
HAL Id: hal-02315065
https://hal.science/hal-02315065

Submitted on 14 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental Determination of Aeroelastic Derivatives
for a Small-Scale Bridge Deck

Mario Cassaro, Enrico Cestino, Giacomo Frulla, Pier Marzocca, Mark Pertile

To cite this version:
Mario Cassaro, Enrico Cestino, Giacomo Frulla, Pier Marzocca, Mark Pertile. Experimental Determi-
nation of Aeroelastic Derivatives for a Small-Scale Bridge Deck. International Journal of Mechanics,
2018, 12, pp.67-78. �hal-02315065�

https://hal.science/hal-02315065
https://hal.archives-ouvertes.fr


 

 

  
Abstract—A heaving and pitching two degrees of freedom 

bridge-deck sectional model apparatus representative of a long-span 
bridge was designed, built, and tested in the wind tunnel to acquire 
measurement of aeroelastic derivatives. The main objective of this 
study was the experimental validation of the procedure to compute 
the aeroelastic derivatives based on the Iterative Least Square 
Method identification technique. A good correspondence was found 
between the flutter derivatives experimentally extracted from the 
model, and the corresponding reference values, which have been 
analytically derived from the Theodorsen’s theory. A simulation 
model in MATLAB/Simulink® environment, useful for future 
control laws applications, was also developed and validated by real 
experimental results. 
 

Keywords—Aeroelastic derivatives identification, small-scale 
bridge model, wind tunnel experiments.  

I. INTRODUCTION 
EROELASTICITY is the subject that describes the 

interaction of aerodynamic, inertia and elastic forces on a 
flexible structure and the phenomena that can result. It is not 
only concerned with aircraft but this topic is relevant for the 
design of structures such as bridges, F1 racing car, 
turbomachinery blades, wind turbine, helicopters, etc. 
Aeroelastic phenomena can be either static, the one dealing 
with non-oscillatory effects of aerodynamic forces acting on a 
flexible structure (e.g. aeroelastic static stability, inversion of 
control, divergence), or dynamic, considering the oscillatory 
effects of the aeroelastic interaction (e.g. galloping, vortex-
shedding, buffet, flutter), ([1],[2]). Flutter is a major dynamic 
aeroelastic problem; it interests lifting surfaces and the 
occurrence is due to the coupling of vibrational modes of 
different degrees of freedom of the structure, classical flutter 
for example involves the coupling of flexural bending and 
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torsional modes. In correspondence of the critical speed and 
critical frequency, the unsteady aerodynamic forces produced 
by the oscillation of the structure are such that self-sustained 
motion occurs. Above the critical speed of flutter, the 
oscillations increase in amplitude with remarkable rapidity and 
catastrophic effects on the structure might occur. Long span 
structures in general might be affected by this phenomenon 
and their torsional stiffness and mass distribution are such that 
inertial coupling between bending (either edgewise or 
flapwise) and torsion modes is triggered.  

In the present day, the design and analysis of long-span 
bridges entails, among others, a proper assessment of the flow-
structure interactions occurring when the bridge is exposed to 
wind loading. Before the Tacoma Narrows bridge failure in 
1940, long-span bridges were predominantly designed for 
static wind loads only. Such unexpected collapse clearly 
demonstrated the need of considering dynamic aerodynamic 
loading and the aeroelastic behavior of a bridge deck in the 
design synthesis of these long-span structures.  

