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Abstract. Petri nets are a widely used tool in verification through
model-checking. In this approach, a Petri Net model of the system of
interest is produced and its reachable states are computed, searching for
erroneous executions. Compilation of such a Petri net model is one way
to accelerate its verification. It consists in generating code to explore
the reachable states of the considered Petri net, which avoids the use
of a fixed exploration tool involving an “interpretation” of the Petri net
structure.
In this paper, we show how to compile Petri nets targeting the LLVM
language (a high-level assembly language) and formally prove the correct-
ness of the produced code. To this aim, we define a structural operational
semantics for the fragment of LLVM we use. The acceleration obtained
from the presented compilation techniques has been evaluated in [6].

Keywords: explicit model-checking, model compilation, LLVM, formal
semantics, correctness

1 Introduction

Verification through model-checking [2] consists in defining a formal model of
the system to be analysed and then using automated tools to check whether the
expected properties are met or not. We consider here more particularly the widely
adopted setting in which models are expressed in coloured Petri nets [7] and
there states are explored using explicit model-checking that enumerates them all
(contrasting with symbolic model-checking that handles directly sets of states).

Model compilation is one of the numerous techniques to speedup explicit
model-checking, it relies on generating source code (then compiled into machine
code) to produce a high-performance implementation of the state space explo-
ration primitives. For instance, this approach is successfully used in the popular
coloured Petri net model-checker Helena [15, 4] that generates C code.

In this paper, we present an approach for proving the correctness of such
an approach. More precisely, we focus on the produced code and prove that the
object computed by its execution is an actual representation of the state space
of the compiled model. We consider the Low-Level Virtual Machine (LLVM )
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language as our target language for the models compilation, which reconciles two
otherwise contradictory objectives: on the one hand, this is a typed language with
reasonably high-level operations allowing to express algorithms quite naturally;
on the other hand, it is still a low-level language and can be equipped with formal
semantics allowing to formally prove the correctness of the programs. To carry
on these proofs, we define a structural operational semantics of the fragment
of LLVM we use and use it in various ways to establish the properties of our
programs.

To the best of our knowledge, this is the first attempt to provide a formal
semantics for LLVM. Moreover, if model-checkers are widely used tools, there
exists surprisingly few attempts to prove them [18], contrasting with the do-
main of proof assistants [3, 16] where the importance of “proving the prover” is
widely acknowledged. Others approaches like certifying model-checkers [8] pro-
duce deductive proofs on success or failure, and thus only that proof needs to be
checked (for each result). On the side of compiler proving, proofs address mostly
semantic preservation [13, 14], i.e., ensure that the compilation process respects
the semantics of the input language when producing the compiled code. Others,
address specific optimisation phases in a compiler [1].

The rest of the paper is organised as follows. We first recall the main notions
about coloured Petri nets. Then, we present the LLVM framework, in particu-
lar the syntax of the language and its intuitive semantics, and how it can be
embedded LLVM into a Petri net as a concrete colour domain. In section 4, we
present algorithms and data structures for state space exploration. We formally
define the operational semantics for LLVM, including a memory model with ex-
plicit heap and stack. Finally we present our correctness results. Due to limited
number of pages, some definitions and intermediary results have been omitted,
as well as the detailed proves. This material can be found in [5]. Notice also that
our compilation approach is evaluated from a performance point of view in [6].

2 Coloured Petri nets

A (coloured) Petri net involves objects defined by a colour domain that pro-
vides data values, variables, operators, a syntax for expressions, possibly typing
rules, etc. Usually, elaborated colour domains are used to ease modelling; in
particular, one may consider a functional programming language [7, 17] or the
functional fragment (expressions) of an imperative programming language like
in Helena [15]. In this paper we will consider LLVM as a concrete colour do-
main. All these can be seen as implementations of a more general abstract colour
domain:

– D is the set of data values;
– V is the set of variables;
– E is the set of expressions. Let e ∈ E, we denote by vars(e) the set of variables

from V involved in e. Moreover, variables or values may be considered as
(simple) expressions, i.e., we assume D ∪ V ⊆ E.
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We do not make any assumption about the typing or syntactical correctness of
expressions; instead, we assume that any expression can be evaluated, possibly
to ⊥ /∈ D (undefined value) in case of any error. More precisely, a binding is a
partial function β : V → D ∪ {⊥}. Let e ∈ E and β be a binding, we denote by
β(e) the evaluation of e under β; if the domain of β does not include vars(e) then
β(e)

df
= ⊥. The application of a binding to evaluate an expression is naturally

extended to sets and multisets of expressions.

