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ABSTRACT: The objective of this work is to reduce the storage dimensions required to operate a coupled 

photovoltaic (PV) and Battery Energy Storage System (BESS) in an electricity market, while keeping the same level 

of performance. Performance is measured either with the amount of errors between the energy sold on the market and 

the actual generation of the PV/BESS i.e. the imbalance, or directly with the revenue generated on the electricity 

market from the PV/BESS operation. Two solutions are proposed and tested to reduce the BESS size requirement. 

The first solution is to participate in electricity markets with an aggregation of several plants instead of a single plant, 

which effectively reduces the uncertainty of the PV power generation. The second is to participate in an intra-day 

market to reduce the BESS usage.  To evaluate the effects of these two solutions on the BESS size requirement, we 

simulate the control of the PV/BESS system in an electricity market. 
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1 INTRODUCTION 

 There is a significant uncertainty in the future 

funding of ground-mounted PV power plants. Traditional 

feed-in tariffs are disappearing, and most support 

schemes are now based on participation in electricity 

markets, where PV power producers are financially 

responsible for their forecast errors. Thus, the actual 

revenue generated from PV power plants is subject to 

both electricity price and PV power generation 

uncertainty. In order to mitigate these uncertainties, 

Battery Electricity Storage Systems (BESS) are often 

studied. However, they are still very costly. In this paper, 

we investigate how participating in intra-day electricity 

markets, and using an aggregation of PV power plants 

instead of a single plant can reduce the BESS size 

requirements. To do so, we simulate the control of a 

coupled PV/BESS system in the French electricity market 

environment. 

 The most used method of control for coupled 

PV/BESS systems is the Model Predictive Control 

(MPC). It consists in optimizing the control of the BESS 

on a receding horizon, so that the forecast future state of 

the system is taken into account when deriving the 

command for the immediate future. In most cases, the 

loss function used in the MPC controller is either the 

producer's profit [1], [2] or the energy imbalance [3], 

which is the deviation between the energy sold in the 

electricity market and the actual PV power generation. 

Some authors also propose an MPC approach to bid on 

intra-day market sessions [4], [5], however the intra-day 

market that they consider is organized in sessions, which 

is different from the continuous intra-day market that we 

consider in this paper. The uncertainty of the upcoming 

PV production is sometimes included in both the day-

ahead planning and the real-time control of the BESS, as 

in [6], [7] or [8]. We also include a modelization of the 

BESS ageing in our optimization problems as in [9]. 

While few papers consider the uncertainty of renewable 

energy forecasts, [10] and [11] model this uncertainty 

using production scenarios. An MPC controller that 

included all these elements was proposed in [12] but it 

did not consider an intra-day market. 

 The main innovation of this work is the 

implementation of a general stochastic MPC controller 

that optimizes the real-time control as well as the day-

ahead bidding and the participation in a continuous intra-

day market of a coupled PV/BESS system taking into 

account the uncertainty in the upcoming PV power 

generation, based on an arbitrary objective function, 

namely the imbalance or the penalties. Another 

innovation is the quantification of the added value from 

using a BESS both in terms of imbalance reduction and 

revenue maximization. 

 

2 MARKET STRUCTURE 

 In this paper, we study the participation of a PV 

power plant coupled with a BESS on a day-ahead market 

and dual-pricing balancing market, with a possibility to 

sell or buy energy on an intra-day market. The market 

structure assumed is: 

 -A day-ahead market where each participant has to 

submit buying or selling orders the day before delivery. 

 -An intra-day market where energy can be sold or 

bought up to 30 minutes before delivery 

 -A balancing market where each BRP has to take 

responsibility for its imbalances after delivery. 

 

2.1 Day-ahead market 

 On day-ahead markets, each participant must submit 

buying or selling bids before the Gate Closure Time 

(GCT). Then, all the buying and selling bids are 

combined to derive aggregated demand and supply 

curves for each PTU of the following day. The 

intersection of these curves defines the spot market price. 