Very long-span bridges have a remarkable low natural 
frequencies and the ratio between the fundamental torsional 
and vertical mode frequencies is also quite low. This renders 
long spans bridges, examples provided in Figure 1, very 
susceptible to the actions of strong winds, which can trigger 
fatiguing vortex-induced vibration and turbulence-induced 
buffeting and catastrophic flutter instability. The 1998 Akashi 
Kaikyõ Bridge (Japan), with a main span of 1991 m, is the 
world longest cable-stayed bridge. However we do not need to 
reach to these spans to perceive flow-structure interaction to 
be problematic. Indeed, the Tatara Bridge (Japan), with a main 
span of 890 m, has already indicated the significance of 
including aerodynamic and aeroelastic design practices in 
long-spans bridge construction. Advanced understanding of 
the wind-bridge interaction are necessary to satisfy the 
increasing needs of safety, reliability, maintainability and 
budget constraints. In the last fifteen years several long-span 
bridges were built and the length of the main bridge span has 
increased since, often requiring appropriate engineering 
studies of stability and reliability. Without any doubt, the 
effect of wind on the bridge-deck is a primary concern of 
bridge designers, as demonstrated by the rich literature on the 
topic ([3], [4], [5,6], [7],[8]).  Details pertaining to several 
aeroelastic derivatives identification procedures are discussed 
in [3] and not reported here for sake of brevity. Amongst the 
different methodologies available, the Iterative Least Square 
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Method, ILMS, is chosen and applied to the case in hand. The 
reasons rely in its relative implementation simplicity and 
accuracy but most importantly for the possibility of easily 
being extended to the full motion 3D-18 derivatives 
experimental case.  

The frequency-domain approach has been widely used for 
estimating flutter speed of structures ([4]). The frequency-
domain method uses flutter derivatives, which may be 

experimentally obtained from wind tunnel testing of section 
models. Extraction of flutter derivatives can be done through 
the forced vibration technique or the free vibration technique. 
A method to identify flutter derivatives of bridge decks is 
developed by ([9]). The flutter derivatives of the Jiangyin 
Bridge over Yangtze River with a main span of 1385 was used 
to validate their procedure and results shows a good agreement 
compared with that from full bridge aeroelastic model wind 
tunnel test. The ILS methods was used in ([10]) to extract all 
18 flutter derivatives for an NACA 0020 airfoil section model 
demonstrating the accuracy of the procedure by comparing the 
results obtained from all possible DOF combinations. A recent 
experimental setup for the extraction of flutter derivatives was 
built and employed at Clarkson University (USA) as part of 
two different projects. The first project was funded by NSF 
(National Science Foundation) under grant no. NSF-CMMI-
1031036 and had the focus of developing and applying 
Reduced Order Models to investigate wind-induced bridge-
structures vibrations and enhance understanding of fluid-
structure interactions, ([11, 12, 13, 14]). A second project 
funded by EU under the FP7 Marie Curie actions (A2-NET-
TEAM Project no. 269160) was also carried out where the 
objective was to build a multi-disciplinary network of 
researchers with complementary expertise to study the 
aeroelastic behavior of next generation light weight slender 
structures like innovative next generation aircrafts and High 
Altitude Long Endurance (HALE) UAVs.  

The implementation of new, lightweight composites in 

slender and flexible designs requires improved aeroelastic 
models along with experimental tests which will give the 
opportunity to modify and calibrate theoretical models, with 
the main goal of showing the effect of theoretical 
approximation and their limits, especially when various 
sources of uncertainty (loads, structure, material and 
technological processes) have to be taken into consideration 
([15, 16, 17]).  Aeroelastic coupling and flexible structures 

behavior have been under investigation by authors in order to 
explore the potential for energy harvesting from oscillating 
structures . Some preliminary results are presented in 
[18,19,20,21]. The detailed simulation of aeroelastic system is 
fundamental for such specific future configurations. 

In particular, in order to investigate the behavior of the 
system in the post-critical condition, it will be necessary to 
modify the aerodynamic model introducing nonlinearities due 
to the dynamic stall [22] and the structural model to introduce 
possible geometrical nonlinearities [23, 24]. 

The main objectives of the present research are to 1) 
validate the experimental procedure to extract flutter 
derivatives from a scaled model and 2) to demonstrate the 
improved accuracy in simulation when experimental based 
derivatives are employed instead of the theoretical values 
counterparts.  Flutter derivatives are dimensionless functions 
of the reduced frequency and represent the derivatives of the 
aerodynamic coefficients with respect the displacement 
functions and their velocity, therefore considering a state of 
motion, and not in static conditions In this respect, wind tunnel 
experimental investigations were performed using the Great 
Belt Bridge (Denmark) cross-section bridge deck model to 
study the aeroelastic dynamic behavior of a section of a bridge 
in response to the wind loading, to extract the aerodynamic 
derivatives and to analyze the flutter aeroelastic instability 
behavior. Furthermore, to contextualize the experimental 
campaign and assert the validity of the proposed approach, an 
appropriate analytical aeroelastic model based on the 

 

 
Figure 1  Evolution in time of long spans bridges  
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Theodorsen’s theory is proposed and used in order to obtain 
the aeroelastic theoretical coefficients.  

