has been chosen because of its robustness, maturity and
complementarity comparing to DUGKS. Indeed, this code
solves the Navier-Stokes equations with a consistent finite
volume scheme and considers a sharp interface approach.
““““ The second objective, by comparing two completely
different approaches (DUGKS and ARCHER), is to provide
new benchmark data for several immiscible two-phase flows.
The rest of the paper is organized as follows. First, the quasi-
incompressible Cahn-Hilliard-Navier-Stokes (CHNS) system
is briefly introduced, along with the DUGKS implementation
of the system. Then a few immiscible two-phase flows are
considered, in order of complexity: (a) a two-dimensional
stationary droplet, (b) a three dimensional stationary droplet
respectively, (c) 2D Rayleigh-Taylor flows under unstable
conditions, (d) 3D Rayleigh-Taylor instability, and (e) 3D
two-phase decaying homogeneous isotropic turbulence. Cases
(a) and (b) have been simulated many times in the literature
but the individual interaction terms in the diffuse interface
approach (also known as the phase field method) used in
DUGKS will be analyzed more thoroughly here. In cases
(c), (d), and (e), the results from DUGKS and ARCHER will
be compared more systematically. The results in case (e) also
provide some physical insight into the secondary breakup of
a drop in a background turbulent flow.

Quasi-incompressible phase-field approach

In the phase field approach, an order parameter φ is used to
distinguish the different fluids. This phase field varies contin-
uously across the interfacial region separating the two fluids.
A Landau free-energy function (also known as the mixing
energy) is defined as

F (φ) =

∫
V

[
ψ(φ) +

κ

2
|∇φ|2

]
dV, (1)

where the first term ψ(φ) represents the free-energy density
of molecules in the interfacial region interacting with the bulk
fluids, the second term provides interaction energy among
molecules within the interfacial region. Both contribute to
the interface energy which defines a surface tension. κ is the
cofficient of the surface tension, and V is the control volume.
For isothermal flows considered here, the following double-
well energy density is used,

ψ(φ) = β(φ− φA)2(φ− φB)2. (2)

where φA and φB are constants corresponding to the equi-
librium state of the order parameters of the bulk fluids A and
B, respectively. Here the interaction energy density among
molecules in either bulk region has been excluded, and will
be modeled by a separate hydrodynamic pressure term in
Eq. (8). The parameters φA, φB , β and κ together deter-
mine the interfacial thickness W and surface tension σ,

W =
1

φA − φB

√
8κ/β, σ =

|φA − φB |3

6

√
2κβ. (3)

The variation of the free-energy function F (φ) with respect
to φ yields the chemical potential µφ,

µφ ≡
δF

δφ
=
δψ

δφ
− κ∇2φ

= 4β(φ− φA)(φ− φB)

(
φ− φA + φB

2

)
− κ∇2φ.

(4)

For a flat surface at equilibrium, the profile across the inter-
face can be obtained by solving µφ(φ) = 0, which yields

φ(ζ) =
φA + φB

2
+
φA − φB

2
tanh

(
2ζ

W

)
, (5)

where ζ is the normal coordinate of the flat interface.
The evolution of φ is typically governed by the Cahn-Hilliard
equation,

∂φ

∂t
+∇ · (φuuu) = ∇ · (λ∇µφ), (6)

where uuu is the macroscopic (continuum) fluid velocity and λ
is the mobility. The interfacial diffusion flux is assumed to
be proportional to the gradient of the chemical potential.
In quasi-incompressible phase-field multiphase flow model,
the hydrodynamic equations are given by Zhang et al. (2018)

∇ · uuu = −γ∇ · (λ∇µφ), (7)

ρ

(
∂uuu

∂t
+ uuu · ∇uuu

)
= −∇p+∇ ·

[
ρν
(
∇uuu+∇uuuT

)]
+FFF ,

(8)
with the relation between the density ρ and the phase field φ,
and the definition of γ,

ρ =
φ− φB
φA − φB

ρA +
φA − φ
φA − φB

ρB (9)

.

