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Finite-time observer-based backstepping
control of a flexible launch vehicle

Elodie Duraffourg1, Laurent Burlion1 and Tarek Ahmed-Ali2

Abstract

In this paper, a longitudinal model of a space launch vehicle was developed using the Lagrange mechanism and a free–free

Euler–Bernoulli beam model. The aim was to propose a model including one flexible mode plus a nonlinear aerodynamic

coefficient for nonlinear control design. We then studied the output feedback problem raised by using such a nonlinear

model. The main achievement is to propose a new finite-time state observer when the measured outputs are corrupted

by an unidentified flexible mode. This effect may destabilize a classical backstepping control law applied to the rigid

model. To achieve this, a backstepping control law was redesigned to damp out the flexible mode, once measured and
characterized. Hence a new adaptive finite time observer was developed. Closed-loop simulations show the effectiveness

of the observer in combination with a redesigned backstepping control law when sensors and the launcher nozzle are

collocated.
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1. Introduction

The problem of finite-time observation for linear and

nonlinear systems has been widely investigated over the

past decades. Two classes of observers emerge in the

series of methods that achieve finite-time convergence.

The first one, based on the use of delay, has deserved

a lot of attention (Engel and Kreisselmeier, 2002;

Menold et al., 2003). Recently, in Karafyllis and

Jiang (2011), a novel hybrid dead-beat observer which

uses delays has been proposed. The history of the

output is used in order to estimate the state of the

system. Sliding mode observers, widely researched in

the literature, make up the second class (see Ahmed-

Ali and Lamnabhi Lagarrigue, 1999; Shtessel et al.,

2010, for instance). More recently, homogeneous

finite-time observers have been developed for a specific

class of nonlinear system in Perruquetti et al. (2008).

Most of these approaches make the assumption that the

system structure and parameters are known.

In this paper we propose to design a finite-time

observer for a space launch vehicle which belongs to

the class of uncertain nonlinear systems. Researchers

have recently investigated this subject in the field of

nonlinear control. Several solutions have been pro-

posed. Some of them, on the one hand, addressed

the problem of unknown parameters and uncertainties

using a direct-adaptive, (Fiorentini et al., 2009; Hu

et al., 2012), or time varying controller (Hervas and

Reyhanoglu, 2012). Nevertheless, only rigid states (atti-

tude angle and pitch rate) are used in these proposed

methods. A great deal of further effort has been

devoted to stabilize uncertain nonlinear systems with

disturbances (Pan et al., 2015a; Yu et al., 2015). Such

control methods are also applied to vehicle suspension

systems (Pan et al., 2015b; Sun et al., 2016). Current

active research in the field of flexible robots also aims

at achieving robustness to model uncertainties and dis-

turbances (see, e.g., De Luca, 2015, and references

therein).

On the other hand, estimating the flexible states is

often necessary for control design purposes: for

instance, Hu (2009) uses them to actively reduce the

vibrations of a flexible spacecraft. Using a sliding
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mode state observer, Shtessel et al. (2010) estimate the

flexible states (mode shape coordinates and their time

derivatives) in order to remove the undesirable dynamics

from the measurements. These approaches unfortunately

require a strong knowledge of the mathematical model

of the system, in particular parameters for the flexible

modes (natural frequency and damping of the bending

modes). However, to the best of our knowledge, the

design of a finite-time observer has not been achieved

on uncertain nonlinear aerospace models.

Due to mass constraints, space vehicles tend to have

lightweight and flexible structures with low natural fre-

quencies, distorting sensor measurements and adding

stability problems during flight. Indeed, sensor meas-

urements deliver rigid launcher motion plus flexible dis-

placements at the location of the sensor. Consequently,

the location of the sensors has a significant importance

(Frosch and Vallely, 1967). Notch-filters are usually

used to overcome this stability problem by filtering

the bending mode and reverting to rigid body behavior.

However, this no longer works if the flexible natural

frequency is very low because of interaction with rigid

dynamics. Another proposed solution consists in esti-

mating the flexible states to filter the outputs.

As far as we are concerned, we recently designed a

Lyapunov-based nonlinear controller, which uses the

flexible states, to ensure control objectives of both ref-

erence path tracking and bending mode damping for a

class of nonlinear flexible systems (Burlion et al., 2013);

(Duraffourg et al., 2013a); (Duraffourg et al., 2013b).

Assuming that the whole state is available, this control

law has been applied to the rotational dynamics

of a space launch vehicle in Duraffourg et al. (2013c).

Such assumptions do not hold in practical applica-

tions since flexible states are generally not measured.

Consequently, we need to estimate the flexible states.

Besides, noting that flexible parameters are subject to

uncertainties or variation during flight, this paper aims

to extend existing theory by proposing an indirect

adaptive hybrid observer that no longer requires

system parameter knowledge. The proposed approach,

which extends the preliminary conference paper of

Duraffourg et al. (2014) consists of estimating flexible

parameters (natural frequency and damping) and initial

state conditions, using the algebraic tools of Fliess and

Sira-Ramirez (2003). The first ones improve the accur-

acy and the robustness of the observer through the

indirect adaptive feature. The second ones are used to

regularly update the estimated state and so guarantee a

finite-time convergence.