Using a two Degrees-of-Freedom (DOF) system is possible 
to obtain eight different flutter derivatives, respectively, four 
of these are related to plunge motion and four are related to the 
torsional motion. In this study, following the procedure 
utilized by Chowdhury & Sarkar [10], a new system 
identification technique (Iterative Least Square Method – 
ILSM) is used to identify the values of the flutter derivatives. 
The ILSM system identification is carried out by means of 
numerical simulations performed in Matlab® where a non-
linear regression tools is applied to the free vibration time 
histories obtained from the wind tunnel experimental 
measurements ([25]). The technique is applied to both a 1-
DOF system, which is simpler to analyze when only torsional 
derivatives are concerned, and a 2-DOF plunging and pitching 
system to obtain the entire set of aeroelastic derivatives. 
Consistency between the two tests’ results in torsion is also 
used to validate the procedure.  

Aeroelastic derivatives are validated by implementing them 
into a simulation environment correctly describing the 
dynamic response of the bridge. Although not within the scope 
of this paper, it is worth noting that the simulation environment 
was developed to explore the application of robust and 
adaptive algorithm ([26]) for active aeroelastic vibration 
suppression. 
The rest of the paper is organized as follow: in Section 2 the 
mathematical model of a 2 DOF wing section is presented; 
Section 3 describes the experimental setup and the employed 
procedure to extract flutter derivatives; In Section 4, 
comparative analysis between the theoretical and experimental 
results is carried out and presented, together with the 
simulation response obtained; Section 5 concludes the paper 
with comments and final discussion. 
 
                 

II. MATHEMATICAL MODEL 
Forces arising from the fluid-structure interaction can be 

described by unsteady aerodynamic models; one of these 
models describes the 2-D flow as incompressible and fully 
attached.  Thin airfoil theory can be used in first instance as a 
crude approximation to model the aerodynamic loads on the 
bridge-deck specifically when its cross-section resembles a 
thin lifting surface. Even if such simple model cannot be 
applied directly to study the full aeroelastic behavior of a bluff 
body under unsteady loads, which often requires knowledge of 
the viscous effect including flow separation and wake effect, it 
does describes satisfactorily the forces acting on a bridge-
deck.  For this reason the unsteady aerodynamic forces are 
calculated in first approximation using the linearized 
Theodorsen’s approach ([27,28]) and the subsequent flutter 
analysis will be conducted based on his approach. 
Theodorsen’s theory assumes a thin airfoil is oscillating about 
the shear center and unsteady loading is composed of two 

components:  
• non-circulatory component, which is not related to 

vorticity and is correlated to the ‘Apparent inertia forces’, i.e. 
mass of air accelerates with the airfoil and introduces a 
reactive force and moment upon the airfoil.  

• circulatory component, which is related to the vortex 
sheet on the body and in the wake. 

The equations of motion in terms of aeroelastic coefficients 
can be expressed as ([1], [27],[6]):  
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and ,h αω ω  [rad/s] are the natural frequencies of the 
undamped oscillations;  ζ_h,ζ_α are the system natural 
damping of the system; m  [Kg/m] is the total mass of the 
system per unit of length;  [Kg∙m] is the moment of inertia 
about the elastic axis of the section, per unit of length; and x_α 
[m] is the distance between the elastic axis and the center of 
gravity, see Figure 2. Considering the thin-airfoil theory, the 
lift (z-axis positive downward) and aerodynamic moment 
(positive nose-up) about the shear center, expressed per unit 
span, combining circulatory and non-circulatory components 
and considering an oscillatory harmonic motion, can be cast as 
([1]):  
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Equations (2) and (3) can be expressed in terms of the 
dimensionless flutter derivatives as follows:      
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where 21
2

q Vρ∞ ∞=    is the dynamic pressure,  [kg/m^3] is 

the air density, b [m] is the semi-chord, s [m] is the deck 
section span, k=(ω_f b)/V_∞  is the reduced frequency and   