γ =
ρr − 1

φA − φBρr
(10)

where p is a hydrodynamic pressure used to enforce the in-
compressibility condition outside the interfacial region, ν is
the kinematic viscosity. ρA and ρB are the densities of the
two fluids, respectively. FFF is the combined body force per
unit volume, including the surface-tension force (modeled
here as a volumetric force) FFF s = −φ∇µφ and other body
forces FFF b, such as gravity. In our method, γ is a parameter
related to the density ratio. The density ratio is defined as
ρr = ρA/ρB . Substituting Eqs. (7), (9), and (10) into Eq. (6)
yields

∂ρ

∂t
+∇ · (ρuuu) = 0, (11)

therefore, the mass is conserved locally in this specific quasi-
incompressible model.

The DUGKS scheme

The DUGKS scheme is a mesoscopic model of the above
CHNS system based on a model Boltzmann equation. Sim-
ilar to the two-distribution function LBM, we introduce one
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distribution function fi to model the pressure p and momen-
tum fields, and a second distribution function gi to simulate
the phase field φ. These two distribution functions satisfy the
following Boltzmann equations,

∂fi
∂t

+ ξiξiξi · ∇fi = −fi − f
eq
i

τf
+ F fi , (12)

∂gi
∂t

+ ξiξiξi · ∇gi = −gi − g
eq
i

τg
+ F gi , (13)

where fi ≡ fi(xxx,ξξξi, t) and gi ≡ gi(xxx,ξξξi, t) are particle dis-
tribution functions with the discrete velocity ξξξi at position xxx
and time t for the hydrodynamic variables and the order pa-
rameter, respectively. The subscript i denotes the set of dis-
crete particle velocities, which is designed using the Gauss-
Hermite quadrature for the best computational efficiency. τf
and τg are the relaxation times for the distributions f and
g, respectively. The key here is to design the correspond-
ing equilibrium distribution functions feqi and geqi , as well
as the two source terms F fi and F gi , such that the basic con-
servation requirements are met and the CHNS hydrodynamic
equations can be recovered, to within a certain level of mod-
eling errors.
The conservation requirements include

φ(xxx, t) =

q−1∑
i=0

gi(xxx,ξξξi, t), p(xxx, t) =

q−1∑
i=0

fi(xxx,ξξξi, t),

RTρ(xxx, t)uuu =

q−1∑
i=0

ξξξifi(xxx,ξξξi, t)

(14)

The density field is determined through Eq. (9) in terms of
φ.

The designed equilibrium distributions read

feqi = ωip+ c2sρsi(uuu), geqi = Hi + φsi(uuu) (15)

where

si(uuu) = ωi

[
ξiξiξi · uuu
c2s

+
(ξi · uuu)2

2c4s
− uuu2

2c2s

]
,

Hi =

{
φ− (1− ω0)ηµφ, if i = 0

ωiηµφ, if i 6= 0

. (16)

Here η is introduced to improve numerical stability, with the
mobility given as λ = c2sτgη, ωi is the weighting coefficients.
The speed of sound is given by c2s = RT as in the usual
LBM, where T is reference temperature and R is the specific
gas constant.
The source terms F fi and F gi are designed as

F fi = (ξξξi − uuu) · [FFFΓiuuu+ si(uuu)c2s∇ρ]

−ωic2sργ∇ · (λ∇µφ)
(17)

F gi =
φ

c2sρ
(ξξξ − uuu) · (FFF −∇p)Γ(uuu) (18)

where Γi(uuu) = ωi + si(uuu).
Next, the discretiztion in space and time is briefly described.

