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Abstract 
 

The evolutionary origin and history of metazoan nervous systems has been at the heart of numerous 

scientific debates for well over a century. This has been a particularly difficult issue to resolve 

within the deuterostomes, chiefly due to the distinct neural architectures observed within this group 

of animals. Deuterostomes feature indeed central nervous systems, apical organs, nerve cords and 

basiepidermal nerve nets. Comparative analyses investigating the anatomy and molecular 

composition of deuterostome nervous systems have nonetheless succeeded in identifying a number 

of shared and derived features. These analyses have led to the elaboration of diverse theories about 

the origin and evolutionary elaboration of deuterostome nervous systems. Here, we provide an 

overview of these distinct theories. Further, we argue that deciphering the adult nervous systems of 

representatives of all deuterostome phyla, including echinoderms, which have long been neglected 

in this type of surveys, will ultimately provide answers to the questions of the ancestry and 

evolution of deuterostome nervous systems.  
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X.1 Introduction 
 

Among metazoans, the deuterostomes constitute one of the two major infrakingdoms of 

bilaterian animals (Satoh et al. 2014). Members of the deuterostomes include the vertebrates, the 

tunicates, the cephalochordates, the hemichordates, and the echinoderms, with the former three 

establishing the chordate superphylum and the latter two constituting the ambulacrarian 

superphylum (Fig. X.1). Deuterostomes present overall very diverse body plans and lifestyles, 

which together have significantly hampered the establishment of robust phylogenetic relationships 

within this part of the animal tree of life (e.g. Blair and Hedges 2005; Lowe et al. 2015). Yet, with 

the advent of whole genome sequences and molecular phylogenies, the monophyly of the 

deuterostomes as well as the major phylogenetic branching patterns within this infrakingdom have 

by now been firmly established (Delsuc et al. 2006; Dunn et al. 2008; Telford et al. 2015).   

Of the many characters investigated to understand the ancestry and evolution of the 

deuterostomes, particular attention has been paid over the years to the nervous system. It turns out, 

however, that the two major superphyla of deuterostomes, i.e. chordates and ambulacrarians, are 

characterized by remarkably different nervous systems (Fig. X.1). Chordate larvae commonly form 

a neural tube that, in the adult, gives rise to a central nervous system with an anterior brain and a 

posterior spinal cord (Holland 2009). In contrast, ambulacrarian larvae possess a nervous system 

consisting of an apical organ and of neurons underlying the larval ciliary bands. In addition, these 

neural structures are subsequently lost during metamorphosis and hence do not contribute to the 

adult nervous system of ambulacrarians, which is created de novo (Nakajima et al. 2004; Byrne et 

al. 2007; Miyamoto et al. 2010). The adult nervous system of ambulacrarians, in turn, can also be 

subdivided into two main structures: a basiepidermal nerve net (or nerve plexus) and nerve cords 

(i.e. condensed bundles of neurons) (Chia and Burke 1978; Nakano et al. 2006; Miyamoto et al. 

2010). Importantly, although it is largely accepted that the last common chordate ancestor possessed 

a centralized nervous system, the phylogenetic relationships of the chordate central nervous system 

with the ambulacrarian larval neural structures, adult nerve nets or adult nerve cords are still a 

matter of debate (Lowe et al. 2003; Haag 2005; Nielsen 2006; Nomaksteinsky et al. 2009; Kaul and 

Stach 2010; Burke 2011). 

Interestingly, comparative analyses carried out in cnidarians, arthropods, annelids, and 

vertebrates have revealed a certain degree of conservation between neuronal cell types and gene 

expression patterns in the neurogenic territories of these animals (Marlow et al. 2014; Arendt 2018). 

These conserved features have hence been interpreted as evidence for a common origin of all 

eumetazoan (cnidarians + bilaterians) nervous systems and for the presence of a condensed, 

centralized nervous system in the last common ancestor of bilaterians (i.e. the urbilateria) (Holland 
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et al. 2013; Nielsen 2015; Arendt et al. 2016). This hypothesis thus implies the presence of an 

urbilaterian-like central nervous system in the deuterostome ancestor. However, supplementary 

surveys conducted on a different selection of bilaterian species have also revealed striking 

differences in the neuroanatomy, neuronal cell types, and gene expression patterns of these animals 

compared to the former ones (Hejnol and Lowe 2015; Martín-Durán et al. 2018). These results have 

led to the contradictory hypothesis that nervous system centralization may have actually taken place 

independently in distinct bilaterian phyla (Holland 2003; Northcutt 2012). Consequently, to date, 

the morphology of the nervous system of the last common ancestor of deuterostomes remains 

elusive (Holland 2015a; Lowe et al. 2015). 

To assess the ancestry of deuterostome nervous systems, careful investigations and 

interpretations of shared and derived traits between chordate and ambulacrarian nervous systems 

take thus center stage. The developing and adult nervous systems of chordates have already been 

extensively studied and characterized both at the anatomical and molecular levels (Baker and 

Bronner-Fraser 1997; Holland 2009; Candiani et al. 2012; Hudson 2016; Osugi et al. 2017; Zieger 

et al. 2017). Comparatively, our understanding of both the anatomy and molecular organization of 

the larval and adult nervous systems of hemichordates has improved significantly in the course of 

the last two decades (Lowe et al. 2003; Nomaksteinsky et al. 2009; Miyamoto et al. 2010; Kaul-

Strehlow et al. 2015). In echinoderms, by contrast, most of our knowledge on their nervous system 

is based on studies on developing embryos and larvae, while the adult nervous system has so far 

received much less attention (Burke et al. 2006; Hinman and Burke 2018). The main reason for this 

focus on early development is the derived, pentaradial body plan of the echinoderm adult, which 

complicates any kind of comparative studies (Hyman 1955; Holland 2015a). However, as presented 

here, data from echinoderms, and in particular from adult echinoderms, can and should be included 

in comparative analyses aimed at reconstructing the evolutionary origin and history of deuterostome 

nervous systems. In this chapter, we review our current understanding of the anatomy and 

molecular organization of the larval and adult nervous systems of ambulacrarians and assess their 

possible homologies with chordate nervous systems. We further propose that detailed investigations 

of adult nervous system development in ambulacrarians, including in adult echinoderms, have the 

potential to resolve the long-standing debate about the ancestry of deuterostome nervous systems 

and might even provide crucial evidence for clarifying the origin of centralized nervous systems in 

bilaterians.   