Definition 1 (Petri nets). A Petri net is a tuple (S, T, `) where:

– S is the finite set of places;
– T , disjoint from S, is the finite set of transitions;
– ` is a labelling function such that:
• for all s ∈ S, `(s) ⊆ D is the type of s, i.e., the set of values that s is

allowed to carry,
• for all t ∈ T , `(t) ∈ E is the guard of t, i.e., a condition for its execution,
• for all (x, y) ∈ (S×T )∪ (T ×S), `(x, y) is a multiset over E and defines

the arc from x toward y.

A marking of a Petri net is a map that associates to each place s ∈ S a
multiset of values from `(s). From a marking M , a transition t can be fired using
a binding β and yielding a new marking M ′, which is denoted by M [t, β〉M ′, iff:

– there are enough tokens: for all s ∈ S, M(s) ≥ β(`(s, t));
– the guard is validated: β(`(t)) = true;
– place types are respected: for all s ∈ S, β(`(t, s)) is a multiset over `(s);
– M ′ is M with tokens consumed and produced according to the arcs: for all
s ∈ S, M ′(s) = M(s)− β(`(s, t)) + β(`(t, s)).

Such a binding β is called a mode of t at marking M .
For a Petri net node x ∈ S ∪ T , we define •x

df
= {y ∈ S ∪ T | `(y, x) 6= ∅} and

x•
df
= {y ∈ S ∪ T | `(x, y) 6= ∅} where ∅ is the empty multiset. Finally, we extend

the notation vars to a transition by taking the union of the variable sets in its
guard and connected arcs. ♦

In this paper, we assume that the considered Petri nets are such that, for
all place s ∈ S and all transition t ∈ T , `(s, t) is either ∅ or contains a single
variable x ∈ V. We also assume that vars(t) =

⋃
s∈S vars(`(s, t)), i.e., all the

variables involved in a transition can be bound using the input arcs. The second
assumption is a classical one that allows to simplify the discovery of modes. The
first assumption is made without loss of generality to simplify the presentation.

3 LLVM

The LLVM project (Low Level Virtual Machine) [10] is a modern and modular
toolkit for compiler development. It began as a research project at the University
of Illinois and has grown to an umbrella project for number of sub-projects, many
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of which being used by a wide variety of commercial and open source projects [12]
as well as academic researches [11].

The LLVM-IR (LLVM Intermediate Representation) [9] is a part of the LLVM
project and is a low-level platform-independent intermediate language. Every
program written in this LLVM language can be run in a virtual machine or
compiled to native code on all the platforms supported by the LLVM project.
Importantly, the LLVM compiler runs a set of optimisation passes on the LLVM-
IR code, which allows us to produce simple source code knowing it will be opti-
mised by LLVM, and so lets us concentrate on the higher-level optimisations of
algorithms and data structures.

3.1 Syntax and intuitive semantics.

A LLVM program is composed of a set of blocks identified by labels. Each block
contains a sequence of instructions, some are entry points for subprograms (func-
tions or procedures) and are identified by labels including the formal parameters.
Entering or leaving a block is always explicit through branching instructions
(jumps), subprograms calls or return instructions. Moreover, LLVM is a SSA
(Single Static Assignment) based representation. It means that each variable is
assigned exactly once, but since a block can be executed many times the value
may be dynamically modified. This property is useful in some proofs because it
can serve as an invariant.

To define the syntax, we consider the following pairwise disjoint sets:

– P is the set of pointers;
– T is the set of types, defined as the smallest set containing {int , bool , object}

(i.e., integers, Boolean values and other values) and such that if t0, . . . , tn ∈ T
then struct(t0, . . . , tn) ∈ T, it represents a data structure with n+ 1 fields of
types t0 to tn;

– L is the set of labels, it contains some specific labels like fL a1, . . . , an M,
where ai ∈ V for 1 ≤ i ≤ n, that correspond to subprograms entry points
(including the formal parameters). We define a set L⊥

df
= L ∪ {⊥} where ⊥

is an undefined label.

A program is represented as a partial function P with L as its domain and
that associates each label in its domain to a sequence of instructions.

For our purpose, we need to consider a fragment of LLVM that is restricted to
the types presented above and is formed by three main syntax classes: sequences
(seq), commands (cmd) and expressions (expr). A sequence is a list of commands
which may end with an expression, in which case it is considered as an expression.