This paper is organized as follows. Section 2 formu-

lates the mathematical model of the flexible launch

vehicle using the Lagrange mechanism and a free–free

Euler–Bernoulli beam model. In Section 3, the control

problem is stated. A nonlinear control law, using the

unmeasured flexible states, and achieving control

objectives of stability and bending mode damping, is

presented. Since flexible states are required, Section 4

develops a flexible parameter estimator and a flexible

state observer which are then mixed to design a hybrid

adaptive finite-time observer. Simulation results are

given in Section 5. In section 6, the blending of the

finite-time observer and nonlinear control law is dis-

cussed in addition to the closed-loop simulations.

Closed-loop stability properties are also analyzed.

Finally, Section 7 contains our conclusions and future

research directions.

1.1. Useful notation

Useful notation is reported in Table 1.

Table 1. Nomenclature.

Notation Meaning Unit

Deviation angle around axis w.r.t

the guidance attitude refer-

ence angle

rad

� Thruster angle of deflection rad

� Mode shape temporal

coordinate

q Pitch rate rad/s

y Drift m

hT Thruster flexible displacement m

rT Thruster flexible rotation rad

rci Inertial unit flexible rotation rad

rgy Rategyro flexible rotation rad

T Thrust kg m/s2

L Lift kg m/s2

D Drag kg m/s2

GL Launcher center of mass

CT Gimbal joint

FL Aerodynamic center

IL Launcher body inertia kgm2

ML Launcher body mass kg

LT Algebraic distance from GL to CT m

laero Algebraic distance from FL to GL m

�q Dynamic pressure Pa

S Reference area of the vehicle m2

! Natural frequency of the first

bending mode

rad/s

Rn Frame (Gn, xn, yn) linked to the

reference trajectory

� Natural damping of the first

bending mode

RL Frame (GL, xL, yL) linked to the

launcher
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2. Modeling of a flexible launch vehicle

This section states the longitudinal dynamics of a

launch vehicle during its atmospheric flight.

2.1. Launch vehicle

We consider a flexible, static (masses and inertia

stay constant) and symmetric space vehicle moving

around its center of mass GL, as shown in Figure 1.

The launcher is propelled thanks to a thrust force T

oriented by a deflection angle �. The launcher dynamics

is formulated in the fixed and non-Galilean frame

Rn¼ (Gn, xn, yn) linked to the reference trajectory. Let

us note RL¼ (GL, xL, yL) the frame attached to the

launcher body,  the deviation angle around the body

axis with respect to the guidance attitude reference and

y the position along the yn axis.

To capture flexible effects, we assume that the

launcher body can be identified with a free–free Euler–

Bernoulli beam model on which the separation prin-

ciple has been applied. Solving the Euler–Lagrange

equation gives a general solution (in the free vibration

case) which depends on the so-called displacements

solutions. It is assumed that the control synthesis can

be achieved considering merely the lower frequency dis-

placement solution (also called the first bending mode),

the remaining flexible modes being ignored. Indeed,

it is well known that this assumption is satisfactory

if the closed-loop bandwidth is below a critical limit.

The launcher flexible displacements along the lateral

axis yL caused by the first bending mode is given by

uðx, tÞ ¼ hðxÞ�ðtÞ ð1Þ

where h(x) is the first mode shape and �(t) is the tem-

poral mode shape coordinate. Let us also define the

mode shape derivative with respect to the launcher axis

coordinate (that corresponds to a flexible rotation) by

rðxÞ ¼
dhðxÞ

dx
ð2Þ

Figure 2 illustrates flexible displacements at a given

instant t, along the launcher axis for the first bending

mode and gives a schematic representation of the mode

shape. The following notations are considered

rT ¼ rðxTÞ hT ¼ hðxTÞ rci ¼ rðxciÞ

ragy ¼ rðxagyÞ rbgy ¼ rðxbgyÞ

ð3Þ

where xT, xci, x
a
gy and xbgy respectively are the coordin-

ates of the gimbal joint, inertial unit, rate-gyro ‘‘a’’ and

rate-gyro ‘‘b’’ on the launcher body axis xL.

Figure 1. Flexible launch vehicle schematic representation.
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2.2. Mathematical model

The launcher mathematical model is extracted from the

Lagrangian mechanism. As in Clement (2001) and

Clement et al. (2001), this model is a deviation model

with respect to a reference model. The Lagrangian gen-

eralized coordinates are referred to as k¼ (y,  , �) and

the Lagrangian takes the form L ¼ Lð�, _�Þ. Dynamic

equations of the flexible launch vehicle are given by

d

dt

@L

@ _y
�
@L

@y
¼ �y ð4Þ

d

dt

@L

@ _ 
�
@L

@ 
¼ � ð5Þ

d

dt

@L

@ _�
�
@L

@�
þ
@R

@ _�
¼ �� ð6Þ

where R ¼ �! _�2 is a Rayleigh dissipation function

introduced to consider natural energy dissipation of

the bending mode and �j is the generalized force rela-

tive to Lagrangian coordinate j2 fy,  , �}.