The Boltzmann equations can be written in a unified form (Zhang
et al. 2018),

∂ϕi
∂t

+ ξξξi · ∇ϕi = Ωϕi + Fϕi (19)

where ϕ=f or g, and Ωϕi = −(ϕi − ϕeqi )/τϕ. The computa-
tional domain is divided into cells, with the center defined as
xxxj . Integrating Eq. (19) over a control volume Vj centered
at xxxj from tn to tn+1 and using the midpoint rule for the in-
tegration of the flux term at the cell interface and trapezoidal
rule for the collision and source terms inside each cell, we
can obtain

ϕn+1
i − ϕni +

δt

|Vj |
Jn+1/2

=
δt

2
[Ωϕ,n+1
i + Ωϕ,ni ] +

δt

2
[Fϕ,n+1
i + Fϕ,ni ]

(20)

where

Jn+1/2 =

∫
∂Vj

(ξξξ ·nnn)ϕi(xxx,ξξξi, tn+1/2)dSSS (21)

is the flux across the cell interface. |Vj | and ∂Vj are the vol-
ume and the surface area at cell xxxj ,nnn is the outward unit
nomal vector of the surface. The cell-averaged value of the
distribution function and the source term are, respectively,

ϕni ≡
1

|Vj |

∫
Vj

ϕi(xxx,ξξξi, tn)dxxx (22)

Fϕ,ni ≡ 1

|V |

∫
Vj

Fϕi (xxxj , ξξξi, tn)dxxx (23)

To remove the time implicity, two linear transformations are
introduced,

ϕ̃i = ϕi −
δt

2
(Ωϕi + Fϕi )

=
2τϕ + δt

2τϕ
ϕi −

δt

2τϕ
ϕeqi −

δt

2
Fϕi

(24)

ϕ̃+
i = ϕi +

δt

2
(Ωϕi + Fϕi )

=
2τϕ − δt
2τϕ + δt

ϕ̃i +
2δt

2τϕ + δt
ϕeqi +

2τϕδt

2τϕ + δt
Fϕi

(25)

Then Eq. (20) becomes

ϕ̃n+1
i = ϕ̃+,n

i − δt

|Vj |
Jn+1/2
ϕ (26)

In practice, g̃i and f̃i are solved, and the hydrodynamic vari-
ables can be obtained as folllows

φ(xxxj , tn + δt) =

q−1∑
i=0

g̃i (27)

p(xxxj , tn + δt) =

q−1∑
i=0

f̃i +
δt

2

q−1∑
i=0

F fi (28)

ρRTuuu(xxxj , tn + δt) =

q−1∑
i=0

ξξξif̃i +
δt

2

q−1∑
i=0

ξξξiF
f
i (29)
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The key step in updating ϕ̃n+1
i is to evaluate the flux across

the cell interface. According to the above formula, the flux is
determined by the original distribution functionϕi(xxxb, ξξξi, tn+1/2)
at the half time step. This is done by integrating Eq. (20) for
a half time step h = δt/2 along the characteristic line with
the end point located at the center of the cell interface, i.e.,
xxxb = (xxxj + xxxj+1) /2,

ϕi(xxxb, ξξξi, tn + h)− ϕi(xxxb − ξξξih,ξξξi, tn)

=
h

2
[Ωϕi (xxxb,xxxi, tn + h) + Ωϕi (xxxb)]+

h

2
[Fϕi (xxxb, ξξξi, tn + h) + Fϕi (xxxb − ξξξih,ξξξi, tn)]

(30)

Again, two liner transformations are introduced,

ϕ̄i =
2τϕ + h

2τϕ
ϕi −

h

2τϕ
ϕeqi −

h

2
Fϕi (31)

ϕ̄+
i =

2τϕ − h
2τϕ + h

ϕ̄i +
2h

2τϕ + h
ϕeqi +

2τϕh

2τϕ + h
Fϕi (32)

Then we obtain

ϕ̄i(xxxb, ξξξi, tn + h) = ϕ̄+
i (xxxb − ξξξh,ξξξi, tn) (33)

For smooth flows, the right hand side of Eq. (33) can be ap-
proximated using Taylor expansion,

ϕ̄+
i (xxxb − ξξξh,ξξξi, tn) ≈ ϕ̄+

i (xxxb, ξξξi, tn)− ξξξih · σσσb (34)

where σσσb ≡ ∇ϕ̄+
i (xxxb, ξξξi, tn).