 

X.2 The deuterostomes 
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The deuterostomes represent a large monophyletic group of animals that is composed of two 

major superphyla: the chordates and the ambulacrarians (Satoh et al. 2014). In addition to these, it 

should be highlighted though that the xenoturbellids, a group of marine worms, have been placed by 

some molecular phylogenies as either sister group of the ambulacrarians (Bourlat et al. 2006; Dunn 

et al. 2008) or basal to all deuterostomes (Mwinyi et al. 2010). However, further molecular analyses 

have also grouped the xenoturbellids together with the acoels and the nemertodermatids in a 

separate phylum, the Xenacoelomorpha, and positioned this phylum as either sister group of the 

ambulacrarians (Philippe et al. 2011) or basal to all bilaterians (Hejnol et al. 2009; Cannon et al. 

2016; Rouse et al. 2016). Thus, given current discordant views on the phylogenetic position of the 

xenoturbellids, representatives of this animal group have not been considered in this review. 

Historically, animals have been grouped together as deuterostomes on the fundamental basis of 

specific morphological traits (Grobben 1908). The most important of these traits was the fate of the 

blastopore that, in deuterostomes, was said to become the anus, while the mouth will form 

secondarily on the opposite side of the archenteron. Other traits included radial cleavage (early cell 

divisions are parallel or perpendicular to the original body axis), blastula formation (development of 

a hollow sphere of cells surrounding a fluid-filled cavity), and enterocoely (emergence of the 

mesoderm by folding from the archenteron). Even though all these developmental features can 

indeed be found amongst all deuterostomes, they have also been reported by now in several 

protostome phyla (Hejnol and Martindale 2009; Martín-Durán et al. 2012). Thus, these discoveries 

have significantly reduced the number of characters exclusively shared by deuterostomes, so-called 

deuterostome synapomorphies.  

As of today, the only unambiguous deuterostome synapomorphy is the presence of a pharynx 

penetrated by several slits (Dominguez et al. 2002; Gillis et al. 2012; Lowe et al. 2015). In extant 

hemichordates and chordates, pharyngeal gill slits have been described. They are located posterior 

to the mouth and contribute to gas exchange and feeding. The homology of these structures in 

between these animals has further been supported by several anatomical and molecular characters 

(Rychel and Swalla 2007; Gonzalez and Cameron 2009; Gillis et al. 2012). In extant echinoderms, 

by contrast, pharyngeal gill slits are generally absent, but the fossil record has revealed compelling 

evidence for the presence of a pharynx pierced by slits in stem echinoderms (Dominguez et al. 

2002). Moreover, a perforated pharynx has also been identified in fossils described as stem 

deuterostomes (Shu et al. 2001, 2003; Ou et al. 2012), thereby reinforcing the notion that a pharynx 

penetrated by slits is indeed a true deuterostome synapomorphy.  

Some authors have further proposed that an endostyle-associated function, so far reported in 

chordates and hemichordates, may represent an additional deuterostome synapomorphy (Nielsen 
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2012; Lowe et al. 2015; Satoh 2016). In chordates, a pharynx-associated organ, called the 

endostyle, participates in food particle trapping and contributes to endocrine functions. In 

hemichordates, even though a well-defined endostyle does not seem to be present, the pharynx as a 

whole has been shown to serve these two functions (Ruppert 2005; Gonzalez and Cameron 2009). 

Thus, despite the fact that no endostyle equivalent has so far been reported in echinoderms, an 

endostyle-like structure or at least function might have already been present in the last common 

ancestor of all deuterostomes (Nielsen 2012; Lowe et al. 2015; Satoh 2016). 

 

X.2.1 The chordates 

The chordates unite three distinct phyla of which phylogenetic relationship is by now very well 

established. The cephalochordates (or amphioxus) represent the sister group to a clade established 

by the tunicates (or urochordates) and the vertebrates and that is often referred to as the olfactores 

(Delsuc et al. 2006; Satoh et al. 2014). Chordates display overall very distinctive adult body plans, 

anatomies, and forms (Fig. X.1). Cephalochordates are thin and fusiform (Kardong 2012). 

Tunicates have their entire adult body embedded in a thick tunic made of cellulose (Holland 2016). 

Vertebrates exhibit a large variety of adult morphologies, marked, for example, by size differences 

ranging from 1 cm in frogs to 30 m in whales (Webster and Webster 2013). Despite this diversity, 

all chordates are nonetheless characterized by three specific synapomorphies observed at least at 

some stage in their life cycle: a muscular post-anal tail, a notochord, and a dorsal neural tube. 

The muscular post-anal tail is an elongation of the animal trunk extending beyond the anus 

(Stach and Kaul 2011). This post-anal tail contains skeletal elements and paired muscles, which are 

used, for example, for undulatory swimming movements in aquatic species and for balancing or 

grasping in terrestrial ones. In some chordates, such as cephalochordates and fish, the tail is 

maintained throughout the whole life cycle, while in others, such as ascidian tunicates and humans, 

it is only present during embryonic development and subsequently disappears.  

The second chordate synapomorphy, the notochord, is a flexible rod-shaped structure derived 

from the mesoderm (Zhang 2009). It extends all along the anterior-posterior body axis and is 

located between the digestive tract ventrally and the central nervous system dorsally. In 

cephalochordates, the notochord acts as the primary axial support of both the larval and the adult 

body, while, in most tunicates, it is present only in the embryo and is subsequently lost during 

metamorphosis. In vertebrates, the notochord is found in the embryo and contributes then 

significantly to the formation of the adult intervertebral discs in the vertebral column.  

Finally, the third chordate synapomorphy is the dorsal neural tube. The neural tube is a tubular 

neuroepithelium with a central lumen. It is derived from the ectoderm and forms in the embryo 
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through a characteristic developmental process called neurulation (Colas and Schoenwolf 2001; 

Lowery and Sive 2004). During neurulation, the embryonic neuroectoderm, which is located dorsal 

to the notochord, bends inward, rounds up, and fuses, thereby detaching itself from the remaining 

epidermal ectoderm and coming to lie just underneath it. Eventually, in the adult, the dorsal neural 

tube will form the chordate central nervous system, with its anterior part generating a dense neural 

condensation, the brain, while its more posterior portions becoming the spinal cord (Fig. X.1). In 

addition to the central nervous system, chordate nervous systems further include an extensive 

peripheral nervous system that includes all nerves, ganglia, and sensory cells of the body outside the 

central nervous system (Buchanan and Tranel 2009; Shepherd 2017). The peripheral nervous 

system thus serves as a relay between the body and the central nervous system, connecting all 

neural receptors and effectors in the body to the central nervous system.  