We assume that programs are syntaxically correct and well typed, so that
we can simplify the syntax by forgetting all types in LLVM source code. The
resulting syntax is presented in figure 1. We introduce the sequencing operator
“;”, which corresponds to the line endings, in order to write one-line sequences.
We introduce the skip command that denotes the empty sequence and does not
exist in LLVM. It may be noted that pcall (procedure call) and fcall (function
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call) do not exist in LLVM but are different instances of the call instruction.
This distinction can be easily made in LLVM because the instruction contains
the type of the subprogram (function or procedure). Instruction store (resp.
load) is the action of storing (resp. loading) data into (resp. from) the memory
through a pointer. Instruction icmp compares two integers. Instruction phi is
used to access variables defined in previously executed blocks. Instruction gep
corresponds to pointer arithmetic, we freeze the second argument to 0, which is
enough to access fields in structures by numbers.

seq ::= cmd (statement)
| expr (expression)
| cmd ; seq (sequence of instructions)

cmd ::= br label (unconditional branching)
| br rvalue, label , label (conditional branching)
| pcall label(rvalue, . . . , rvalue) (procedure call)
| ret (return from a procedure)
| var = expr (variable assignment)
| store rvalue, rvalue (assignment through a pointer)
| skip (empty sequence)

expr ::= add rvalue, rvalue (addition)
| load rvalue (read a value through a pointer)
| gep rvalue, 0, nat (get a pointer from a structure)
| icmp op, rvalue, rvalue, (integers comparison)
| phi (rvalue, label), . . . , (rvalue, label) (get a value after branching)
| fcall label(rvalue, . . . , rvalue) (function call)
| alloc type (memory allocation)
| ret rvalue (return a value from a function)
| rvalue (value)

Fig. 1. Our fragment of the LLVM syntax, where label ∈ L, rvalue ∈ D∪P∪V, var ∈ V,
type ∈ T, nat ∈ N and op ∈ {<,≤,=, 6=,≥, >}.

3.2 LLVM-labelled Petri Nets.

To compile Petri nets as defined previously into LLVM programs, we need to
consider a variant where the colour domain explicitly refers to a LLVM program.

Definition 2 (LLVM labelled Petri nets). A LLVM labelled Petri net is thus
a tuple N

df
= (S, T, `, P ), where P is a LLVM program, and such that (S, T, `) is

a coloured Petri net with the following changes:

– for all place s ∈ S, `(s) is a LLVM type in T, which can be directly interpreted
as a subset of D;

– for all transition t ∈ T , `(t) is a call to a Boolean function in P with the
elements of vars(t) as parameters;
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– moreover, for all s ∈ t•, `(t, s) is a singleton multiset whose unique ele-
ment is a call to a `(s)-typed function in P with the elements of vars(t) as
parameters. ♦

With respect to the previous definition, we have concretized the place types
and each expression is now implemented as a LLVM function called from the
corresponding annotation. To simplify the presentation, we have also restricted
the output arcs to be singleton multisets, but this can be easily generalised.
Moreover, the definitions of binding and modes are extended to LLVM. A LLVM
binding is a partial function β : V 7→ D ∪ P, which maps each variable from its
domain to a pointer or a value, and is widened to D by the identity function. B is
the set of all LLVM bindings. Thus, A LLVM mode is a LLVM binding enabling
a transition in a LLVM labelled Petri net.

4 State space exploration

Given an initial marking M0, the state space we want to compute in this paper
is the smallest set R such that M0 ∈ R and, if M ∈ R and M [t, β〉M ′ then
M ′ ∈ R also.

Interfaces. To implement algorithms, we need to define interfaces to the data
structures we will use: multisets, places, markings, and (marking) sets. An inter-
face is presented as a set of functions that manipulates a data structure through
a pointer (C-like interfaces). Moreover, each of interface functions have a for-
mal specification of their comportment, an example is given in section 4, and
structure marking have to hold two properties defined in section 6. Below, for a
given structure multiset of type Multiset〈d〉, what we call its domain is the set of
values from d having non-zero occurrences in the multiset. We explicit only the
functions used in this document. The multiset interface contains the following
elements:

– two functions addmsetL pmset , elt M and remmsetL pmset , elt M that respectively
adds an element elt into the multiset pmset and removes an element from the
multiset;

– a function sizemsetL pmset M that returns the domain size of a multiset;
– a function nthmsetL pmset , n M that returns the nth element from the multiset

domain (for an arbitrary fixed order);

As a container of tokens, a place can be basically implemented as a multiset of
tokens; so the place interface is exactly the multiset interface. The sole difference
will be the annotation, a place interface function will be annotated by the place
name, for instance adds is the function addmset specific to the place s. Alternative
implementations are considered for optimisation purpose but omitted in this
document.