After the update of ϕ̄+
i (xxxb, ξξξi, tn + h) at the cell interface,

the hydrodynamic variables at the cell interface at tn +h can
therefore be evaluated as,

φ(xxxb, tn + h) =

q−1∑
i=0

ḡi (35)

p(xxxb, tn + h) =

q−1∑
i=0

f̄i +
h

2

q−1∑
i=0

F fi (36)

ρRTuuu(xxxb, tn + h) =

q−1∑
i=0

ξξξif̄i +
h

2

q−1∑
i=0

ξξξiF
f
i (37)

Thus, the equilibrium distribution functionϕeq(xxxb, ξξξi, tn+h)
can be obtained based on the hydrodynamic variables ob-
tained at the cell interface at tn + h. Then the original distri-
bution functions ϕi(xxxb, ξξξi, tn + h) can be obtained,

ϕi =
2τϕ

2τϕ + h
ϕ̄i +

h

2τϕ + h
ϕeqi +

τϕh

2τϕ + h
+ Fϕi (38)

Now the flux across the cell interface JJJn+1/2
i can be evalu-

ated by using Eq. (26).
Moreover, due to the nature of linear transformations, the fol-
lowing relations can be derived,

ϕ̃+
i =

4

3
ϕ̄+
i −

1

3
ϕ̃i (39)

ϕ̄+
i =

2τϕ − h
2τϕ + δt

ϕ̃i +
3h

2τϕ + δt
ϕeqi +

3τϕh

2τϕ + δt
Fϕi (40)

Finally, the distribution function ϕ̃n+1
i is updated according

to Eq. (20).
Applying the Chapman-Enskog analysis, we can show that

the above DUGKS model can yield the following hydrody-
namic equations:

ρ

(
∂uuu

∂t
+ uuu · ∇uuu

)
= −∇p+∇·[ρν(∇uuu+∇uuuT )]+FFF (41)

1

ρc2s

∂p

∂t
+∇ · uuu = −γ∇ · (λ∇µφ) (42)

∂φ

∂t
+∇ · (φuuu) = ∇ · (λ∇µφ) (43)

with the kinematic viscosity ν and the mobility λ expressed
by

ν = c2sτf , λ = c2sτgη (44)

In the low Mach number limit (Ma = |u||u||u|/cs), the hydro-
dynamic pressure is of order O(Ma2). Therefore, the above
equations are essentially the same as the governing equations
in the CHNS system.
A model of the mixture dynamic viscosity is needed to spec-
ify the local mixture kinematic viscosity ν as ν = µ/ρ. The
model we adopted is

µ =
µAµB(φA − φB)

(φ− φB)µB + (φA − φ)µA
, (45)

which ensures the continuity of viscosity across the inter-
face (Zu & He 2013) , where µA = ρAνA and µB = ρBνB .
In the present study, the D3Q19 lattice particle velocity model
is used to set up a 3D simulation code. The same code is used
here to generate results for 2D cases (the alternative is to use
D2Q9 lattice model). One of the flexibilities in DUGKS is
that the time step can be adjusted in terms of the CFL num-
ber,

δt = CFL
δxmin√

3RT
(46)

where δxmin is the minimal grid spacing and the CFL num-
ber should be less than one.

Numerical simulation - A 2D stationary droplet

We apply our 3D DUGKS code to simulate a 2D stationary
droplet, namely, the variation in the third spatial direction is
not present. Initially, a stationary circular droplet is located at
the center of the computational domain on a 128×128 mesh.
The radius of the droplet R0 is fixed at 40 lattices units.
According to the phase field approach, the initial phase field
is given by

φ0(x, y) =
φA + φB

2
+
φA − φB

2

× tanh
(

2
R−

√
(x− xc)2 + (y − yc)2

W

) (47)

where(xc, yc) is the center of the droplet. This initial distri-
bution plus zero velocity and zero pressure is used to initial-
ize the fields. The approximate analytical solution based on
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the planar interface solution will be used to compare with the
numerical results.
The periodic boundary conditions are applied to the four bound-
aries. Following parameters are used: φA = 1.0, φB = 0.0,
ρA = 1.0, ρB = 0.2, τf = τg = 0.5, σ = 1× 10−3, W = 4,
CFL = 0.25. Thus, the corresponding dimensionless pa-
rameters are ρA/ρB = 5, νA/νB = 1, Ca = µAVref/σ =