Aerodynamic forces (lift L and drag D), thrust T,

and inertial forces (since the fixed frame is not

Galilean) make up the external forces applied to the

launch vehicle. Their generalized forces are formulated

as follows

�y ¼ D sin þ L cos þ T sinð þ �þ rT�Þ

� ¼ �Llaero þ TLT sinð�þ r�Þ � ThT� cosð�þ rT�Þ

�� ¼ hTT sinð�þ rT�Þ

ð7Þ

We compute kinetic and potential energies of the

launcher in order to apply the energetic formulation

of the Lagrange mechanism. Kinetic energies of the

launch vehicle T L and the shape mode T f are expressed

as follows

T L ¼
1

2
MLð _x

2 þ _y2Þ þ
1

2
IL _ 2 ð8Þ

T f ¼
1

2
_�2 ð9Þ

The bending mode is identified as a mass-spring system

whose stiffness is linked to its natural frequency k¼!2.

Thus, the elastic potential energy is

Vf ¼
1

2
!2�2

Note that Vf is the total potential energy of the devi-

ation model with respect to the reference model, which

takes into account the potential energy due to gravity.

Then, the Lagrangian is stated as the difference

between the kinetic and the potential energies. That is

L ¼ T L þ T f � Vf ð10Þ

Applying Lagrangian formalism (4)–(6) with the

generalized forces (7), the equations of motion of the

launch vehicle are obtained

ML €y ¼ D sin þ L cos þ T sinð þ �þ rT�Þ

IL € ¼ �Llaero þ TLT sinð�þ rT�Þ

�ThT� cosð�þ rT�Þ

€� ¼ �!2�� 2�! _�þ hTT sinð�þ rT�Þ

8

>

>

>

<

>

>

>

:

ð11Þ

The spacecraft is equipped with two rate-gyros and

an inertial unit that delivers measurements corrupted

by flexible mode shape, as shown in Figure 1,

Figure 2. Schematic view of the first mode shape.

4



where y1 does not exactly match with

y1 ¼  þ rci�

y2 ¼ qþ rgy _�

�

ð12Þ

where rgy is equal to r agy or r bgy depending on whether

rate-gyro ‘‘a’’ or ‘‘b’’ is considered. These two separate

cases will be studied in Section 7.

3. Problem statement

Due to the classical time-scale separation principle,

throughout the remainder of the paper, we focus only on

fast dynamics (that is, rotational dynamics), and make the

assumption of small angles for the actuator and flexible

rotations. In other words, we only consider the two last

equations of (11) where the trigonometric functions have

been linearized. The control input is the thruster angle of

deflection �. Using the notation q for the pitch rate, the

considered equations of motion are given by

_ ¼ q

_q ¼ � laero
IL

Lð Þ þ CNNþ dN�

_N ¼ ANNþ BN�

8

>

<

>

:

ð13Þ

with N ¼ ½�, _��T and

AN ¼
01

�!2 þ hTrTT� 2�!

� �

; BN ¼
0

hTT

� �

CN ¼ T
IL
ðLTrT � hTÞ 0

� �

; dN ¼
TLT

IL

In the remainder of the paper, ( , q) are referred to

as rigid states while ð�, _�Þ are referred to as flexible

states. As stated in Fiorentini et al. (2009), for a hyper-

sonic aircraft lift L( ) is classically described by a poly-

nomial function (see also Boiffier (1998) for more

details on aerodynamics coefficients)

Lð Þ ¼ �qSðC1
L � C2

L 
2Þ ð14Þ

Consider system (13). Our objective is twofold:

. to steer the attitude angle to zero so that the vehicle

keeps the guidance reference trajectory;

. to add damping to the bending mode.

The challenge consists in considering this problem when:

. the model possesses a polynomial nonlinearity (here

L( ));

. the natural damping and pulsation of the flexible

mode are unknown;

. we do not measure the full state of the system (we

only measure (12).

We address this problem under the following

assumptions:

Assumption 1. All parameters are supposed to be known,

except � and ! which are only bounded.

Remark 1. The parameters which account for flexible

dynamics are usually known with a higher level of uncer-

tainty than those which account for rigid dynamics.

Therefore, the project focused on studying the uncertain-

ties in damping ratio � and the natural frequency ! of

the flexible mode. To be more thorough, we should also

consider uncertainties of rT, hT, rci and rgi. This would

certainly greatly complicate the proposed observer syn-

thesis and is postponed to future studies.

Remark 2. An additional persistence of excitation (PE)

assumption, detailed in Section 5, boils down to the fact

that the output signals are sufficiently ‘‘rich’’ to estimate

the unknown flexible parameters. See Subsection 6.3.2

for more details.

A nonlinear control law which achieves the control

objectives has been developed in Duraffourg et al.

(2013a). This controller is referred to as ‘‘flexible back-

stepping,’’ since it uses the flexible states and minimizes

the impact of the rigid dynamics on the transience

of the flexible one. Despite this, this control law consists

in a full-state feedback and requires knowing flexible

states and parameters. That’s why we here propose

to build a dedicated adaptive observer in order to esti-

mate the flexible states together with the unknown

parameters.

3.1. Nonlinear control law design

for the rotational dynamics

Before giving the observer synthesis, we firstly show

how one can build a state-feedback nonlinear controller

which achieves the control objectives when the flexible

parameters are known.