 

X.2.2 The ambulacrarians 
The ambulacrarians include two phyla, the hemichordates and the echinoderms, which form a 

monophyletic clade within the deuterostomes (Satoh et al. 2014; Telford et al. 2015). The 

hemichordates can further be subdivided into two classes, the enteropneusts and the pterobranchs 

(Osborn et al. 2012; Cannon et al. 2014), while the echinoderms comprise five classes, the crinoids 

(sea lilies and feather stars), the echinoids (sea urchins), the holothuroids (sea cucumbers), the 

asteroids (sea stars), and the ophiuroids (brittle stars). Among echinoderms, the crinoids are 

generally placed basal to two sister groups: the echinozoa (echinoids plus holothuroids) and the 

asterozoa (asteroids plus ophiuroids), a phylogenetic relationship that has recently been validated by 

two large-scale molecular analyses (Telford et al. 2014; Reich et al. 2015).  

As adults, the morphology of hemichordates and echinoderms differ greatly (Fig. X.1). 

Hemichordates are fusiform worms with a bilateral body plan composed of three regions, which 

form anterior to posterior are the prosome, the mesosome, and the metasome. The prosome is also 

commonly referred to as the proboscis in enteropneusts and the cephalic shield in pterobranchs, 

while the mesosome corresponds to the collar in enteropneusts and the neck in pterobranchs, and 

the metasome is called the trunk in both enteropneusts and pterobranchs (Kaul-Strehlow and 

Röttinger 2015; Miyamoto and Wada 2018). In contrast, in echinoderms, the adult bodies do not 

display bilateral symmetry. They are instead characterized by a pentaradial body plan. The adult 

echinoderm is organized along an oral-aboral axis along which five axes (or radii) are organized 

perpendicular to it (Minsuk et al. 2009). Of note, the number of perpendicular axes may vary and 

can even be higher in certain asteroid and ophiuroid species. Each axis is further defined by the 

presence of an ambulacrum, which is a specific area of the shell that holds the internal water 



	

8 

vascular system and that is characterized by a perforated skeleton through which the tube feet 

emerge. The areas between the ambulacra are referred to as interambulacra (Serafy and Fell 1985; 

Mooi and David 2008). 

Despite the considerable differences in adult morphology, hemichordates and echinoderms 

nonetheless share some key features that strongly support their phylogenetic relatedness. First, their 

representatives chiefly adopt one of two developmental modes: their adult forms develop either 

indirectly by drastic metamorphosis from a feeding, planctotrophic larva or directly by gradual 

metamorphosis from a non-feeding, lecithotrophic larva (Raff 1987; Kaul-Strehlow and Röttinger 

2015). Second, the larvae of hemichordates (i.e. the tornaria observed in spengelid and ptychoderid 

enteropneusts) and that of echinoderms (i.e. the vitellaria in crinoids, the echinopluteus in echnoids, 

the auricularia in holothuroids, the ophiopluteus in ophiuroids, and the bipinnaria and the 

brachiolaria in asteroids) are very similar. They share a similar body plan with bilateral symmetry 

(Smith 1997) and are characterized by an ectodermal ciliary band, called the neotroch, which 

surrounds the mouth and is used for locomotion and food collection (Fig. X.1) (Nielsen 1987). 

Given these similarities, authors have hence proposed that the last common ancestor of 

hemichordates and echinoderms developed from a common ancestral larva, called the dipleurula 

larva, and from which all extant ambulacrarian larvae have emerged (Nielsen 1998; Swalla 2006).  

Another key feature shared by hemichordate and echinoderm larvae is the presence, along the 

digestive tract, of three bilaterally paired coelomic compartments, from which most of the adult 

structures form (Fig. X.2) (Peterson et al. 2000). From the anterior (or animal) to the posterior (or 

vegetal) pole of the larva, these three paired coeloms are: the protocoel, mesocoel, and metacoel in 

hemichordates or the axocoel, hydrocoel, and somatocoel in echinoderms (Peterson et al. 2000). In 

hemichordates, the larval protocoel, mesocoel, and metacoel will respectively give rise to the adult 

prosome, mesosome, and metasome (Kaul-Strehlow and Röttinger 2015). In echinoderms, by 

contrast, the situation is more complex, as the coeloms undergo a dramatic reorganization during 

formation of the adult body (Peterson et al. 2000; Ezhova et al. 2013, 2014). The axocoel thus 

contributes to the formation of several adult structures, including most notably the excretory axial 

organ. The right hydrocoel remains in a rudimentary state, while the left hydrocoel generates the 

most prominent coelom of the adult body, driving both the pentaradial symmetry and the 

development of the water vascular system. The right and left somatocoels also grow considerably in 

size and relocate to the aboral side of the hydrocoel, where they create the fused or non-fused adult 

perivisceral coeloms, which surround the gut, the gonads, and all other inner organs. Albeit evident 

ontogenetic differences between hemichordates and echinoderms, the shared origin of their 

coelomic compartments nonetheless allows comparisons of specific ambulacrarian adult body parts. 
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For example, adult hemichordates and echinoderms possess a pulsatile vesicle, filtrating podocytes, 

and an excretory hydropore, whose developmental origin can be traced back, respectively, to the 

larval protocoel and axocoel (Willmer 1990; Kaul-Strehlow and Röttinger 2015).  

Hemichordates and echinoderms further share significant similarities in the organization of their 

larval and adult nervous systems (Fig. X.1). The nervous systems of hemichordate and echinoderm 

larvae for instance are commonly composed of two domains: an apical organ, located above the 

mouth and containing serotonergic neurons (Byrne et al. 2007), and a system of neurons and neurite 

bundles associated with the ciliary bands (Nakajima et al. 2004; Miyamoto et al. 2010). In both 

hemichordates and echinoderms, the larval nervous system is subsequently lost at metamorphosis 

and the adult nervous system is created de novo (Chia and Burke 1978; Nielsen and Hay-Schmidt 

2007; Gonzalez et al. 2018). Similarly, the adult nervous system of both hemichordates and 

echinoderms is made up of two main comparable components: a diffuse nerve net and nerve cords 

(Knight-Jones 1952; Smith 1965; Stach et al. 2012). In hemichordates, the nerve net is 

basiepidermal (located within the epidermis or arranged in one or more layers associated with the 

epidermis) and it is spread throughout the adult, although it is denser in the proboscis in 

enteropneusts and in the trunk in pterobranchs (Stach et al. 2012; Miyamoto and Wada 2018). In 

echinoderms, the nerve net is also basiepidermal and it is uniformly distributed throughout the 

adult.  