The markings interface contains:
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– a function getsL pmrk M for each place s that returns a pointer to the corre-
sponding place structure;

– a function copymrk L pmrk M that returns a copy of the structure marking.

Finally, the set interface contains:

– a function conssetL M that builds a new empty set;

– a procedure add setL pset , elt M that adds an element elt to the set pset .

Transitions firing. Let t ∈ T be a transition such that s1, . . . , sn are its in-
put places (i.e., •t = {s1, . . . , sn}) and s1, . . . , s

′
m are its output places (i.e.,

t• = {s′1, . . . , s′m}). Then, function firet can be written as shown in figure 2.
This function simply creates a copy M ′ of the marking M , removes from it the
consumed tokens and adds the produced ones before to return M ′. One could
remark that it avoids a loop over the Petri net places but instead it executes a
sequence of statements. There are at least two advantages in this approach: it is
more efficient (no branching penalties, no loop overhead, no array for the func-
tions ft,s′j , . . . ) and the resulting code is simple to produce. Let also xmrq be a
pointer to a structure marking implementing M , and let x1, . . . , xn be represen-
tations of the tokens as in figure 2. Then the firing algorithm can be implemented
as shown in figure 4. The correctness and termination of this implementation can
be formally proved and a sketch of the proof is given in section 6, in particular
it is proved that the returned pointer actually represents M ′.

firet : M : Mrk , x1 : `(s1), . . . , xn : `(sn)→ Mrk

M ′ ← copy(M)
M ′(s1)←M(s1)− {x1}
· · ·
M ′(sn)←M(sn)− {xn}

M ′(s′1)←M(s′1) + ft,s′1(x1, . . . , xn)
· · ·
M ′(s′m)←M(s′m) + ft,s′m(x1, . . . , xn)

return M ′

Fig. 2. Transition firing algorithm, where
ft,s is the function that evaluates `(t, s) and
Mrk is the Marking type.

P (firetLxmrq , x1, . . . , xn M) df
=

// copy the structure marking
x′mrq = fcall copymrq(xmrq)

// consume tokens
xsi = fcall getsi (x

′
mrq)

pcall remsi (xsi , xi)

}
for

1 ≤ i ≤ n

// produce tokens
xs′j = fcall gets′j

(x′mrq)

os′j = fcall ft,s′j (x1, . . . , xn)

pcall add s′j
(xs′j , os′j )

 for

1 ≤ j ≤ m

// return the new marking
ret x′mrq

Fig. 3. LLVM translation of the firing
algorithm, where xi is the variable in
`(si, t) for all 1 ≤ i ≤ n, and ft,s′j is the

function called in `(t, s′j) for all 1 ≤ j ≤
m.
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Successors computation. To discover all the possible modes for a transition,
the algorithm enumerates all the combinations of tokens from the input places. If
a combination corresponds to a mode then the suitable transition firing function
is called to produce a new marking. This algorithm is shown in figure 4. Note
the nesting of loops that avoids an iteration on •t, which saves from querying the
Petri net structure and avoids the explicit construction of a binding. Moreover,
if gt is written in the target language, we avoid an interpretation of the corre-
sponding expression. For the LLVM version, let xmrq be a pointer to a structure
marking and xnext be a pointer to a marking set structure. Then, the algorithm
from figure 4 can be implemented as shown in figure 5. Each loop at the level k
is implemented as a set of blocks subscribed by t, k (for n ≥ k ≥ 1), the blocks
subscribed by t, 0 corresponding to the code inside the innermost loop. Note the
phi instruction to update the value of index isi allowing to enumerate the tokens
in place si: when the program enters block loopi for the first time, it comes from
block header i, so we initialise the value of isi to the maximal index value in the
domain of si in the current marking; later, the program comes back to block
loopi from block footer i, so it assigns i′si to isi which is exactly the value of isi
minus one (the previous index). The correctness and termination of this imple-
mentation can be formally proved and a sketch of the proof is given in section
6.

succt : M : Marking , next : MarkingSet →

for xn in M(sn) do
. . .
for x1 in M(s1) do

if gt(x1, . . . , xn) then
next ← next ∪ {firet(M,x1, . . . , xn)}

endif
endfor
. . .

endfor

Fig. 4. Transition specific successors computation algorithm, where gt is the function
that evaluates the guard `(t).