Let us note

c� ¼
ILhT

LT

ð15Þ

We firstly rewrite system (13), applying the following

change of coordinates to the flexible dynamics

z ¼
�

_�

� �

� c�
q

� �

ð16Þ
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It yields

_ ¼ q

_q ¼ � laero
IL

Lð Þ þ CNNþ dN�

_z ¼ Azzþ Fð Þ þGq

ð17Þ

with

Az ¼ AN � c�
0 0

CN

� �

Fð Þ ¼ c� AN
0

� �

þ
laero

IL

0

Lð Þ

� �� �

G ¼ c� AN

0

1

� �

�
1

0

� �� �

The remaining q-term inz_ suggests the following second

change of coordinates

Z ¼ z�G ð18Þ

We obtain a nonlinear system in lower triangular form

_Z ¼ AzZþHð Þ 

_ ¼ q

_q ¼ � laero
IL

Lð Þ þ CNNþ dN�

8

>

<

>

:

ð19Þ

where H( )9F( )þAzG

Proposition 1. Consider system (19) with the following

feedback control law

�fð , q,NÞ ¼
c�

hTT

�

_qcmd þ
laero

IL
Lð Þ

� CNN�
1

cf3
cf1 þ lq�q
� 	


 ð20Þ

with lq> 0, l > 0 and where

qcmd ¼ �
1

cf1

�

l  þ cf2Hð ÞTPzZ
�

; �q ¼ q� qcmd

ð21Þ

control parameters cfi i 2 f1, 2, 3g are positive (tuning)

constants and Pz2R
2�2 is a symmetric positive definite

matrix defined hereafter.

So, the closed-loop system is globally asymptotically

stable at the origin. This proposed controller also leads to

global asymptotic stability (GAS) of the closed-loop

system composed by (13) and (20).

Proof. Az being Hurwitz, flexible backstepping control

law can be applied to system (17) (see Duraffourg

et al., 2013a,b), considering the following Lyapunov

function

Vf ¼
cf1
2

2 þ
cf2
2
ZTPzZþ

cf3
2
�2q ð22Þ

where cfi are positive constants (i2 f1, 2, 3}), Pz2R
2�2

is the positive and symmetric matrix which verifies

Az
TPz þ PzAz ¼ �2Qz ð23Þ

with Qz a positive and symmetric matrix of R2�2.

Choosing control law (20), the Lyapunov function

time derivative is given by

_V ¼ �l
2 � cf2Z

TQzZ� lq�
2
q � 0 ð24Þ

that ensures GAS of the origin of the closed-loop

system. At that point the convergence to zero of  , Z
and dq is ensured. Thanks to the changes of coordinates

(16),(18) and (21), the flexible states N and the pitch

rate q also converge to zero.

Remark 3. When cf2 ¼ 0, one gets the classical backstep-

ping controller. (In this case, the term CNN represents an

exogenous disturbance which must be dominated. Note

that such an unmeasured disturbance may even destabil-

ize the system). When cf2 4 0, this controller is referred

to as flexible backstepping since it clearly acts on the

oscillations of the dynamics associated with the under-

actuated degree of freedom. Indeed, (24) yields

cf2Z
TQzZ � � _V ð25Þ

By integration one gets

Z þ1

0

ZTðsÞQzZðsÞ ds �
1

cf2
Vð0Þ ð26Þ

This means that increasing cf2 enables to limit the oscil-

lations of the dynamics of Z. Coming back to the original

system (13), one can check by numerical simulations that

the control law adds damping to the dynamics of the

flexible mode �.

Remark 4. This ‘‘flexible backstepping’’ controller �f
depends on the full state and requires the knowledge of

the unknown parameters. To better understand this fact,

we propose to note this control law as follows

�f :¼ �f ð , q,N, �2�!, � �!Þ ð27Þ

where �! ¼ !2 � hTrTT.

Indeed, �f depends on � and ! since it depends on Pz,

which in turn depends on Azð�2�!, � �!Þ through the

6



relation (23). To ensure all control objectives and make

the use of this law possible, we propose a dedicated esti-

mation scheme in the following section.

4. Main result: An adaptive finite time

observer design

Since the bending mode is not measured and flexible

parameters are generally distorted, we develop in this

section a method to estimate flexible states and para-

meters and so to make the use of our nonlinear control

law possible.

4.1. State observer design with known

parameters (ideal case)

Flexible states � and _� must be estimated. They are

described by linear differential equations which result

from system (13). Since outputs (12) involve both rigid

and flexible states, the idea is to consider the augmented

state X ¼  � _�
� 	T

instead of just the required flex-

ible states. It is important to note that this system is

linear, contrary to the original nonlinear one (13).

Working with this augmented state gives the possi-

bility to design a linear observer, by focusing on

_X ¼ AXþ Byy2 þ B��
y1 ¼ CX

�

ð28Þ

where y2 acts as an input and

A ¼

0 0 �rgy

0 0 1

0 � �!2 �2�!

0

B

@

1

C

A
By ¼

1

0

0

0

B

@

1

C

A

B� ¼

0

0

hTT

0

B

@

1

C

A
C ¼ 1 rci 0

� 	

with �! ¼ !2 � hTrTT.

Observability conditions hold for the pair (A, C) and
estimated state X̂ ¼ ð  ̂ �̂ _̂� Þ

T is given by the clas-

sical Luenberger observer

_̂
X ¼ AX̂þ Byy2 þ B��þ Loð y1 � CX̂Þ ð29Þ

where Lo2R
3�1 is chosen such that A�LoC is

Hurwitz.