In regards to the nerve cords, enteropneust hemichordates display two nerve cords: a dorsal 

nerve cord that runs from the proboscis anteriorly to the tip of the trunk posteriorly and a ventral 

nerve cord that is restricted to the trunk. The two nerve cords are further linked, at the boundary 

between the collar and the trunk, by a circumferential nerve ring. These cords and ring, although 

called as such, are actually mostly basiepidermal condensations of the basiepidermal nerve net, with 

the exception of the collar portion of the dorsal cord, also referred to as the collar cord, which is 

subepidermal (located below the epidermis and separated from it by a basement membrane) 

(Bullock 1945; Kaul and Stach 2010). In pterobranch hemichordates, several basiepidermal 

condensations of neurons have also been described. Although not explicitly called nerve cords, 

these include a ventral stalk nerve, branchial and tentacle nerves, and a dorsal cephalic ganglion that 

is located in the neck. Even though this ganglion is not subepidermal, it has been proposed to be 

homologous to the enteropneust collar cord due to anatomical evidence (Stach et al. 2012). 

Echinoderms generally have five nerve cords, one associated with each ambulacrum. These nerve 

cords can either be basiepidermal, such as in crinoids and asteroids, or subepidermal, like in 

echinoids, holothuroids, and ophiuroids. In any event, they are always connected at their proximal 

ends, on the oral side of the adult, by a set of commissures that form a circumoral nerve ring.  
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X.3 On the significance of ambulacrarian larval neural structures for 
understanding deuterostome nervous system evolution 
 

In all eumetazoans, the first component of the nervous system to arise during embryogenesis is a 

pro-neural ectodermal domain called the apical or anterior neuroectoderm (ANE) (also referred to 

sometimes as the animal pole domain) (Arendt et al. 2016; Range and Wei 2016). The ANE domain 

commonly forms at the animal pole at the onset of gastrulation. Furthermore, its specification 

commonly requires the suppression of Wnt signaling activity, which is generally achieved by the 

expression of a conserved set of Wnt antagonists (Houart et al. 2002; Lagutin et al. 2003; Range et 

al. 2013). Thus, given the conservation of its position and specification mechanism, the ANE has 

been suggested to be homologous among eumetazoans and to share a common evolutionary origin 

dating back to their last common ancestor (Range 2014; Holland 2015a; Arendt et al. 2016), thereby 

assuming that the last common ancestor of deuterostomes also possessed an ANE.  

Subsequently, in chordates, the ANE gives rise to the most anterior region of the dorsal neural 

tube, which will form the most anterior portion of the adult central nervous system. In vertebrates, 

for example, the ANE territory will constitute parts of the future telencephalon (Wilson and Houart 

2004; Plouhinec et al. 2017). In ambulacrarians, by comparison, the ANE gives rise to the apical 

organ of the larva that is positioned above the mouth (Nielsen and Hay-Schmidt 2007; Hinman and 

Burke 2018), and which will subsequently be lost during metamorphosis, along with all neural 

structures associated with the ciliary band ectoderm (Chia and Burke 1978; Nakano et al. 2006; 

Kaul-Strehlow et al. 2015; Gonzalez et al. 2018). Despite these different ontogenetic fates of the 

chordate and ambulacrarian ANE, a number of molecular and anatomical similarities have 

nonetheless been reported between the anterior neural tube of chordates and the apical organ of 

ambulacrarians. Indeed, following the specification of the ANE, the subsequent differentiation of 

this neuroectodermal territory into a brain or an apical organ has been shown to be mediated by a 

similar core set of neurogenic transcription factors, including Six3, FoxQ2, Rx, and FoxG (Yankura 

et al. 2010; Holland et al. 2013; Range 2014). Moreover, at the cellular level, both chordate brains 

and ambulacrarian apical organs contain clusters of serotonergic neurons, which are characterized 

by neurites projecting posteriorly (Candiani et al. 2001; Byrne et al. 2007; Stach 2014). Thus, based 

on these conserved features, chordate brains and ambulacrarian apical organs have frequently been 

described as being evolutionarily related (Wei et al. 2009; Tosches and Arendt 2013; Arendt et al. 

2016). 

One of the first theories about the evolutionary history of deuterostome nervous systems taking 

into account larval stages was that of Garstang (Garstang 1894). In this theory, called the auricularia 
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hypothesis, the deuterostome ancestor was postulated to be a sexually mature dipleurula-like larva 

with an apical organ and a ciliary band (Fig. X.3). From there, Garstang proposed that the chordate 

central nervous system evolved from the circumoral ciliary band of the ancestral dipleurula, with 

the two lateral sides of the ciliary band moving dorsally and fusing along the midline thereby 

enclosing the apical organ and forming a dorsal neural tube. Although praised at first (Harvey 1961; 

Lacalli 1994) and supported by some lines of anatomical and gene expression data (Nielsen 2012), 

this theory has however been pushed out of favor then given its incoherence with supplementary 

phylogenetic, morphological, and molecular analyses (Nieuwenhuys 2002; Holland 2011, 2015a). 

For instance, studies in several ambulacrarian species have demonstrated that cells of the larval 

ciliary bands do not contribute to the formation of the adult nerve cords. Furthermore, there is no 

experimental evidence for a coordinated dorsal shift of the larval ciliary bands, which is generally 

very difficult to explain from an anatomical point of view given that the ciliary bands are firmly 

embedded in the general ectoderm of the larva. Despite this conflicting evidence from extant 

animals, Garstang’s theory can however not be completely ruled out, since it is impossible to prove 

that the morphological modifications this theory assumes may not have occurred in the course of 

animal evolution.  