* * * * * * * *
1 2 3 4 1 2 3 4, , , , , , ,H H H H A A A A  are the dimensionless 

flutter derivatives. Developing (2) and (3) and comparing it 
with the equations in terms of flutter derivatives (4), (5), it is 
possible to identify the formulations of the flutter derivatives 
in terms of Theodorsen’s function:             
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 where F and G are respectively the real and the imaginary 

parts of the Theodorsen’s function. The system of equation 
presented in equation (1) can be expressed as a state-space 
formulation:    { } [ ]{ }x A x= where  { } { },x x  are the state 

vectors and  [ ]A   is the state matrix.   Equations (4) and (5) 

can then be re-written in a form suitable for the state-space 
formulation, by obtaining the aerodynamic contribution in 

terms of states acceleration, hand α , as follows: 
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Herein, m is the mass of the entire system, I_α the moment 

of inertia about the elastic axis and s the span of the analyzed 
section. 

Considering the aeroelastic equations of motion (1), the 
state matrix of the state-space formulation, contains terms due 
to the damping matrix plus the aerodynamic contributes and 
terms due to the stiffness matrix plus the aerodynamic 
contributes. The mass, damping, and stiffness matrix in the 
case of  0xα =   are defined as follows:  
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With this assumption the state-space formulation of the 

system become: 
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Finally, considering the expressions of lift and moments, 

Eqs. (6) and (7), in terms of state-space formulation one 
obtains the following form:       
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Figure 2 2D Aeroelastic reference section  
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The state matrix [ ]A   is subdivided in two contributions:  

1) the mechanical contribution mecA     : corresponding to 

the damping and stiffness matrix due only to the mechanical 
system and not influenced by the presence of the airflow 

( ) 0windV = :  
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  2) the effective contribution effA     corresponding to the 

damping and stiffness matrix influenced by the aerodynamic 
contribute due to the velocity of the flow ( ) 0V∞ ≠ : 
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Considering the expressions of the matrices 
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the fluid in the wind tunnel and arising its velocity step by 
step, it is possible to compute all the terms of the matrices 
above and, knowing their values and with the comparison of 

the matrices mecA     and effA   , all the eight flutter 

derivatives in function of the fluid velocity:    
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Figure 3  Clarkson University wind tunnel, apparatus mounted inside 
the test section 

 

 
 

Figure 4  2D heaving-pitching apparatus, schematic and isometric 
view 
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where fω  is the flutter frequency [rad/s] which is computed 

experimentally, and ( )
( )...
...K   and ( )

( )...
...C   are the coefficients of 

the stiffness and damping matrices, in condition of ‘wind-off’ 
and ‘wind-on’, respectively.     

 

III. EXPERIMENTAL TESTS 
Experimental tests were carried out in the Clarkson 

University Eiffel type subsonic wind tunnel where a rigid 
section was elastically suspended to simulate the plunging and 
pitching aeroelastic behavior of a bridge-deck under 
aerodynamic loading conditions, see Figure 3. The test section 
measures 1.22 m wide by 0.91 m tall (48x36 in) with a length 

of 1.52 m (60 in).  The diffuser section expands the flow 
downstream of the test section through a 9 m length (354 in).  
The tunnel power section, located at the diffuser outlet, is a 2.1 
m (84 in) vane-axial fan with 16 adjustable blades. In order to 
simulate the dynamic behavior of a bridge section, using the 
Great Belt Bridge, GBB, (Halsskov-Sprogø – Denmark) as 
cross-section, a complete model apparatus has been developed 
such that pitching and heaving motion could be monitored and 
recorded either separately or coupled. The designed and built 
apparatus, is shown in mounted configuration in Figure 3, and 
consists of a convergent, reduced test section and a divergent, 
as shown in Figure 4, restrained by two plywood floors, 
located at the base and at the top.  This choice is due to the 
reduced dimension of the bridge section model, and the need 
of installing the required motion and measuring 
instrumentation. Moreover, the convergent has been designed 
with a contraction ratio 3:1 to balance the blockage effect of 