4.2. Parameters estimation

Bending mode natural damping and pulsation are gen-

erally subject to uncertainties and variations during

flight. Besides, since our flight control law intends to

attenuate the oscillations of the bending mode—that is,

to add damping—it is important to know these param-

eters accurately.

Moreover, the accuracy and convergence time of the

state observer can be improved by a better knowledge

of the initial state conditions.

In this way we choose to estimate the following

parameters

� ¼

�1

�2

�3

�4

0

B

B

B

@

1

C

C

C

A

¼

�2�!

� �!2

y3ð0Þ

_y3ð0Þ � _y2ð0Þ þ 2�!y3ð0Þ

0

B

B

B

@

1

C

C

C

A

ð30Þ

where y3 ¼ _y1 ¼ y2 þ ðrci � rgyÞ _�.

The first two parameters (�1 and �2) give the natural

damping and pulsation of the bending mode. The flex-

ible initial state conditions depend on the four param-

eters �

�ð0Þ ¼
1

�2

�

�4 þ �1y2ð0Þ

rci � rgy
� hTT�ð0Þ

�

_�ð0Þ ¼
�3 � y2ð0Þ

rci � rgy

rci being small, we use the first initial output to approxi-

mate the state initial condition (IC)  (0)

 ð0Þ ¼ y1ð0Þ � rci�ð0Þ ’ y1ð0Þ ð31Þ

The flexible initial state conditions must be estimated

through the outputs and their time derivatives. Noting

that _� ¼
_y1�y2
rci�rgy

, it is the following equation that links the

outputs and their time derivatives to the input deriva-

tive, and consists in the basic equation of the parameter

estimation

y
ð3Þ
1 ¼ �2ð _y1 � y2Þ þ �1ð €y1 � _y2Þ þ hTTðrci � rgyÞ _�þ €y2

ð32Þ

An algebraic methodology for parameter identifica-

tion is described in Fliess and Sira-Ramirez (2003). This

approach was used here to estimate �. The main steps

are presented here.

1. Take the Laplace transformation of (32) to reveal

the four parameters to be estimated. So

�1
�

�s2Y1 þ s
�

Y2 þ y1ð0Þs
	

� y2ð0Þ
�

þ �2
�

�sY1 þ Y2 þ y1ð0Þ
�

� s�3 � �4

7



¼ hTTðrci � rgyÞ
�

sB� �ð0Þ
�

� s3Y1

þ s2
�

Y2 þ y1ð0Þ
�

� sy2ð0Þ ð33Þ

where s represents the Laplace variable and Yi (resp.

B) is the Laplace transformation of signal yi(i2 f1, 2})

(resp. �).

2. Take derivatives with respect to s, (three times) to

get unknown parameters as equations.

3. Multiply by s�3 both sides to avoid time derivations.

4. Come back to the time domain using inverse

transformations.

5. Note that the system of time-varying linear equa-

tions can be expressed in matrix form as

PðtÞ� ¼ QðtÞ ð34Þ

where P2R4�4 andQ2R4�1 (details of the matrices

in Appendix 1).

The usual way to conclude the algebraic estimation

technique is to use the inverse of matrix P to define �.

But, as P is time varying, it is likely to vanish at some

instants. To avoid this problem we make the following

assumption

Assumption 2. PE condition: 9� > 0 such that

8 t � 0,

Z tþ�

t

PðsÞTPðsÞds4 0 ð35Þ

Remark 5. In view of matrix P coefficients detailed in the

Appendix 1, it is clear that the PE condition depends on

outputs y1, y2 and on the input � of the system.

Under Assumption 2, � is finally given by

� ¼

Z tþ�

t

PðsÞTPðsÞds

� ��1 Z tþ�

t

PðsÞTQðsÞds

� �

ð36Þ

Since � is unknown, we compute estimated param-

eters �̂ and then Â and X̂0 at discrete time instants �k
where f�kg

þ1
k¼0 is a partition of Rþ, using

�̂ð�kÞ ¼

Z �k

0

PðsÞTPðsÞds

� ��1 Z �k

0

PðsÞTQðsÞds

� �

ð37Þ

Âð�kÞ ¼ Âk ¼

0 0 �rgy

0 0 1

0 �̂2ð�kÞ �̂1ð�kÞ

0

B

@

1

C

A
ð38Þ

X̂0ð�kÞ ¼

y1ð0Þ

1

�̂2ð�kÞ

�

�̂4ð�kÞ þ �̂1ð�kÞ y2ð0Þ

rci � rgy
� hTT�ð0Þ

�

�̂3ð�kÞ � y2ð0Þ

rci � rgy

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

ð39Þ

Remark 6. It is important to note that Â and X̂0 are not

completely described by estimated parameters. Parameters

rgy, rci, hT and T are supposed to be known, as stated in

Assumption 1.

4.3. Adaptive finite-time observer

Mixing the results of the last subsections, it is now possible

to design an observer where the parameters are unknown.

Estimated parameters and IC are used to improve

the accuracy of the observer. In particular, �̂1 and �̂2 are

used in the design such that the observer no longer

depends on the natural damping and pulsation of the

bending mode, that are subject to variations.