More recently, an amended version of Garstang’s theory was proposed by Tosches and Arendt 

(Tosches and Arendt 2013). Named the chimeric brain hypothesis, this theory postulates that 

bilaterian nervous systems evolved from an ancestral state characterized by two separate 

neuroectodermal territories: an apical neuroectodermal territory and a blastoporal neuroectodermal 

territory. These two territories then gave rise, respectively, to an apical nervous system (ANS) and a 

blastoporal nervous system (BNS), which in the course of bilaterian evolution would have merged 

to generate a single central nervous system with an anterior brain followed by a longitudinal nerve 

cord (Fig. X.4). Interestingly, this theory is currently well supported by various morphological and 

molecular analyses carried out in cnidarians, arthropods, annelids, and chordates (Denes et al. 2007; 

Steinmetz et al. 2010; Arendt et al. 2016), but other comparative analyses have also raised some 

unresolved issues that warrant further investigations. First, although there is a strong evidence 

supporting the homology of the ANE, which further supports the existence of an ancestral apical 

neuroectodermal territory, it cannot formally be ruled out that the molecular mechanisms 

underlying ANE specification have simply been co-opted independently in several phyla (Raff 

2008). For instance, similar mechanisms have also been shown to contribute to patterning other 

animal territories such as the non-neural ectoderm (Holland et al. 2013). Second, the chimeric brain 

hypothesis has been elaborated from data issued from a very limited number of taxa. Therefore, it 

does not take into account the diversity of nervous systems observed among animals, such as for 



	

12 

instance the nervous system of adult echinoderms, which has been excluded since judged too 

divergent (Benito-Gutiérrez and Arendt 2009). In addition, when considering additional data issued 

from a larger variety of animal taxa, the anatomy and molecular makeup of bilaterian nervous 

systems appears much more diverse than previously thought (Hejnol and Lowe 2015; Martín-Durán 

et al. 2018). 

Focusing on the evolution of deuterostomes, Burke also independently proposed a theory 

regarding the evolution of their nervous systems, which, to a certain extent, is reminiscent of the 

chimeric brain hypothesis (Burke 2011). In this “animal/axial” theory, the ambulacrarian nervous 

system is considered as a bipartite system that has been separated both in time and space, with the 

larval apical organ of ambulacrarians being homologous to the chordate brain and the adult nerve 

cords of ambulacrarians being homologous to the chordate spinal cord (Fig. X.5). Although this 

hypothesis remains highly contested, chiefly due to the same arguments that challenge the chimeric 

brain hypothesis (Holland 2015a), it nonetheless highlights the importance of considering the 

ambulacrarian adult nervous system. It indeed points out the significance of investigating in 

particular the anatomy and molecular organization of their nerve cords for understanding the 

evolutionary origin and history of deuterostome nervous systems, a point that has further been 

raised by other authors (Haag 2005; Mashanov et al. 2016). 

 

X.4 On the significance of ambulacrarian adult nerve cords for understanding 
deuterostome nervous system evolution 

 

In chordates, the neural tube forms during embryonic development through a process called 

neurulation (Colas and Schoenwolf 2001; Lowery and Sive 2004). During neurulation, the 

ectodermal neuroepithelium, located dorsally in the embryo, folds in upon itself and closes over, 

thereby generating a hollow neural tube, which will later differentiate into a brain anteriorly and a 

spinal cord posteriorly. Interestingly, ambulacrarian adult nerve cord development has also been 

demonstrated to include, in some cases, a neurulation-like process. In enteropneust hemichordates, 

for instance, such a process takes place selectively at the level of the collar cord, i.e. the portion of 

the dorsal nerve cord that is located in the collar. As in chordates, the enteropneust collar cord 

neurulation process involves the infolding of an ectodermal neuroepithelium and is mediated by 

transversely oriented ependymal cells possessing myofilaments (Bateson 1884; Morgan 1894; 

Bullock 1945; Dawydoff 1948; Knight-Jones 1952; Kaul and Stach 2010; Miyamoto and Wada 

2013). In echinoderm holothuroids, ophiuroids, and echinoids, the five adult radial nerve cords have 

also been demonstrated to be subepidermal, tubular neuroepithelia of ectodermal origin, and in 

echinoids and holothuroids the radial nerve cords have been shown to form through a 
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developmental process resembling chordate neurulation (MacBride 1903; von Ubisch 1913; 

Mashanov et al. 2007). Thus, based on these similarities, a homology has been proposed between 

the enteropneust collar cord, the echinoderm radial nerve cords, and the chordate neural tube (Fig. 

X.6) (Haag 2005; Burke 2011; Luttrell et al. 2012). 

Several additional anatomical and molecular lines of evidence further support the homology 

between the collar cord of enteropneust hemichordates and the neural tube of chordates. First, as in 

chordate brains, giant nerve cells with contralateral neurite projections and numerous synaptic 

connections have been identified in the collar cord of enteropneust hemichordates (Bullock 1945; 

Brown et al. 2008; Kaul and Stach 2010). Second, such as seen in chordates, in which the notochord 

expresses the signaling molecule Hedgehog and mediates dorsal-ventral patterning of the above 

neural tube, which expresses the gene encoding the Hedgehog receptor Patched, in enteropneust 

hemichordates the endoderm stomochord, located underneath the collar cord, expresses Hedgehog, 

and the collar cord expresses Patched (Miyamoto and Wada 2013). Third, the molecular 

mechanisms regulating dorsal-ventral patterning of the collar cord in the enteropneust 

Balanoglossus simodensis and that of the chordate neural tube further share some equivalences, as 

highlighted by the conserved, staggered expression of dorsal-ventral patterning markers, such as 

Pax3/7 and Pax2/5/8 (Miyamoto and Wada 2013).  

Despite these similarities, the homology between the collar cord of enteropneust hemichordates, 

the radial nerve cords of echinoderms, and the neural tube of chordates has however been 

challenged by a number of different observations. First, the morphogenetic movements driving the 

neurulation-like process in various ambulacrarians are significantly different. For instance, the 

formation of the collar cord in ptychoderid enteropneusts and of the radial nerve cords in echinoids 

involves tissue invagination (Morgan 1894; MacBride 1903; von Ubisch 1913; Dawydoff 1948), 

the collar cord in harrimaniid enteropneusts develops by ingression (Bateson 1884), and the radial 

nerve cords in the holothuroid Stichopus californicus arise by cavitation (Smiley 1986). It should be 

added, though, that chordates also display different ways of forming a neural tube, including 

invagination, ingression, and cavitation. Some species even employ several of these modes for 

developing distinct portions of their neural tube (Lowery and Sive 2004). Second, while the 

enteropneust collar cord has been shown to form through a neurulation-like process, an equivalent 

mechanism does not seem to take place in pterobranchs, in which the cephalic ganglion and the 

main nerve tracts are simple basiepidermal neural condensations (Rehkämper et al. 1987; Stach et 

al. 2012). Similarly, in echinoderms, the nerve cords of asteroids and crinoids remain basiepidermal 

and are not internalized during their ontogeny (Smith 1965; Mashanov et al. 2016; Ezhova et al. 