the whole apparatus and, therefore to guarantee the same wind 
speed performance at the inner test section. This has been 
experimentally demonstrated by monitoring the wind speed at 
the inner test section with a pitot probe.  The scaled bridge 
section is made by aluminum and represents a scaled generic 
section of the real GBB, with scale factor of 1/155 as reported 

in Figure 5. The model geometry and dimension are also 
reported in Figure 5. e isometric view in Figure 4 shows how 
the deck section is suspended in the center position of the test 
section by springs vertically connected to the apparatus by 
hook bolts. The springs used in this experiment have been 
chosen with a proper stiffness as to be able to demonstrate 
flutter at a low speed, instead of obtaining a GBB dynamically 
scaled model. The choice relies in the main purpose of the 
research that is focused in the validation of the flutter 
derivatives extraction procedure and their employment for a 
more consistent simulation model. The mechanical link 
between the bridge deck section and the spring is obtained by 
means of a series of rods and aluminum threaded cube as 
shown in Figure 6. All the mechanical elements contribute to 
the dynamic behavior of the overall system and therefore are 
included in the mass and inertial computation. The mass 
breakdown and their c.g. relative distances are reported in 
Table 1.                

Four load cells (Omega Miniature Low Profile Tension 
Links LC703-25, with capacity of 11 kgf, 25 lb) are installed 
in series to each floor anchorage point for measuring purpose. 
In addition, to guarantee a pure heaving-pitching motion the 
deck section is restrained in the other degrees of freedom by 

 

 
 

 
 

 
 

Figure 5  Bridge section schematic and dimensions 
 

 

         
Figure 6   Top view of the deck section with mechanical link (CAD) and 

restraining system with C-section bar 

Table 1.  System's components: mass, dimensions and c.g. relative 
distances 
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an aluminum C-section bar properly milled and greased to 
minimize friction, as shown in Figure 6.  The real time data 
acquisition system is made of a National Instrument board, 
for load cells signal-conditioning purpose, connected to a NI-
PXI console running a custom made Labview® software, and 
a Motion Pro-X3 high-speed camera connected to a laptop 
running its proprietary software, for displacement computation 
validation, see Figure 7.  

A "in-house" procedure has been defined according to the 
new system identification technique proposed by Chowdhury 
& Sarkar ([3]). The procedure provides a method to compute 
each term of the aeroelastic system state matrix and the values 
of the flutter derivatives. Interested readers are addressed to 
[3] for more detailed description.    The off-line method is 
based on the analysis of the experimental free vibration time 
histories coupled with a non-linear regression method. This is 
an identification procedure used to derive the state matrix of a 
general dynamical system starting from the experimental  time 

histories of the states and their derivatives’ vectors.   
The implemented algorithm is shown in Figure 8 as  a 

block-diagram form [3]. A short description is reported in the 
following part. Particular attention must be paid to increase 
accuracy and confidence on the derivative extraction 
procedure by means of: 

• The data acquisition sampling rate of 1000 Hz is 
reduced, for off-line computation, to 100 Hz to 
fasten up the iterative algorithm without loss of 
accuracy. 

• Custom-made algorithm is developed for 
displacement and rotation computation from the 
load cells voltage time histories. The obtained 
values are then validated with the high-speed 
camera output. 

• Satisfactory vibration amplitude must be guaranteed, 
which becomes and issues at high wind speed 
because of aerodynamic damping. 

• An accurate measure of the initial perturbation 
causing the free decaying motion is required for 

accuracy and confidence in the ILSM method. In 
the presented research, the initial conditions are 
calculated from the application of an impulse in the 
heave direction h on the deck section. 

• The windowing process is crucial to guarantee 
numerical convergence of the Iterative least Square 
Method ( ILSM). The static variables' interval must 
be selected of different length and position 
depending on the analyzed time history to properly 
calculate the elements of the state matrix [A] from 
the noisy displacement. 
 