Proposition 2. Under Assumption 2, the following hybrid

observer converges in finite-time

8t 2 ½�k, �kþ1½

_̂
X ¼ ÂkX̂þ Byy2 þ B��þ Lkð y1 � CX̂Þ

when t ¼ �k

X̂ð�kÞ ¼ eÂk�kX̂0ð�kÞ þ

Z �k

0

eÂkð�k�sÞ
h

Byy2ðsÞ þ B��ðsÞ
i

ds

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð40Þ

At each �k, the state is updated and the dynamics (Âk)

as well.

Lk is chosen such that Âk�LkC is Hurwitz.

Proof. Using the notations ~X ¼ X� X̂ and Ã¼A� Âk,

it comes

_~X ¼ AX� ÂkX̂� LkC~X ¼ ðÂk � LkCÞ~Xþ ~AX ð41Þ

Because of the PE condition, algebraic parameter

estimation converges in finite-time. Thus, there exists

k* such that �k� 4 �4 0 and

8 k4 k�, �̂ð�kÞ ¼ � ð42Þ

Consequently 8 k> k*, Âk¼A and Lk¼Lo. The esti-

mation error satisfies

8 t � ��k ,
_~X ¼ ðA� LoCÞ~X ð43Þ

A�LoC being Hurwitz, the estimation error ~X con-

verges asymptotically to zero.

Besides, the estimated state X̂ðtÞ is updated on X̂ð�kÞ
at each �k verifying �k 4 �k�

8t � ��k , X̂0ðtÞ ¼ X0ðtÞ ie X̂ð�kÞ ¼ Xð�kÞ ð44Þ

8



Estimation error is then given by

8t � ��k ,
~XðtÞ ¼ ~Xð�kÞe

ðA�LoCÞðt��kÞ ¼ 0 ð45Þ

Finally the estimation error vanishes in finite-time.

Remark 7. The proposed observer (40) was inspired by

the work of Karafyllis and Jiang (2011). We’ve added

the gain Lk to account for possible measurement noise.

Consider that we measure y1þ d1 and y2þ d2 where d1
and d2 are measurement noise. This gives: 8t2 [�k, �kþ1[

_~X ¼ ðÂk � LkCÞ~Xþ ~AX� Byd2 � Lkd1 ð46Þ

This is an input to state stable (ISS) system, since it can

be seen as an asymptotically stable linear system driven by

the input ÃX�Byd2�Lkd1. Note that the term ÃX dis-

appears once matrix Ã is correctly estimated (however,

contrary to the above discussion, it might not disappear in

case of noisy measurements). Note that when Lk¼ 0, the

observation error dynamics is not an ISS system since Âk

is marginally stable according to equation (38).

5. Simulation results

5.1. Parameters estimator

Figure 3 shows in blue (resp. in red) the evolution of

flexible estimated parameters (�̂1, �̂2) and initial state

conditions X̂0 ¼  ̂ð0Þ �̂ð0Þ _̂�ð0Þ
� 	

when the sensors

give ideal (resp. noisy) measurements. The red curve

was obtained applying a zero-mean periodic noise on

signals y1 and y2. The simulation has been performed

with the following parameters

�1 ¼ �1:2 �2 ¼ �35  ð0Þ ¼ 20�

�ð0Þ ¼ 10 _�ð0Þ ¼ 5

Figure 3. Estimated parameters.
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Remark 8. With noisy measurements, estimated param-

eter _̂�ð0Þ is biased and the estimation error ~_� ¼

_�ð0Þ � _̂�ð0Þ is quite important (about 1.5). This problem

is detailed in the following subsection.

5.2. Robustness improvement of the observer

with respect to noisy measurements

An estimation bias appears in simulation on

estimated parameter _̂�ð0Þ when measurements are

noisy (solid red curve on the last plot of Figure 3).

It is given by

~_�ð0Þ ¼ _�ð0Þ � _̂�ð0Þ ¼
�3 � �̂3

rci � rgy
ð47Þ

This bias term is due to the low values of rci� rgy which

accentuates the (low) difference between �3 and �̂3.

This section proposes a way to identify this estimation

bias ~_�ð0Þ and thus to correct X̂0ð�kÞ.

From system (28), we have

y1ðtÞ ¼ CeAtX0ðtÞ þ C

Z t

0

eAðt�sÞ
h

Byy2ðsÞ þ B��ðsÞ
i

ds

ð48Þ

Similarly, with the estimated state

X̂ðtÞ ¼ eÂktX̂0ðtÞ þ

Z t

0

eÂkðt�sÞ
h

Byy2ðsÞ þ B��ðsÞ
i

ds

ð49Þ

Under the PE condition, algebraic parameter estima-

tion still converges in finite-time. Thus, there exists

k*> 0 such that for all k� k*

Âk ¼ A and X̂0 ¼  ð0Þ �ð0Þ _�ð0Þ � ~_�ð0Þ
� 	T

ð50Þ

This last equation underlines the fact that only the esti-

mated IC _� is biased. Then

8t4 tk� y1ðtÞ � CX̂ðtÞ ¼ CeAte3 ~_�ð0Þ ð51Þ

with e3 ¼ 0 0 1
� 	T

. That can be written as

Z t

0

ðCeAse3Þ
2ds ~_�ð0Þ ¼

Z t

0

CeAse3

h

y1ðsÞ � CX̂ðsÞ
i

ds

ð52Þ

Supposing that
R t

0
ðCeAse3Þ

2ds 6¼ 0, estimation error is

given by

~_�ð0Þ ¼

R t

0
CeAse3

h

y1ðsÞ � CX̂ðsÞ
i

ds
R t

0
ðCeAse3Þ

2ds
ð53Þ

This term is added on the last simulation. The result

is represented by the dashed red line on Figure 3.