33.33, where Vref ≡
√
σR/ρA. As reported by Zu & He

(2013), the mobility needs to be manipulated during the sim-
ulation to avoid numerical instability. A very small mobility
may cause numerical instability, although the spurious cur-
rents and diffusion errors can be reduced with decreasing
mobility. Here, after a parametric study, we choose λ = 0.01
to ensure the better stability. When the droplet reaches the
equilibrium state, the phase field at the center line x = 64
is shown in Fig. 1, as a function of the normalized distance
from the droplet center. We observe that the simulated phase
field profile is in excellent agreement with the analytical so-
lution. The maximum relative error between the theoretical
and the solution |φtheory − φ|/|φA − φB | does not exceed
0.01 in the whole domain.
The pressure difference δP between the inside and outside of
the droplet should satisfy the Laplace law, i.e. δP = σ/R0

when the equilibrium state is reached, where the total pres-
sure P is evaluated as P = p + p0 − κφ∇2φ − κ|∇φ|2/2,
here p0 = φdψ/dφ − ψ is the thermodynamic pressure, p
is the hydrodynamic pressure and the other term is related
to the curvature. Fig. 2 shows the relationship between the
pressure P and the normalized distance from the center of
the droplet. The simulated pressure jump is 2.491e-5, which
agrees well with the theoretical value σ/R=2.5e-5. We also
observe that there exists small fluctuation near the interface
and we are studying the origin of this fluctuations.
The comparison of the the thermodynamic pressure p0 is
given in Fig. 3. The L1 error is smaller than 1.64%. If we
compare −κφ∇2φ, and −κ|φ|2/2 to the theoretical solution
based on the planar case, we observe also an error less than
3%. Figs. 3, 4, and 5 show the thermodynamic pressure p0,
−κφ∇2φ, and−κ|φ|2/2, respectively, as a function of y/R0.
All are in excellent agreement with the analytical solutions.

To check the balance of the hydrostatic equations, we cal-
culate the pressure gradient ∇p and the potential form of the
interface force F = −φ∇µφ. Fig. 6 show the balance be-
tween the pressure gradient and the interface force in x direc-
tion, similar solution is obtained for y direction (not shown).
We conclude that the spurious currents are very weak and do
not affect the balance. The maximum of the velocity normal-
ized by Vref is 3.95× 10−5 .

The results of 3D droplets are similar. Therefore, we do
not present them here.

Numerical simulation - 2D Rayleigh-Taylor
instability

We next consider the Rayleigh-Taylor instability of an inter-
face between a heavy fluid on the top and a lighter one below
within a gravitational field. The initial perturbation grows
rapidly and the heavy fluid is observed to penetrate into the

0 0.25 0.5 0.75 1 1.25 1.5

y/R0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ numerical

φ analytical

ψ(φ)/ψ
max

0.5κ|∇φ|2/ψ
max

Figure 1: Order parameter φ across the interface.
Numerical solution and approximate analytical so-
lution across centerline at x = 64. The solid green
line and the dash black line indicate the analytical
solution of the first term and the second term of
free energy. The magenta lines indicate the posi-
tion (R0−W/2)/R0 and (R0 +W/2)/R0 respec-
tively.

lighter fluid producing a complex vortex structure and com-
plex interface shape. The evolution of interface structure and
the resultant mixing of two fluids are of great importance in
various applications.
The computational domain is set to [0, L]× [0, 4L] with L =
256 lattices units. A heavy fluid with density ρA is on the
top of a lighter fluid with density ρB . The initial interface is
located at δ(t = 0) = 2L + 0.1L cos(2πy/L). The periodic
boundary conditions are applied on the lateral boundaries and
the bounce back conditions are used on the top and bottom
walls.
This problem is governed by three physical dimensionless
numbers and they are set as follows: the Atwood number
At = (ρA − ρB)/(ρA + ρB) = 0.5 (which implies that
ρA/ρB = 3.0), the ratio of the shear viscosity µA/µB = 1.0,
and the Reynolds number Re = ρAL