                                           
 

IV. RESULTS 
The entire set of flutter derivatives are obtained by 

experimental procedure diagrammatically described in Figure 
8, from either the 1-DOF (torsion) or 2-DOF (coupled) motion 
systems. The tests are performed at variable wind speed from 0 

 

 
Figure 7 Experiment instrumentation setup. 

 

 
 

Figure 8 Aeroelastic derivative extraction procedure 
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to 30.6 m/s, with steps related to the wind tunnel fan rpm, as 
shown in Table 2. In both cases, besides the computation of 
the dynamical system state matrix and the flutter derivatives, 
the damped frequency, the damping factor and the natural 
frequency of the system are experimentally obtained and 
evaluated, as shown in Figure 9.  The system mechanical 
properties, natural frequency and damping ratio, obtained at 
zero wind speed are summarized in Table 3.  

 
As far the dynamic test is concerned, it has been 

accomplished through the following steps: 
 1) To extract direct derivatives   and   a 1-DOF pitching 

motion test, about the center of mass of the section (Δh=0), is 
performed. A 1-DOF vertical test is not performed because of 
the excessive damping resulting in unusable time histories. 

2)   The entire set of flutter derivatives. 
 
The behaviors of the eight flutter derivatives are compared 

with the theoretical trend obtained from the Theodorsen’s 
theory. The results are shown in function of the reduced 
velocity, to be properly compared with Scanlan & Tomko 
([4]): 

22
red

f

V VU
k b fb

ππ
ω

∞ ∞= = =  

where f is the oscillation frequency in cycles per second, 
and all the other parameters have been already defined. 

The flutter frequency is used in the formulations of the 
flutter derivatives. Flutter frequency is extracted 

experimentally: during several tests it is individuated a limit 
cycle oscillation of the system corresponding to a velocity of  
27,9m s  , with a single oscillation frequency.  

Figure 10 shows the stable limit cycle with the two motions 
in plunge and torsion that oscillate at the same frequency 
(ω_f=17.5 rad/s) . The experimental results, compared with the 
theory, are shown in the following figures. 

In Figure 11, the solid line shows the trend of the flutter 
derivatives calculated with the Theodorsen’s theory, while the 
dots show the values calculated with 2-DoF system experiment 

 

0 5 10 15 20 25 30 35
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Velocity [m/s]

D
am

pi
ng

 

 

ζ
α ζh

 

0 5 10 15 20 25 30 35
0

5

10

15

20

25

Velocity [m/s]

Fr
eq

ue
nc

y 
[ra

d/
s]

 

 

ω
α ωh

 
 

Figure 9 Damping & frequencies as function of wind tunnel speed. 

Table 2.  Rpm and wind speed experiment steps 

 

Table 3.  System mechanical properties 
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Figure 10  Limit cycle oscillation at flutter speed. 
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and the squares, only available for * *
2 3,A A , are the values 

obtained with the 1-DOF in torsion experiment. It is relevant 
from the representation of the flutter derivatives that their 
correspondence to the theoretical values is quite good up to the 
flutter speed. However, even if the trend is preserved, the 
values’ distribution is less precise for U_red above the flutter 
condition, either in case of 2-DOF plunging and pitching or 1-
DOF in pure torsion. Since flutter derivatives are a result of a 
linear description any non-linearity, due for example to 
oscillations induced by vortex shedding or post-critical 
conditions, are not representable by the Theodorsen’s 
formulation which is strictly linear and based on small 
perturbation approximation.  Flutter derivatives * *

3 4,H H  

and * *
3 4,A A   are referred to the aerodynamic stiffness of the 

system. Flutter derivatives * *
1 2,H H    and * *

1 2,A A   instead are 
referred to the aerodynamic damping that induce a damped or 
undamped behavior in the fluid-structures interaction.  The 

values of the derivative *
1H  are always negative and this is 

relative to a damped behavior of the section in plunge motion 
(damping due to the actions of the airflow on the structure 
when the deck section oscillates in plunge). Considering figure 