The calculation of the spot price after the GCT is called 

the market clearing. 

 After the spot price has been calculated, the market 

participants are nominated for injection on the grid, 

depending on whether their bid was accepted or not. All 

selling bids with a price lower than the spot price are 

fully accepted, and all buying bids with a price higher 

than the spot price are fully accepted. Buying and selling 

offers with a price equal to the spot price are partially 

accepted. Since we are interested in the selling of energy, 

we will always adopt the point of view of an energy 

producer in the remaining of the thesis. 

 In any case, all accepted transactions are settled with 

the spot price, independently of the initial bid. For 

example, if a market participant accepts to sell up to 1 

MWh for 20 €/MWh and then the spot price is 40 €/MWh 

after clearing, the participant's bid is fully accepted and 

he gets 1 MWh x 40 €/MWh = 40 € 

 

2.2 Intra-day market 



Intra-day markets are physical markets that allow 

trading electricity after the GCT. They are especially 

useful for intermittent energy sources that can use 

updated forecast to correct the positions they took on the 

day-ahead market. 

As for day-ahead markets, they are characterized by a 

PTU, and a closure time. For example, on the French 

day-ahead market EPEX Spot, the PTU is the same as the 

day-ahead market i.e. one hour, and the closure is five 

minutes before the start of the delivery period. 

The pricing can be the same as for day-ahead 

markets, with an auction mechanism and a settlement 

price that applies for all participants. However, it is also 

very common to have pay-as-bid markets, where buying 

and selling bids are matched as they appear, directly 

using the bids price. In this paper, the intra-day market is 

a pay-as-bid market. 

In this paper, we assumed that the producer always 

submits intra-day offers at the spot price, which is known 

at that time. We also assume that the intra-day offers are 

always accepted. This is actually false, as the probability 

of acceptation of the intra-day offers is very dependent on 

the price of the offer However, we do not have intra-day 

data that could allow us to simulate the acceptation of 

intra-day offers. Assuming that intra-day offers are 

always accepted allows us to estimate the best-case 

scenario, giving us an upper bound of the value of intra-

day markets. 

 

2.3 Balancing market 

 The balancing market penalizes the imbalance of 

each producer after delivery. The penalties are 

proportional to the difference between the energy sold by 

the participant and the actual energy he injected in the 

grid, as measured by the TSO. For an electricity buyer, 

the penalty is the difference between the bought energy 

and the actual consumed energy. The proportionality 

coefficient between the imbalance and the penalty is a 

price derived by the TSO called the balancing price. As a 

general rule, the penalties   can write: 

 

            
 

 Where    is the balancing price,   is the actual 

energy injected into the grid and    is the energy 

contracted in the day-ahead and intra-day electricity 

markets. 

 In this paper the balancing market is a dual-price 

balancing market. With dual-pricing rules, there are 

actually two balancing prices: one for positive 

imbalances    and one for negative imbalances   . The 

balancing price is usually higher than the spot price for 

negative imbalances and lower than the spot price for 

positive imbalances, in which case reducing the 

imbalance is economically beneficial. However, this is 

not always the case. 

 

2.4 Formulation of the revenue 

 When making a transaction on the intra-day market, 

the revenue from the transaction adds to the amount 

initially sold, and the volume bought or sold adds to the 

actual production for calculating the imbalance penalty. 

The complete revenue of a producer that sells an energy 

   on the day-ahead market, then makes a transaction on 

the intra-day market of an energy volume     (positive 

when energy is bought, negative when energy is sold) for 

a price     is: 

 

                              
 

 Where    is the spot price that is given by the market 

clearing after the bids from all market participants have 

been submitted. 