√
gL/µA = 3000. In

the diffuse interface method, due to the use of Cahn-Hilliard
equation, the mobility is considered as a model parameter.
Thus, a model dimensionless number, the Pélect number is
defined as Pe = L

√
gL/λ, where λ is the mobility. For

the purpose of code validation, the computational parameters
are set to be the same as these of Ren et al. (2016), namely,
Pe = 1000. We choose the reference length equal to the
width L, and the reference time equal to tref =

√
L/(gAt).

In addition, the width of the interface between two fluids W
is fixed to 5 lattice units. A surface tension is fixed with a
Eötvos number of Eo = ∆ρgL2

σ = 1747.63. Since this num-
ber is large, one can expect that the flow is driven by the
density difference. The CFL number is fixed as 0.25 in the
DUGKS simulations.
The time evolution of the position of spike (bottom of the
heavier fluid that was moving downward) and bubble (top of
the lighter fluid that was rising up) was tracked in our sim-
ulation and was compared with data from the literature and
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Figure 2: Total pressure P accross the center line at x = 64.
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Figure 3: Thermodynamic pressure p0.

ARCHER results. Fig. 7 shows the time evolution of the po-
sitions of the bubble front and the spike tip, comparing with
the data from the literature (Ren et al. 2016; Li et al. 2012;
Ding et al. 2007; Zu & He 2013) and ARCHER. The solu-
tions obtained from the literature are all obtained with LBM
based solvers with a mesh grid equivalent to the present sim-
ulations (between 150 and 256 lattices in the x direction). It
is important to remark that the results from (Zu & He 2013;
Ding et al. 2007) are obtained without surface tension while
(Ren et al. 2016) is simulated with surface tension. As ex-
pected, the small surface tension does not play important role
in this case.
The shapes of the interface at different times are displayed
in Fig. 8. The orange color represents our results and the
green represents the ARCHER results. The results from the
two different methods are very similar. At the initial time,
the generation of the falling spike of the heavy fluid and the
rising bubble of the lighter fluid can be clearly observed. At
time continues, mushroom structures are formed due to the
well known Kelvin-Helmholtz instability. Later on, complex
interactions between two fluids lead to the breakup of the
mushroom spike into smaller structures. The differences be-
tween both codes for these larger times can be explained by
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Figure 4: The curvature related part−κφ∇2φ.
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Figure 5: The curvature related part −κ|∇φ|2/2.

the physical chaotic flow that is very sensitive to small per-
turbation. At later times we can observe some diffused inter-
face structures in the phase field approach, which is expected.
Nevertheless, this diffusion is weak such that the main inter-
facial instability evolution is unaffected.
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Figure 7: Time evolution of the positions of spike and bub-
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Figure 8: ARCHER Interface (green) on DUGKS Phase
Field (background) for: Eo = 1747.63,
Re = 3000, ρA/ρB = 3, µA/µB = 1,
At = 0.5. Times are respectively t∗ =
{0, 1.0, 1.5, 2.0, 2.5, 3.125}.

Numerical simulation - 3D Rayleigh-Taylor
instability

Following the two dimensional case, next we simulate three
dimensional Rayleigh-Taylor instability to demonstrate the
capability and accuracy of the DUGKS method. The simu-
lation is performed in a rectangular domain of size [0, L] ×
[0, L] × [0, 4L], with L = 64 lattices units. For the conve-
nience of comparison, the model parameters are chosen ac-
cording to the work of Mitchell et al. (2018). It is important
to remark that they use a higher resolution ofL = 128 in their
paper. The phenomenon is characterized by several impor-
tant dimensionless numbers including Atwood number, At,
Reynolds number, Re, and capillary number, Ca. They are
At = (ρA − ρB)/(ρA + ρB) = 0.5, Re = L