2017). It is thus possible that the neurulation processes identified in some ambulacrarian classes 
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might simply reflect a secondary acquisition of this process by convergent evolution rather than 

being an ancestral, inherited character. This notion is further supported by the fact that pterobranchs 

and crinoids constitute the most basal class of their respective phylum (Cannon et al. 2014). Taken 

together, this evidence has led some authors to reject the homology between the enteropneust collar 

cord, the echinoderm nerve cords, and the chordate neural tube (Ruppert 2005; Nielsen 2006; Kaul 

and Stach 2010). 

The ventral nerve cord of enteropneust hemichordates has also been proposed to be homologous 

to the chordate neural tube (Fig. X.7). Observations on injured animals have indicated that the 

responsiveness of the animal could only be negatively impacted when the ventral nerve cord was 

transected. Cutting of the dorsal nerve cord, and even within the collar cord, did not lead to a loss of 

responsiveness (Bullock 1940; Knight-Jones 1952). These results thus suggested that the ventral 

nerve cord, and not the collar cord, is likely to act as an integrative center, comparable to the 

chordate central nervous system. In accordance with this view, BMP2/4 ligands, which in bilaterian 

animals are generally expressed on the non-neural side of the dorsal-ventral axis (De Robertis and 

Sasai 1996; Mizutani and Bier 2008), are expressed dorsally in enteropneust hemichordates (Lowe 

et al. 2006). Thus, based on this regionalized expression of BMP2/4 and albeit the fact that BMP 

signaling appears not functionally required for dorsal-ventral patterning in enteropneust 

hemichordates (Lowe et al. 2006), some authors have considered either the ventral nerve cord or the 

ventral cord plus the collar cord to be homologous to the chordate neural tube (Nübler-Jung and 

Arendt 1996; Benito-Gutiérrez and Arendt 2009; Holland et al. 2013; Holland 2015b). In 

echinoderms, neurophysiological surveys have also determined that, following the reception of 

sensory input, any of the five radial nerve cords has the capacity to control the behavior of the 

whole animal (Cobb 1987). Despite this observation, it is still a matter of debate, though, whether 

or not these findings indicate that the radial nerve cords of echinoderms act as an integrative center, 

comparable to the chordate central nervous system (Cobb 1995; Haag 2006).  

 

X.5 On the significance of ambulacrarian basiepidermal nerve nets as homologs 
of chordate neural tubes 
 

In chordates, patterning of the neural tube, along its anterior-posterior axis, is mediated by a 

specific core set of genes that are expressed in a precise sequential order along the axis (Holland 

2009; Robertshaw and Kiecker 2012). Interestingly, in the directly developing enteropneust 

hemichordate Saccoglossus kowalevskii, homologs of these genes have been shown to display a 

similar organization of their expression along the anterior-posterior axis of the ectoderm (Lowe et 

al. 2003; Aronowicz and Lowe 2006). Thus, the transcription factors Six3 and Nkx2.1, for instance, 
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which in chordates are involved in the specification of the most anterior portion of the neural tube 

(Lagutin et al. 2003), are found expressed in the ectoderm of the proboscis of S. kowalevskii, i.e. the 

most anterior portion of the animal body. Likewise, the genes Otx and Dbx, known to be expressed 

in the vertebrate forebrain and midbrain (Nouri and Awatramani 2017), are confined to the 

ectoderm of the collar region of the enteropneust, and markers expressed in the vertebrate hindbrain 

and spinal cord, such as Gbx and the Hox genes (McGinnis and Krumlauf 1992; Rubenstein et al. 

1998), are found in the trunk ectoderm of S. kowalevskii.  

Similarly, comparable to the situation in the vertebrate hindbrain (Wassarman et al. 1997; 

Tümpel et al. 2009), Hox gene expression in S. kowalevskii displays spatial collinearity in the trunk 

ectoderm, with anterior Hox genes displaying a more anterior limit of expression (close to the 

collar) than posterior Hox genes, presenting a more restricted posterior expression (close to tip of 

the trunk). Such conservation of the deployment of the core set of transcription factors in the 

ectoderm of S. kowalevskii and the central nervous system of chordates strongly suggests a 

homology and a common ancestral origin for this genetic circuitry (Lowe et al. 2003; Holland 

2003). This notion is further supported by similar findings obtained, through gene expression 

analyses, in two indirectly developing enteropneust hemichordates, the spengelid Schizocardium 

californicum (Gonzalez et al. 2017) and the ptychoderid Balanoglossus misakiensis (Kaul-Strehlow 

et al. 2017).  

With that said though, in all surveys carried out so far on hemichordates, the expression of the 

anterior-posterior patterning genes was always found limited to circumferential domains in the 

ectoderm of these animals and never associated with the nerve cords (Lowe et al. 2003; Aronowicz 

and Lowe 2006; Gonzalez et al. 2017; Kaul-Strehlow et al. 2017). Thus, a homologous core set of 

genes seems to pattern two different tissues in hemichordates and chordates: the general ectoderm 

and the neurogenic ectoderm, respectively. Alternatively, given that the ectoderm of enteropneust 

hemichordates harbors a basiepidermal nerve net (Kaul-Strehlow and Röttinger 2015; Miyamoto 

and Wada 2018), it could be argued, as it has been by some authors, that this basiepidermal nerve 

net of hemichordates could actually be considered as homologous to the chordate neural tube (Fig. 

X.8) (Holland 2003). Additional work carried out on S. kowalevskii is in fact supportive of this 

latter notion (Pani et al. 2012; Yao et al. 2016). It established, for example, that key components 

controlling the specification of the three signaling centers of the developing vertebrate brain (the 

anterior neural ridge, the zona limitans intrathalamica, and the isthmic organizer) display similar 

co-expression patterns again in the enteropneust ectoderm (Pani et al. 2012). In addition, signaling 

components of the key developmental pathways Wnt, FGF, and Hedgehog have been shown to be 

expressed in a vertebrate brain-like arrangement in the enteropneust ectoderm and to control 
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homologous anterior-posterior patterning mechanisms (Pani et al. 2012). Finally, a cis-regulatory 

element mediating the localized expression of the signaling molecule Hedgehog in the zona limitans 

intrathalamica of mice has also been demonstrated as conserved in enteropneusts, in which it 

functions to direct the expression of Hedgehog to the proboscis-collar boundary of the ectoderm 

(Yao et al. 2016).  