5.3. Finite time observer

Figure 4 compares this finite-time observer that updates

the state from the knowledge of the IC (in blue) with

the same Luenberger observer without any update

of the estimated state (in green). In the two cases, the

observer parameter Lo is the same. Moreover, the ICs

of the classical Luenberger observer have been chosen

very close to the estimated parameters, so that the

comparison is fair. This figure shows how the observer

convergence time is improved. The dramatic slope on

the blue curve corresponds to the moment where the

estimated state is updated.

6. Closed-loop simulations

In this section, the adaptive finite-time observer is

blended with the flexible backstepping law and closed-

loop simulations are realized for separate locations of

sensors.

6.1. Closed-loop system

Before reaching the convergence time ��k , asymptotic

stability of the closed-loop system, composed of

system (17) and the flexible backstepping law, is not

guaranteed. For that reason, the final control law is

designed as a switch between:

. classical backstepping law applied to the sole rigid

dynamics and consisting of an output-feedback con-

troller, assuming that  (resp. q) approximately cor-

responds to output y1 (resp. y2), before reaching

convergence time;

. flexible backstepping controller using estimated flex-

ible states and parameters as soon as convergence

time is reached.

Using the notation (27), this switching controller is

summarized as follows

� ¼
�cð y1, y2Þ when t5 ��k

�̂f :¼ �fð y1 � rci�̂, y2 � rgy _̂�, N̂, �̂1, �̂2Þ else

(

ð54Þ
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�
c is the backstepping controller designed on the

sole rigid-dynamics, which is in strict-feedback

form (Duraffourg et al., 2013c). This control law corres-

ponds to the flexible backstepping (20) without flexible

states (the expression of �c is detailed hereafter (55)).

The closed-loop system is illustrated in Figure 5.

6.2. Closed-loop simulation for a collocated

rate-gyro sensor

Collocation occurs if the dynamics between the actu-

ator and sensor show a repeating sequence of anti-

resonances and resonances, with the consequence that

the phase never drops below �180�, which is beneficial

for stability. For noncollocated actuators and sensors

this repeating sequence is not guaranteed (for more

details see, for instance, Frosch and Vallely, 1967;

Spector and Flashner, 1990; Spong, 1996; Olfati-

Saber, 2000; Preumont, 2011).

Figure 2 illustrates the location of

1. a collocated rate-gyro (gyro ‘‘a’’): y2 ¼ qþ r agy _�

2. a noncollocated rate-gyro (gyro ‘‘b’’): y2 ¼

qþ r bgy _�

This study only considered the collocated case for two

reasons:

1. The following assumption was numerically

validated:

Assumption 3. the linearized closed-loop system has all

its eigenvalues with strictly negative real parts.

2. Using assumptions 1 and 3, it is possible to

prove that the closed-loop system (13)–(54) possesses

(at least) a region of attraction around zero. (This is

discussed in the following section.)

Figure 4. Observation errors.
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The switching controller (54) is now denoted by

Observer Flexible Backstepping. It was compared with:

. the ‘‘Classical backstepping control’’ law �
c (54)

which use the ouputs y1 and y2;

. an ideal full-state feedback flexible backstepping law

given by (20), assuming the flexible states N and the

parameters � and ! are known.

This last controller has demonstrated good perform-

ance in terms of stability and bending mode damping.

Consequently, it corresponds to a reference law and

enables us to judge the efficiency of the designed switch-

ing output-feedback controller.

Figure 6 shows the evolution of attitude, pitch

rate and flexible states with time. The simulation was

performed with natural damping equal to 0.005 and a

natural frequency equal to 6 rad.s�1. Control param-

eters have been tuned so that the time responses are

the same.

The three controllers converge asymptotically to the

origin.

As expected (see Remark 3), full state-feedback flex-

ible backstepping improves the damping of the bending

mode compared to classical backstepping. Moreover, it

is remarkable that observer flexible backstepping is able

to damp out the bending mode when the flexible states

are unmeasured and flexible parameters � and ! are

uncertain.

6.3. Further discussions on the estimation phase

6.3.1. Closed-loop stability. Thanks to the finite time con-

vergence property of the observer (40), the controller

defined by (54) switches once at t ¼ ��k . Such a switch

occurs when the parameters � (30) have converged.

The closed-loop system defined by (17), (40) and (54)

inherits the GAS property proved in Proposition 1

when t � ��k . Meanwhile, it is necessary to prove that

this closed-loop system remains stable for t 2 ½0, ��k ½.

Let us consider system (13).