 When considering a BESS, we reformulate by 

differentiating the part of the production   that comes 

from the PV panels     and the part that comes from the 

BESS      . We also introduce a term         , that 

reflects the costs due to aging of the BESS when used to 

deliver the amount of energy      . This is obtained with 

the rainflow counting algorithm [13]. The aging of the 

BESS can be divided into two components, i.e. cycling 

aging and calendar aging, which is the degradation 

caused by time. In the remainder of the thesis, we will 

focus on the cycling aging of the BESS and consider its 

calendar aging as a given lifetime. The end-of-life of the 

BESS is thus defined as the minimum lifetime given by 

the cycling and calendar aging. As an example, if the 

calendar aging gives a lifetime of 20 years, and the 

cycling aging a lifetime of 50 years, we consider that the 

actual lifetime of the BESS is 20 years (as opposed to 

considering that the cycling aging adds up to the 20 years 

given as the calendar lifetime). 

 We penalize the revenue with the cost associated with 

the life-loss of the BESS. Note that the penalized revenue 

   is not an actual cash flow, and that the cost associated 

with the life-loss is only here to make the control of the 

BESS more conservative regarding the lifetime. The 

penalized revenue    then writes: 

 

                  
                            

          
 

3 PV/BESS CONTROL 

 

3.1 General Control Method 

 From the market structure, we can see that for each 

time step of the simulation, we have to take up to three 

decisions: 

 -If it is 12 AM, the energy    to bid on the day-ahead 

market for the next day. 

 -The energy     to bid on the intra-day market for the 

next time step open for the intra-day market. 

 -The energy       to charge or discharge from the 

BESS for the next time step. 

 

 The method we use to control the PV/BESS system is 

a Model Predictive Control (MPC). This means that for 

each time step of the simulation, we update the PV power 

and price forecasts, and then solve the optimization 

problem corresponding to each decision on a window 

including the near future i.e. 12 hours in this paper. Then, 

we use the first element of the solution for the control of 

the PV/BESS for the immediate future and move forward 

to the next time step of the simulation. 

 More precisely, for each time step of the simulation 

and for each decision making process, we solve an 

optimization problem over a time window of      

timesteps using the most updated price and PV power 

forecasts  ̂    ̂   ̂ : 

 



         {       } ∑  (    ̂    ̂   ̂ )

    

   

 

 The loss functions   are dependent on the overall 

objective of the simulation, and are detailed in the next 

subsections. 

 All the optimization problems are performed in a 

stochastic manner relative to the uncertainty in PV power 

generation. In other words, instead of directly minimizing 

the loss function, several scenario of PV power 

production are generated using the method from [14], and 

then the empirical expected value of the loss function 

derived from the scenario is minimized. To compare 

stochastic and deterministic optimizations, we use only 

the expected value of the PV power generation as a single 

scenario to perform the deterministic optimization. 

 With this method, the near future is taken into 

account when controlling the PV/BESS. This is 

especially useful when controlling the BESS. For 

example, if a large amount of energy was sold on the 

day-ahead electricity market in the evening, using the 

BESS to compensate forecast errors during the day could 

lead to prematurely emptying the BESS and thus not 

being able to fulfill the day-ahead planning. Considering 

the near future with a MPC controller prevents this 

situation. 

 Since the three decision processes (day-ahead 

offering, intra-day offering and real-time control) are 

consecutive, each optimization can use the optimal 

solution from the previous processes. 

 

3.2 Imbalance minimization 

 When the overall objective of the simulation is to 

minimize imbalances, the loss functions for each decision 

process if the imbalance e.g. the difference between the 

amount of energy sold and the actual energy production.  

 

3.2.1 Day-ahead offering strategy 

 In that case, the decision must be taken a 12 AM for 

all the 24 hours of the next day. Thus, we must solve: 
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 Where   is the total output of the PV/BESS. 

Assuming that we have a forecast   of the Cumulative 

Distribution Function (CDF) of the power generation   , 

we can prove that the optimal solution is given by: 

  
     (

 

 
) 

 A trivial solution is then to not use the BESS in the 

day-ahead phase, so that the forecast CDF   is the 

actually the CDF of the PV power generation, and then 

set the bids following the above equation. 