Together, the discovery of a conserved molecular toolkit controlling anterior-posterior patterning 

of the chordate neural tube and of the enteropneust ectoderm has hence prompted a reassessment of 

the most plausible hypotheses for nervous system evolution in deuterostomes. To date, two 

scenarios are being discussed: (1) the deuterostome ancestor had a centralized, chordate-like 

nervous system or (2) the deuterostome ancestor had a diffuse, enteropneust-like nervous system. In 

the first scenario, the anterior-posterior patterning machinery of the ancestral centralized nervous 

system would have been co-opted to control ectodermal development in hemichordates. In the 

second scenario, the chordate central nervous system would have evolved independently and 

integrated the ancestral anterior-posterior ectodermal patterning system. In support of the first 

scenario, as mentioned above, BMP signaling does not seem to be required in enteropneust 

hemichordates for dorsal-ventral patterning and development of the ectodermal nerve net (Lowe et 

al. 2006). This contrasts markedly with the situation in other bilaterian animals and has thus been 

interpreted as evidence for the derived character of the hemichordate nervous system (Holland 

2015a). In addition, anatomical and molecular data further suggest that the neurons scattered in the 

proboscis of enteropneust hemichordates are more likely to constitute a peripheral nervous system 

than to mark the presence of a centralized nervous system (Nomaksteinsky et al. 2009). In this 

context, it is important to highlight that the chordate ectoderm is also neurogenic, containing a 

sophisticated peripheral nervous system that is however never referred to as a nerve net (Holland et 

al. 2013). In support to the second scenario, by contrast, adult echinoderms also possess a 

basiepidermal nerve net (Smith 1965), and recent molecular analyses suggest that the expression of 

at least a subset of the core set of the anterior-posterior neural patterning genes are also expressed in 

the ectoderm of adult echinoderms (Tsuchimoto and Yamaguchi 2014; Koop et al. 2017; Adachi et 

al. 2018).  

So far, adult echinoderms have largely remained at the margin of the debate on the evolution of 

deuterostome nervous systems, mainly due to their derived pentaradial body plan and peculiar 

anatomical characters, such as the water vascular system (Benito-Gutiérrez and Arendt 2009; 

Holland 2015a). Nonetheless, they must be included in order to resolve the question of the ancestry 

of deuterostome nervous systems. As of now, only very few studies have attempted to characterize 

the molecular signature of the nervous system of the developing rudiment or of the adult of 
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echinoderms (Tsuchimoto and Yamaguchi 2014; Koop et al. 2017; Adachi et al. 2018). 

Interestingly, though, when looking at the expression of a selection of anterior-posterior neural 

patterning genes in echinoderm developing rudiments, this expression did not appear staggered 

along one of the body axes, but was instead radial around the body associated with either ambulacra 

or interambulacra. For instance, in the sand dollar Peronella japonica, the transcription factors Six3 

and Otx, and some of the Hox genes were found expressed in all five ambulacra, while Pax2/5/8 

was detected in some interambulacra and Engrailed in all interambulacra (Tsuchimoto and 

Yamaguchi 2014; Adachi et al. 2018). These data have been interpreted as evidence for a homology 

of the ambulacra of echinoderms and the proboscis and collar regions of enteropneust 

hemichordates (Adachi et al. 2018). However, given that the sand dollar P. japonica is 

characterized by a derived mechanism of adult rudiment formation, which is unique among 

echinoderms (Tsuchimoto and Yamaguchi 2014), this interpretation certainly requires additional 

experimental scrutiny.  

Despite this last point, expression of the neurogenic genes investigated to date in echinoderm 

rudiments has always been detected in either the ambulacral or interambulacral ectoderm, and was 

never restricted to the radial nerve cord territory, hence similar to the situation in enteropneust 

hemichordates. Thus, regardless of the modified body plan of adult echinoderms, one could argue 

that a conserved core set of neurogenic genes is similarly deployed in the echinoderm and the 

hemichordate ectoderm to pattern the developing adult basiepidermal nerve net. Although this 

notion still requires additional experimental evidence, if corroborated, it would strongly support the 

idea that the deuterostome ancestor had a diffuse ectodermal nervous system patterned along the 

anterior-posterior axis by a conserved molecular toolkit. However, in echinoderms, the adult 

ambulacral ectoderm in fact holds two neural structures: the basiepidermal nerve net and the radial 

nerve cords (Hyman 1955; Smith 1965). Thus, alternatively, the expression of the neurogenic genes 

observed to date in the rudiment may secondarily get reorganized in the course of sea urchin 

development and become associated selectively with the adult radial nerve cords, a scenario that 

would then contradict the aforementioned hypothesis. As a matter of fact, corresponding gene 

expression shifts have already been reported, for instance, for the Otx gene in the sea urchin 

Holopneustes purpurescens (Morris et al. 2004). Thus, given the present status of our knowledge, 

the question of homology between ambulacrarian and chordate nervous systems remains 

unresolved, which in turn hampers any conclusion on which of the two proposed scenarios for 

deuterostome nervous system evolution is correct.  
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X.6 Conclusions and future directions  
 

Understanding the ancestry and evolution of deuterostome nervous systems remains one of the 

key challenges of comparative biology. Several different theories have been proposed to reconcile 

the available experimental evidence with possible scenarios about the ancestral deuterostome state 

and how it evolved to generate the nervous systems of extant chordates and ambulacrarians. Here, 

we presented an overview of the most widely accepted theories and discussed anatomical, 

physiological, and molecular data from all deuterostome phyla in a comparative context. This 

summary work reveals that, albeit their derived pentaradial body plans, adult echinoderms enriched 

comparative analyses and should thus be included in future studies. Furthermore, we found that 

strong arguments are still lacking to irrefutably establish homologies between the chordate central 

nervous system and any kind of ambulacrarian nervous system, larval or adult. Going forward, 

additional work on adult echinoderms and hemichordates will thus be particularly informative, and 

thorough investigations of the molecular patterning, anatomy, and neurophysiology of their adult 

nervous system will be tremendously helpful to obtain an understanding of nervous system 

evolution in ambulacrarians.  

To date, studies on the molecular signatures of adult ambulacrarian nervous systems remain 

limited to a couple of hemichordate and echinoderm species. For instance, most of the molecular 

work on hemichordates has so far been carried out solely on the directly developing enteropneust S. 

kowalevskii, while studies on indirectly developing enteropneusts are scarce and those on 

pterobranchs remain even rarer. In echinoderms, most of the molecular data on adults has also been 

obtained using mainly either echinoid or holothuroid models. Yet, asteroids and crinoids are 

characterized by an adult nervous system that is anatomically very different from that of echinoids 

and holothuroids. Hence, a detailed molecular characterization of their non-tubular basiepidermal 

nerve cords would be very useful for providing additional information on the possible architecture 

of the nervous system of the last ambulacrarian ancestor. 