For t 2 ½0, ��k ½, the following feedback control law is

applied

�cð y1, y2Þ ¼
c�

hTT

h

�
1

cf1
l y2 þ

laero

IL
Lð y1Þ �

1

cf3
ðc

f
1y1 þ lq�y2Þ

i

ð55Þ

with tuning gains lq 4 0, l 4 0, c
f
i i 2 f1, 2g and

where

y2, cmd ¼ �
1

cf1
l y1; �y2 ¼ y2 � y2, cmd ð56Þ

Considering equations (12), (14) and (55), it is clear that

�cð y1, y2Þ ¼ �cð , qÞ þ C�Nþ gð �, �2Þ ð57Þ

where

C� ¼ �
c�

hTT
1
cf
3

cf1 þ
l lq

cf
3

� �

rci
l

cf
1

þ
lq

cf
3

� �

rgy

� �

ð58Þ

gð �, �2Þ ¼ �
c�laero

hTTIL
�qSC2

Lrcið2 �þ rci�
2Þ ð59Þ

Therefore, the closed-loop system (13)–(20) is rewritten

as follows

_ ¼ q

_q ¼ �
laero

IL
Lð Þ þ CNyNþ dNð�cð , qÞ þ gð �, �2ÞÞ

_N ¼ ANyNþ BNð�cð , qÞ þ gð �, �2ÞÞ

8

>

>

>

<

>

>

>

:

ð60Þ

Figure 5. Block diagram of the closed-loop system.
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where

ANy ¼ AN þ BNC�; CNy ¼ CN þ dNC� ð61Þ

Discussion:

1. Let us suppose assumptions 1 and 3 hold. The

closed-loop system (60) is Locally Asymptotically

Stable by virtue of Lyapunov’s indirect method

(for more details, see Theorem 3.7 in Khalil (1996).

In other words, this means a region of attraction

exists around zero.

2. Consider:

Assumption 4.

rci ¼ 0 ð62Þ

In this case the nonlinear term g( �, �2)) disappears!

Under Assumptions 1, 3 and 4 (plus some mild assump-

tions) one can apply the results of Arcak and

Kokotovic (2000) to redesign the backstepping control-

ler �c and prove GAS of the closed-loop system (60)

(For more details, see Theorem 1 in Arcak and

Kokotovic, 2000.)

3. Finally, when rci 6¼ 0 and when Assumptions 1 and 3

hold, the aforementioned redesigned controller

might not be able to globally stabilize system (60)

because of the nonlinear term g( �, �2)) (which is

also changed by the redesign technique). In this

case, a region of attraction might be computed.

Future research may be devoted to show that the

estimation of the region of attraction is enlarged

once the backstepping controller �c is redesigned.

This point will be addressed in the future.

6.3.2. Closed-loop observability. As remarked before

(see Remark 5), Assumption 2 depends on the trajec-

tories followed by y1(t) and y2(t). (It also depends on

�c, which in turn depends on y1(t) and y2(t) in a closed

loop)

Thus, another problem consists of using the observer

(40) within the transition phase of the closed-loop

system (17), (54). Indeed, one must guarantee that the
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Figure 6. Closed-loop comparison.
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excitation condition (35) is satisfied. Note that this PE

condition is our Assumption 2, which can reasonably

be made in open loop. In our closed-loop simulations,

this condition was respected.

However, when this assumption is not satisfied, it is

necessary to make the system outputs y1(t), y2(t) track

sufficiently exciting reference signals yr1ðtÞ, y
r
2ðtÞ (which

are set to 0 when t � ��k).

Few results deal with the link between the design

of such exciting reference signals and the closed-loop

PE condition. For a further discussion on this topic,

the interested reader is referred to Adetola and Guay

(2006), Adetola and Guay (2008) and the references

therein.

This is another possible future research direction.

7. Conclusion

A mathematical model for a flexible launch vehicle has

been formulated, using the Lagrange mechanism and a

free–free Euler–Bernoulli beam model. Next, a full state

flexible backstepping controller, which both guarantees

GAS of the closed-loop nonlinear system and improves

the bending mode damping, was proposed. Then, an

adaptive finite-time observer that enables estimation

of flexible states with unknown flexible parameters

has been specifically designed in order to blend with

this control design method. Numerical simulations

have been performed in the case of collocation between

sensors and actuator: They have clearly shown the effi-

ciency of the designed controller in conjunction with

the proposed observer.

For our future work, uncertainties on mode shapes

and aerodynamics coefficients will be considered.

Moreover, this novel work on using a model of the flex-

ible launch vehicle possessing a nonlinear aerodynamic

coefficient in the control design has raised several issues

which need further investigation: For example, the esti-

mation of the closed-loop system’s region of attraction,

the use of noncollocated outputs, and the consideration

of several flexible modes. Finally, we plan to apply the

flexible backstepping design method to a highly repre-

sentative flexible satellite simulator. We would also

like to experimentally test this method on a flexible

robotic arm.
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Appendix 1. P and Q matrices

Once back in the time domain, the following relation is

used to make the implementation easier (Fliess and

Sira-Ramirez, 2003)

Z t

0

Z tv�1

0

	 	 	

Z t1

0

�	xð�Þdtv�1 	 	 	dt1d� ð63Þ

¼

Z t

0

ðt� �Þv�1

ðv� 1Þ!
�	xð�Þd� ð64Þ

Matrices P and Q are then expressed as

PðtÞ ¼

P11ðtÞ P12ðtÞ 0 0

P21ðtÞ P22ðtÞ 0 0

P31ðtÞ P32ðtÞ P33ðtÞ 0

P41ðtÞ P42ðtÞ 0 P44ðtÞ
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