 

3.2.2 Intra-day offering strategy 

 To minimize the imbalances, the optimal solution on 

the intra-day market is to cancel the imbalance using our 

best expectation of the PV power production. Thus, the 

intra-day offers are given by: 

   
    

      (
 

 
) 

3.2.3 Real-time control 

 To minimize the imbalances, we use the absolute 

imbalance as the loss function  . Thus we must solve: 

     
        {           } 

[ ∑ |       
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] 

 

Since we use the BESS at this stage, we must also 

consider the operational constraints of the BESS. To 

define the constraints, we note as     (for State of 

Charge) the amount of energy in the battery at a given 

time step, relative to its capacity    . 
 

   
                                    

                

    |           |    

 The first constraint ensures that the energy in the 

BESS is never lower than 0 or higher than the capacity of 

the battery, taking into account the charge and discharge 

rates of the BESS, respectively     and    . The second 

constraint ensures that the BESS can only be charged 

from the PV plant, and not from the grid. Finally, the 

third constraint is a limitation on the power rating of the 

BESS, defined by the parameter  .  

 

3.3 Revenue maximization 

 When the overall objective of the simulation is the 

actual revenue, the loss function of each optimization 

problem is the revenue generated by the decision instead 

of the imbalance. Then, the optimization problems that 

we have to solve at each step are the following. 

 

3.3.1 Day-ahead offering strategy 

 When the BESS is used at both the day-ahead and 

real-time levels, then the entire formulation of the 

penalized revenue    is optimized. Once again, we 

separate the bids into one part accompanied by 

uncertainty from the PV plant      , and the output from 

the battery        . Since the BESS is controllable, we 

assume that the actual output of the BESS       is 

always equal to the amount bid        . With these 

assumptions, the optimization problem that needs to be 

solved to derive the optimal bids is: 

     
       

 

       {                     }                  

 Under the same BESS constraints as defined before. 

 

3.3.2 Intra-day offering strategy 

 Using our market structure model, the difference in 

revenue   when an intra-day offer of volume     and 

price     is accepted writes: 

                                    
  

 If      , the expected value of the revenue with 

respect to the PV power uncertainty is: 

                          

        ∫                   
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 By deriving with respect to     using the Leibniz 

integral rule, we get: 
     

    
                                

 By equaling the derivative to zero, we find a critical 

point at: 



   
        

  (
       

      
) 

 Note that the second derivative is: 

                     

 This is always negative by definition of the balancing 

prices. Thus, this critical point is a local maximum of the 

revenue. Using the same method, we find a similar result 

for the case        
 The intra-day offering strategy for the maximization 

of revenue is thus to offer the optimal intra-day volume 

defined by this equation, using       . 

 

3.3.3 Real-time control 

 To perform the real-time control of the plant, we used 

the penalized revenue as the loss function of the MPC 

controller: 

     
        {            }          

 Under the same BESS constraints as before. 

 

4. RESULTS 

 We performed the control of the PV/BESS for 

imbalance minimization and revenue maximization over 

a period of 8 months from the first of September 2017 to 

the first of May 2018. The simulation has a temporal 

resolution of 30 minutes. We compared the results 

obtained for a single plant with 2.7 MWp and an 

aggregation of 13 plants with 98 MWp. 

 PV power forecasts and price forecasts were obtained 

respectively with an Analog Ensemble method (AnEn) 

and a Support Vector Machine (SVM) algorithm as in 

[12]. Weather data required for the forecasts was 

obtained from the European Center for Medium-range 

Weather Forecasts. 

 

4.1 Imbalance minimization 

 For imbalance minimization, we assumed that we had 

a theoretical infinite storage capacity. We simulated the 

control with or without an intra-day market and with a 

stochastic or a deterministic method. Then, we checked a 

posteriori the actual size of the BESS that was requested 

to perform the control. 

 Figure 1 shows the imbalance reduction that we 

obtained for the single and aggregated plant. For each 

plant, we can distinguish three curves: one without intra-

day market, which sets the benchmark for the BESS size, 

one with intra-day market and deterministic control, and 

one with intra-day market and stochastic control. 