In terms of molecular analyses, it will be important also to establish in representatives of all 

ambulacrarian taxa, whether the BMP signaling pathway is required for the specification of neural 

territories. While this is the case in most bilaterians, BMP signaling does not seem to control this 

process in the enteropneust hemichordate S. kowalevskii. In echinoids, BMP signaling participates 

in the positioning of the larval nervous system (Duboc et al. 2004). In addition, during adult 

rudiment formation, BMP2/4 ligands are expressed in the vestibule ectoderm and the hydrocoel-

derived podia (Koop et al. 2017). However, whether the BMP signaling pathway is involved in 

echinoids in the establishment of the adult nervous system remains to be ascertained. Similarly, the 

roles of the Hedgehog signaling pathway in the development of the adult ambulacrarian nervous 
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system need to be characterized exhaustively. In chordates, the Hedgehog pathway is crucially 

involved in dorsal-ventral patterning of the neural tube (Patten and Placzek 2000; Dessaud et al. 

2008), and it has been suggested that a comparable molecular mechanism coordinates collar cord 

development in enteropneust hemichordates (Miyamoto and Wada 2013). Furthermore, conserved 

cis-regulatory elements seem to control Hedgehog expression in the brain of chordates and the 

ectoderm of enteropneust hemichordates (Pani et al. 2012). In echinoderms, mRNAs encoding 

Hedgehog are detected in the ambulacra of the adult rudiment of the sand dollar P. japonica 

(Adachi et al. 2018), but the biological relevance of this finding still remains elusive. Finally, it 

might also be important to assess the level of conservation of the gene regulatory network acting 

downstream of both the BMP and Hedgehog signaling pathways across deuterostomes. As a matter 

of fact, gene expression profiles of transcription factors acting downstream of BMP and Hedgehog 

signaling in dorsal-ventral patterning have already proven to be critical for evaluating homologies 

of neural structures in protostomes and among bilaterians (Martín-Durán et al. 2018; Arendt 2018).  

In sum, we urgently require a more comprehensive understanding of the molecular programs that 

control the development of ambulacrarian adult nervous systems. Only with this information in 

hand it will be possible to carry out exhaustive comparisons between ambulacrarians and chordates, 

which in turn should reveal the evolutionary history of deuterostome nervous systems and provide 

novel insights into the origin of centralized nervous systems in bilaterians. 
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Figure captions 
 

Figure X.1. Phylogeny of deuterostomes and schematics of their main neural structures. The tree is 

based on the current consensus of the phylogenetic relationships between the five extant 

deuterostome phyla. Vertebrates are represented by frogs, tunicates by ascidians, cephalochordates 

by amphioxus, hemichordates by enteropneusts, and echinoderms by asteroids. The neural features 

are indicated in blue for both larva (left panel) and adult (right panel). For chordates, only the 

central nervous system is highlighted. 

 

Figure X.2. Schematic representation of the coelomic architecture of hemichordate (using 

enteropneusts as example) and echinoderm (using echinoids as example) larvae and adults (adapted 

from Peterson et al. 2000 and Tsuchimoto and Yamaguchi 2014). The generalized dipleurula larva 

of ambulacrarians has five coeloms that will give rise to different adult structures. In 

hemichordates, the adult inherits the body plan of the larva. In echinoderms, the bilateral larva is 

reorganized into an adult with pentaradial symmetry. In echinoids, the adult mouth opens on the left 

of the larva and the oral-aboral axis of the adult is thus perpendicular to the anterior-posterior axis 

of the larva. However, note that the relative positioning of larval anterior-posterior and adult oral-

aboral axes is not conserved between the five echinoderm classes (for a review see Peterson et al., 

2000; Smiley, 1986). In all schematics the gut is shown in light yellow. Abbreviations: A, anterior; 

P, posterior.  

 

Figure X.3. Schematic representation of the auricularia hypothesis for the evolution of 

deuterostome nervous systems (adapted from Garstang 1894). Deuterostome phylogeny and main 

neural features are according to Fig. X.1. Proposed homologous neural structures are in blue. 

Proposed derived neural structures are in grey. 

 

Figure X.4. Schematic representation of the chimeric brain hypothesis for the evolution of 

deuterostome nervous systems (adapted from Tosches and Arendt 2013). Deuterostome phylogeny 

and main neural features are according to Fig. X.1. Proposed homologous neural structures are 

highlighted in identical colors. Proposed derived neural structures are shown in grey. The question 

mark indicates that the nervous system of adult echinoderms was not taken into consideration in the 

context of this hypothesis. Abbreviations: ANS, apical nervous system; BNS, blastoporal nervous 

system. 
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Figure X.5. Schematic representation of the “animal/axial” hypothesis for the evolution of 

deuterostome nervous systems (adapted from Burke 2011). Deuterostome phylogeny and main 

neural features are according to Fig. X.1. Proposed homologous neural structures are highlighted in 

identical colors. Proposed derived neural structures are shown in grey. The question mark indicates 

that the ancestral deuterostome state was not defined in this hypothesis.   

 

Figure X.6. Schematic representation illustrating the homology of the chordate neural tube, the 

enteropneust collar cord, and the echinoderm radial nerve cords (supported by Haag 2005; Burke 

2011; Luttrell et al. 2012). Deuterostome phylogeny and main neural features are according to Fig. 

X.1. Proposed homologous neural structures are in blue. Proposed derived neural structures are in 

grey. The question mark indicates that the ancestral deuterostome state was not considered in this 

theory. 

 

Figure X.7. Schematic representation illustrating the homology of the chordate neural tube, the 

enteropneust ventral nerve cord, and the echinoderm radial nerve cords (supported by Bullock 

1940; Knight-Jones 1952; Cobb 1987). Deuterostome phylogeny and main neural features are 

according to Fig. X.1. Proposed homologous neural structures are in blue. Proposed derived neural 

structures are in grey. The question mark indicates that the ancestral deuterostome state was not 

considered in this theory. 

 

Figure X.8. Schematic representation of the ancestral nerve net hypothesis (adapted from Holland 

2015a and supported by Lowe et al. 2003). Deuterostome phylogeny and main neural features are 

according to Fig. X.1. Proposed homologous neural structures are in blue. Proposed derived neural 

structures are in grey. 

 




