√
gL/ν = 128,

Ca = µA
√
gL/σ = 9.1, respectively. At describes the den-

sity ratio, Re indicates the relative effect of gravitational to
viscous forces, and Ca is the relative effect of viscous forces
to the surface tension force. Here g is the gravitational ac-
celeration, ρA and ρB are the densities of the heavy fluid
and the lighter fluid, respectively. σ is the surface tension.
µA is the dynamic viscosity of the heavy fluid and µB for
the lighter fluid. The kinematic viscosities of the two fluids
are specified to be equal (i.e., ν∗ = νA/νB = 1) and thus
µ∗ = µA/µB = 3. The Eötvos number here is 776.53. As
in the 2D case, the density ratio drives the instability process.
Additionally, Pe = L

√
gL/λ = 744 is the numerical Péclet

number, λ is the mobility in the Cahn-Hilliard equation. The
reference time is defined as tref =

√
L/g = 6000 such that

the dimensionless time is t∗ = t/tref . The no-slip bounce
back conditions are applied on the top and bottom walls while
periodic boundary conditions are used on the other two direc-
tions. The initial interface position between the heavy fluid
and lighter fluid is given by a single mode perturbation, i.e.,
δ(y, z) = 2L+ 0.05L[cos(2πy/L) + cos(2πz/L)].
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Figure 9: Time evolution of the positions of the bubble front,
the saddle point and the spike in the case of
Rayleigh-Taylor instability.

A quantitative comparison is performed by tracking the
position of the bubble, spike, and saddle points through the
simulation. Fig. 9 shows time evolution of the positions of
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the bubble front, the saddle points and the spike obtained
from the literature, DUGKS and ARCHER. Finally, we have
to point out that the cases in Zu & He (2013), He et al. (1999)
were done without surface tension, while the case in Mitchell
et al. (2018) was done with surface tension. For the bub-
ble front and saddle locations, DUGKS and ARCHER are
in excellent agreement. The zero-surface-tension solutions
for the bubble front are slightly higher and slightly lower
for the saddle. This was expected since the surface tension
tends to stabilize the Rayleigh-Taylor instability. If we fo-
cus on the spike, where the differences are more clearly seen,
DUGKS and ARCHER are also in excellent agreement at
early times. At later times, DUGKS predicts a lower spike
location, perhaps due to different levels of numerical dissi-
pation in DUGKS and ARCHER. The results of Mitchell et
al. (2018) considering surface tension appear to match those
obtained without surface tension. Given that DUGKS and
ARCHER are in good agreement, we have confidence in our
results. Further simulations at higher grid resolutions are
needed to clarify the differences caused by the surface ten-
sion. Overall, here the stabilization effect of surface tension
is weak, when compared to the unstable effect due to the dif-
ferential gravity.

Numerical simulation - Two-phase
decaying homogeneous isotropic
turbulence
Finally, we perform a direct numerical simulation of two-
phase decaying homogeneous isotropic turbulence with fluid-
fluid interfaces. The aim of present work is to validate the
DUGKS code thus only preliminary results are shown here.
The computational domain is a cubic box with periodic bound-
ary conditions in all three directions. The spatial grid reso-
lution is 1283 lattices. In DNS of homogeneous isotropic
turbulence, an adequate grid resolution is of primary impor-
tance. The Kolmogorov scale η in the carrier phase and the
smallest scale of liquid structures should be resolved. For
the single phase case, Wang et al. (2016) has shown that the
DUGKS has a superior numerical stability particularly for
high Reynolds number flows and can adequately resolve the
flow when kmaxη > 3, where kmax is the maximum resolved
wave number and η is the Kolmogorov length scale. In our
simulation, the initial kmaxη = 7.0. Here the density ratio
and the viscosity ratio are both set to unity in order to get
rid of the influence of the density ratio and the viscosity ra-
tio. The CFL number is 0.25. The initial maximum velocity
magnitude is 0.034. The surface tension is σ = 1 × 10−20

(We = ρu2
rmsR/σ = 2.48× 1017).