 

 
Figure 1: Imbalance reduction for the different control 

strategies 

 As expected, the aggregated plant has a lower initial 

imbalance compared to its installed power. All three 

strategies have the same resulting imbalance. Thus, when 

comparing the actual BESS size required for each 

strategy, we compare the actual efficiency in BESS usage 

of each strategy, since they all provide the same 

imbalance reduction. 

 Storage size requirements are reported on table I. We 

can see that the use of an intra-day market drastically 

reduces the required size of the BESS. However, there is 

not much difference between stochastic and deterministic 

control of the BESS.  

 

Table I: BESS size requirements for imbalance 

minimization 

 

 Single 

Plant 

Aggregation 

Required size for ideal control 

(MWh/MWp) 

45 28 

Actual size with ID and 

stochastic control 

(MWh/MWp) 

14.0 9.35 

Size reduction (%) -68.9 -66.7 

 

 

4.2 Revenue Maximization 

 For revenue maximization, we cannot assume that we 

have a theoretical infinite capacity. In a case when 

discharging the BESS adds to the revenue, the 

optimization would not result in a finite solution, since 

the optimal output of the BESS would be infinite. Thus, 

we performed the control for a BESS size of 1 

MWh/MWp and compared the revenue variation from all 

strategies. 

 Results are shown on table II. We can see that there is 

no strategy that increases the revenue. This is caused by 

the high uncertainty in balancing prices. In a significant 

portion of the simulation, imbalances that were helpful 

for the grid at a national level were remunerated. For 

example, if the producer overproduces while the power 

grid is short of energy, this imbalance is remunerated at a 

higher price than the spot price. Thus, compensating this 

forecast error is detrimental to the revenue. Since it is 

very difficult to forecast whether the grid will be in short 

or long in energy at the national level, using the BESS to 

compensate forecast errors is not reliable. In the end, 

there was no strategy that was able to increase the 

revenue. 

 Still, the methods using stochastic control were more 

efficient that the deterministic ones, as they included 

more information. However, they only used information 

on the uncertainty from the PV power production and not 

the spot and balancing prices. They were thus able to 

mitigate the high uncertainty of balancing prices but not 

enough to reliably increase the revenue. 

 

Table II: Revenue increase for the different strategies 

 Single plant Aggregation 

Revenue without 

BESS and ID (€) 

77490 2323880 

 With 

ID 

Without 

ID 

With 

ID 

Without 

ID 

Price 

improvement – 

deterministic 

control (%) 

-1.4 -1.1 -1.2 -1.0 

Price 

improvement – 

stochastic control 

(%) 

-0.77 -0.48 -0.4 -1.0 

 

5. CONCLUSIONS 



 In this paper, we studied the effect of intra-day 

markets and plant aggregation on the BESS size 

requirement of a PV/BESS system in an electricity 

market. We compared a deterministic and a stochastic 

control method for both imbalance reduction and revenue 

maximization. 

 We could show that the BESS size reduction obtained 

with plant aggregation is around 50 % when going from a 

single plant of 2.7 MWp to an aggregation of 13 plants 

that have an installed power of 98 MWp in total. 

Participating in intra-day electricity markets can also 

reduce the BESS size requirement up to 68 % in the best 

case, that is, when all intra-day offers are accepted. For 

imbalance reduction, the uncertainty in PV production is 

low enough on the short-term that there is little difference 

between stochastic and deterministic control methods. 

 On the other hand, for revenue maximization, 

stochastic control methods perform better, as they are 

able to somehow mitigate the high uncertainty of 

balancing prices. However, using the BESS always 

resulted in a lower income, because in a significant 

portion of the time, imbalances were actually 

remunerated by the TSO. 