relative to the derivative *
2A  an inversion of the curve sign at 

high velocity is noted; this derivative is relative to the torsional 
stability of the section that in this case presents a reduction in 
torsional stability with the crossing of the zero axis at high 
velocity, approximately at 30 m/s, which is a characteristics of 
a post- flutter condition.    Consistency is found among 2-DOF 
and 1-DOF data results for A_2^*,A_3^*  derivatives at small 
values of reduced velocity. In both cases, there are some 
discrepancies at higher velocities, approaching the velocity of 
flutter and the unstable region.  The errors between experiment 
and theoretical modeling in the flutter derivatives is attributed 
to measurement errors due to the fan of the wind tunnel, since 
it was difficult to keep a constant velocity during all tests, as 
the laboratory room was quite small and flow non-uniformity 
affected the measurement. This variability is acceptable (1 – 
1.5 m/s) but may influence the results especially at high 
velocity, where we noted larger discrepancies. This problem 
might be associated with the cavitation of the fan blades. The 
motor dispose a larger quantity of fluid with respect to the real 
amount and this can cause a waste of power and non-constant 
velocity in the tunnel.  

In order to obtain a validation of the results, a Simulink 
model was implemented and will be used for future aeroelastic 
control applications. Using the Simulink model is possible to 
verify the experimental results relative to the flutter 
derivatives, introducing them in the equations of motion. The 
model is run to simulate the dynamic behavior of the bridge 
deck section at different velocity, to compute the flutter 
condition and to verify the correct motion of the section at 
each velocity.  Some simulations are performed from V_∞=0 
m/s to V_∞=30 m/s with steps of 5 m/s, and fitting in 

proximity of the flutter occurrence. When the velocity is 
increased, we note the more dumped behavior of the section, 
up to the limit cycle condition (individuated at V_∞=27,5 
m/s), up to the divergent motion above the flutter velocity.  

Flutter condition V=27,5 m/s is almost the same of the 
experimentally determined value V_∞=27,9 m/s.  This is a 
minimal discrepancy between real and simulated model, which 
confirm the efficacy and consistency of the employed 
methodologies. Some results are shown in the following figure 
when it is possible to see the different dynamic behavior in 
function of the velocity.  

  

V. CONCLUSIONS 
Large     Numerical and experimental comparison of flutter 

derivatives for a 2D heaving-pitching apparatus representative 
of long span structures (bridges or wings) is reported in this 
paper. The experimental derivatives were extracted following 
an identification technique based on free vibration time 
histories and the non-linear regression method Iterative Least 
Square Method (ILSM).  The method was applied to a typical 
bridge section with stiffness characteristics calibrated in order 
to demonstrate flutter in the low speed wind tunnel performed 
tests. The flutter derivatives are experimentally obtained either 
from the 1-DOF torsion test or 2-DOF plunging and pitching 
coupled motion test. The numerical flutter derivatives are 
obtained by the application of Theodorsen’s thin airfoil 
formulation in unsteady motion.  The presented results 
demonstrated a quite good correspondence between theoretical 
and experimental trends at the pre-critical and critical 
condition for both the 2-DOF or 1-DOF test cases. Due to 
nonlinearities existing in the post-critical regime, the proposed 
analytical formulation is not capable to give satisfactory 
results. A simulation model in MATLAB/Simulink® 
environment was finally developed and validated by 
experimental pre-flutter and flutter results.  The accuracy in 
the prediction of the flutter speed of the model implemented 
using experimentally extracted flutter derivatives is found to 
be higher than when using solely a theoretical formulation.  
This is particularly important when studying the flexible high-
aspect-ratio wing such as HALE wing or flexible morphing 
aircraft configuration. The identification of aeroelastic 
derivatives is a basic step used in the simulation of critical 
flight operations to assess potentially dangerous conditions. 
Future investigation will be carried out using flexible wing 
model with direct measurements from  wind tunnel testing. 
The model will take into consideration also new or future 
structural configurations such as oriented stiffened structures 
with specific couplings that modify aeroelastic behavior in 
critical or post-critical flight conditions.   
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Figure 11 Experimental Flutter derivatives vs Theodorsen’s analytical formulation. 
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Figure 12  Simulation model results, based on the extracted flutter derivatives. 
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