We consider initially a single drop in a turbulent flow field
obtained with linear forcing scheme (Rosales et al. 2005;
Duret 2012). In order to set up a physically initial veloc-
ity field across the droplet interface that is not subjected ini-
tially to high shear flow, we first run a forced homogeneous
isotropic turbulence to create a developed single phase tur-
bulent velocity field. Then we add a solid particle to the
flow field. After several large eddy turnover times, we ex-
tract this velocity field and use it to initialize the two-phase
flow. This initialization was done with the ARCHER code,

where the solid particle was treated by an Immersed Bound-
ary Method (Breugem 2012). This initial condition was
shared among both codes. For the DUGKS code, we add
the non-equilibrium part of the distribution function to ini-
tialize the new distribution functions f̃ and g̃ through the
Chapmann-Enskog analysis. The initial radius of the droplet
is 31.7 lattice units ensuring a good resolution of the flow
inside the droplet. The volume fraction Vdrop/Vbox= 0.064.
The slices of the contour of the normalized velocity mag-
nitude |uuu|/|u0u0u0|max and vorticity magnitude |ωωω|/|ω0ω0ω0|max at
different times are shown in Fig. 10 and Fig. 11, respectively.

We can observe that the complexity of the interface in-
creases with time, which is well represented by the phase
field approach. The study of this interface evolution, in par-
ticular under more harsh conditions (e.g., higher density ra-
tio, higher surface tension), is very relevant to the practical
atomization process (Canu et al. 2018). These conditions re-
main a challenge topic for our DUGKS-phase field approach,
which deserves further investigation.

The quantitative comparisons of the velocity magnitude
and the vorticity magnitude on a line at z = 63.5, x = 63.5
are also shown in Fig. 12. The results from DUGKS agree
well with the results from ARCHER. We note that both DUGKS
and ARCHER are designed to be of the second-order accu-
racy.

Conclusions

We have developed a three dimensional DUGKS code and
use it to simulate both two-dimensional and three-dimensional
immiscible two-phase flows. The cases considered include a
stationary droplet, the Rayleigh-Taylor instability, two-phase
homogeneous isotropic decaying turbulence in order of com-
plexity. The results obtained by the DUGKS are compared
to those from the literature and the ARCHER code based on
the Coupled Level Set - Volume of Fluid (CLSVOF) method.
The results demonstrate the reliability of DUGKS. Future
studies will focus on the physical evolution of immiscible
two-phase flows as related to the secondary breakup dynam-
ics of a drop in a turbulent background flow. In the present
communication we have focused on physical cases where the
surface tension is not the main parameter driving the flow.
In this study we show that the combined phase field and
DUGKS approach provides reliable results. Ongoing work
addresses cases where surface tension is the main parame-
ter. Results are promising and encourage us to go further on
DUGKS method for the treatment of immiscible two-phase
flows. We note that there appears to be very few studies
combining mesoscopic methods and the phase field approach
for turbulent immiscible two-phase flow, and the only work
known to us is Komrakova et al. (2015). The DUGKS code
will also need to be optimized in terms of computational ef-
ficiency and numerical accuracy.
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(a) t∗ = 0

(b) t∗ = 0.98

(c) t∗ = 1.96

(d) t∗ = 3.91

(e) t∗ = 7.83

Figure 10: Contours of normalized velocity magnitude
|uuu|/|u0u0u0|max at dimensionless time t∗ =
tε0/K0=0, 0.98, 1.96, 3.91, and 7.83 with N3 =
128. Left: DUGKS, Right: ARCHER. The solid
black line indicates the interface position. The
colorbar indicates the relative magnitude of the
velocity field.

(a) t∗ = 0.98

(b) t∗ = 1.96

(c) t∗ = 3.91

(d) t∗ = 7.83

Figure 11: Contours of normalized vorticity magnitude
|ωωω|/|ω0ω0ω0|max at dimensionless time t∗ =
tε0/K0=0, 0.98, 1.96, 3.91, and 7.83 with N3 =
128. Left: DUGKS, Right: ARCHER. The solid
black line indicates the interface position. The
colorbar indicates the relative magnitude of the
vorticity field.
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