 

6. REFERENCES 

 

[1] E. Perez, H. Beltran, N. Aparicio, and P. Rodriguez, 

“Predictive Power Control for PV Plants With Energy 

Storage,” IEEE Trans. Sustain. Energy, vol. 4, no. 2, pp. 

482–490, 2013. 

[2] H. H. Abdeltawab and Y. A.-R. I. Mohamed, 

“Market-Oriented Energy Management of a Hybrid 

Wind-Battery Energy Storage System Via Model 

Predictive Control With Constraint Optimizer,” IEEE 

Trans. Ind. Electron., vol. 62, no. 11, pp. 6658–6670, 

2015. 

[3] A. Damiano, G. Gatto, I. Marongiu, M. Porru, and A. 

Serpi, “Real-Time Control Strategy of Energy Storage 

Systems for Renewable Energy Sources Exploitation,” 

IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 567–576, 

2014. 

[4] A. Saez-de-Ibarra et al., “Management Strategy for 

Market Participation of Photovoltaic Power Plants 

Including Storage Systems,” IEEE Trans. Ind. Appl., vol. 

52, no. 5, pp. 4292–4303, 2016. 

[5] A. Núñez-Reyes, D. Marcos Rodríguez, C. Bordons 

Alba, and M. Á. Ridao Carlini, “Optimal scheduling of 

grid-connected PV plants with energy storage for 

integration in the electricity market,” Sol. Energy, vol. 

144, pp. 502–516, 2017. 

[6] F. Conte, S. Massucco, and F. Silvestro, “Day-Ahead 

Planning and Real-Time Control of Integrated PV-

Storage Systems by Stochastic Optimization,” in IFAC-

PapersOnLine, 2017, vol. 50, no. 1, pp. 7717–7723. 

[7] F. Conte, S. Massucco, S. Member, M. Saviozzi, F. 

Silvestro, and S. Member, “A Stochastic Optimization 

Method for Planning and Real-Time Control of 

Integrated PV-Storage Systems : Design and 

Experimental Validation,” IEEE Trans. Sustain. Energy, 

vol. 9, no. 3, pp. 1188–1197, 2018. 

[8] C. Keerthisinghe, S. Mieee, G. Verbiˇ, S. Mieee, and 

A. C. Chapman, “Evaluation of a multi-stage stochastic 

optimisation framework for energy management of 

residential PV-storage systems,” 2014 Australas. Univ. 

Power Eng. Conf., no. October, pp. 1–6, 2014. 

[9] G. He et al., “Optimal Bidding Strategy of Battery 

Storage in Power Markets Considering Performance-

Based Regulation and Battery Cycle Life,” IEEE Trans. 

Smart Grid, vol. 7, no. 5, pp. 2359–2367, 2016. 

[10] N. Vespermann, S. Delikaraoglou, and P. 

Pinson, “Offering Strategy of a Price-Maker Energy 

Storage System in Day-Ahead and Balancing Markets,” 

in PowerTech 2017, 2017. 

[11] H. Ding, P. Pinson, Z. Hu, and Y. Song, 

“Optimal Offering and Operating Strategies for Wind-

Storage Systems with Linear Decision Rules,” IEEE 

Trans. Power Syst., vol. 31, no. 6, pp. 4755–4764, 2017. 

[12] T. Carriere, C. Vernay, S. Pitaval, F.-P. Neirac, 

and G. Kariniotakis, “Strategies for combined operation 

of PV/storage systems integrated into electricity 

markets,” IET Renew. Power Gener., pp. 1–8, 2019. 

[13] M. Musallam and C. M. Johnson, “An efficient 

implementation of the rainflow counting algorithm for 

life consumption estimation,” IEEE Trans. Reliab., vol. 

61, no. 4, pp. 978–986, 2012. 

[14] P. Pinson, H. Madsen, H. A. Nielsen, G. 

Papaefthymiou, and B. Klöckl, “From probabilistic 

forecasts to statistical scenarios of short-term wind power 

production,” Wind Energy, vol. 12, no. 1, pp. 51–62, 

2009. 