The global successor function succ returns the set of all the successors of a
marking by calling all the transition specific successor functions and accumulat-
ing the discovered markings into the same set. The algorithm is shown in figure 6
and its translation in LLVM is shown in figure 7.
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P (succtLxmrq , xnext M df
=
{

br header t,n

P (header t,k)
df
=


xsk = fcall getsk (xmrq)

ssk = fcall sizesk (xsk )
br loopt,k

P (loopt,k)
df
=


isk = phi (ssk , header t,k), (i′sk , footer t,k)
csk = icmp >, isk , 0
br csk , bodyt,k, footer t,k+1

P (bodyt,k)
df
=

{
xk = fcall nthsk (xsk , isk )
br header t,k−1

P (footer t,k)
df
=

{
i′sk = add isk , −1
br loopt,k

P (header t,0)
df
=

{
cg = fcall gt(x1, . . . , xn)
br cg, bodyt,0, footer t,1

P (bodyt,0)
df
=


x′mrq = fcall firet(xmrq , x1, . . . , xn)
pcall add set(xnext , x

′
mrq)

br footer t,1

P (footer t,n+1)
df
=
{

ret

Fig. 5. LLVM successor function, for 1 ≤ k ≤ n.

succ : M : Marking → MarkingSet

next ← ∅
succt1(M ,next)
succt2(M ,next)
. . .
succtn(M ,next)
return next

Fig. 6. Successors computation algo-
rithm.

P (succLxmrq M) df
=

xnext = fcall consset()
pcall succt1 (xmrq, xnext)
pcall succt2 (xmrq, xnext)
. . .
pcall succtn (xmrq, xnext)
ret xnext

Fig. 7. LLVM implementation of the
global successor function, where xmrq is
a pointer to a structure marking.

5 Formal semantics of LLVM

5.1 Memory model

Heap We use pointers, therefore we need a heap to access pointed data.

Definition 3 (Heaps). A heap is a partial function H : P→ T× (D∪P)∗ with
a finite domain. Each heap maps a pointer to a pair formed of a type and a tuple
of values or pointers. The set of all heaps is H. ♦

Definition 4 (Well formed heaps). A heap H is well formed for a pair (t, p)
where t is a type and p a pointer in dom(H), if the value pointed by p in H is
sound with t, more precisely:

– if H(p) = (int , d), then d is an integer;
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– if H(p) = (bool , d), then d is a Boolean;
– if H(p) = (struct(t0, . . . , tn), d), then d is a tuple (p0, . . . , pn) and H is well

formed for each (ti, pi) such that 0 ≤ i ≤ n;

A heap H is well formed if H is well former for each (t, p) in Im(H). ♦

Definition 5 (Accessibility). The set of all accessible pointers from a pointer
p in a heap H is denoted as p↓H . This operation is defined for each p in P as
follows:

p↓H
df
= {} if p /∈ dom(H)

p↓H
df
= {p} if H(p) = (t, v) and t ∈ {int , bool}

p↓H
df
= {p} ∪ p0↓H ∪ · · · ∪ pn↓H if H(p) = (struct(t0, . . . , tn), (p0, . . . , pn))

and t0, . . . , tn ∈ T
♦

One could show that if a heap H is well formed then p ↓H⊆ dom(H) for

p ∈ dom(H), and even that dom(H) =
⋃
p∈P

p↓H .

Property 1. Let H be a well formed heap. If p ∈ dom(H) then p↓H⊆ dom(H).
�

Corollary 1. For each well formed heap H, we have dom(H) =
⋃
p∈P

p↓H . �

Definition 6 (Data structure traversal). For each heap H, we define a data
structure traversal function ·[·]H : P× N 7→ P ∪ D as:

p[i]H
df
= undefined if p /∈ dom(H)

p[i]H
df
= undefined if H(p) = (t, v) and t ∈ {int , bool}

p[i]H
df
= pi if H(p) = (struct(t0, . . . , tn), (p0, . . . , pn)) and 0 ≤ i ≤ n

♦

Definition 7 (Heaps overwriting). The overwriting function ⊕ : H×H→ H,
which represents the writing into memory, is defined for each p ∈ P as:

(H ⊕H ′)(p) df
=

H ′(p) if p ∈ dom(H ′)
H(p) if p /∈ dom(H ′) ∧ p ∈ dom(H)
undefined otherwise ♦

Property 2. The heap overwriting operation ⊕ is associative. �

In order to compare heaps, a notion of structural equivalence have been
defined. This relation ensures that two heap contain the same data accessible
from a pointer with the same layout but different pointers, more precisely we
consider p↓H and p′↓H′ for two heaps H,H ′ and two pointers p, p′. This relation
is written (H, p) =st (H ′, p′), and is defined as the identity check for heap-value
pairs. More formally:
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Definition 8 (Structural equivalence). Let H and H ′ be two well formed
heaps, v and v′ two values or pointers. We have (H, v) =st (H ′, v′) if one of the
following conditions is true:

– v /∈ dom(H), v′ /∈ dom(H ′) and v = v′ ;
– H(v) = ((t0, . . . , tn), (p0, . . . , pn)), H ′(v′) = ((t0, . . . , tn), (p′0, . . . , p

′
n)) and

(H, pi) =st (H ′, p′i) where 0 ≤ i ≤ n. ♦

Property 3. =st is an equivalence relation. �

We need also to define an operation to build new heaps. The first step is to
define a helper function alloc then the function new that we seek.

Definition 9 (Alloc and new). The new : H × T → H × P and alloc : 2P ×
P× T→ H functions are defined as follows:

new(H, t)
df
= (alloc(dom(H) ∪ {p}, p, t), p)

for p /∈ dom(H) a “fresh” pointer

alloc(d, p, t)
df
= {p 7→ (t,⊥)}

for t ∈ {int , bool}

alloc(d, p, struct(t0, . . . , tn))
df
= {p 7→ (struct(t0, . . . , tn), (p0, . . . , pn))}
⊕ alloc(d ∪ {p0, . . . , pn}, p0, t0)
⊕ . . .
⊕ alloc(d ∪ {p0, . . . , pn}, pn, tn)

for p0, . . . , pn /∈ d “fresh” pointers

♦

One could show that new returns a well formed heap, and two calls of new ,
with equivalent heaps, return two equivalent heaps.

Property 4. Let H be a well formed heap, and let t be a type. If (H ′, p) =
new(H, t) then H ′ is a well formed heap. �

Property 5. Let H1, H2 be two heaps and t a type. If new(H1, t) = (H, p) and
new(H2, t) = (H ′, p′) then (H, p) =st (H ′, p′). �

Corollary 2. Let H1, H2 be two well formed heaps and t a type. If new(H1, t) =
(H, p) and new(H2, t) = (H ′, p′) then H and H ′ are well formed. �

Stack Our memory model uses also a stack for subprogram calls. This stack is
manipulated implicitly by the inference rules and only one part called frame is
manipulated explicitly.

Definition 10 (Frames). A frame is a tuple in F df
= L⊥ ×L×B, thus F is the

set of all frames. For each frame F
df
= (lp,F , lc,F , βF ), we have:
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– lp,F the label of a previous block (where we come from), or undefined;
– lc,F the label of the current block (where we are);
– βF a LLVM binding, representing the current evaluation context.

We widen the binding functional notation to the frames in order to access the
binding, we note F (x) the binding βF (x) of x by βF . ♦

In matter of simplification, we always note for a frame F : lp,F its first com-
ponent, lc,F its second component and βF its third component. As for heaps we
need operations to handle frames.

Definition 11 (Binding and frame binding overwriting). The binding
overwriting operation ⊕ : B → B and the frame binding overwriting operation
⊕ : F× B→ F are defined as follows:

(β ⊕ β′)(p) df
=

β′(p) if p ∈ dom(β′)
β(p) if p /∈ dom(β′) ∧ p ∈ dom(β)
undefined otherwise

(l, l′, β)⊕ β′ df
= (l, l′, β ⊕ β′)

♦

The operator ⊕ is used as well for the heap overwriting as for the (frame)
binding overwriting because of the similar nature of the performed operation.

Property 6. The binding overwriting operation ⊕ is associative. �

Definition 12 (Structural equivalence 2). Let H, H ′ be two heaps and F ,
F ′ two frames then the structural equivalence for heap-frame pairs is defined as:

(H,F ) =st (H ′, F ′)⇔ ∀x ∈ dom(βF ) ∪ dom(βF ′), (H,F (x)) =st (H ′, F ′(x))

♦

The structural equivalence has been widened to pairs of heaps and frames
noted (H,F ) =st (H ′, F ′) for H,H ′ two heaps and F, F ′ two frames. Intuitively,
we check that all data accessible from the frame bindings are structurally equiv-
alent. This holds also for values in bindings since the heap equivalence has been
defined on D as the identity check.

5.2 Inference rules

The operational semantics is defined for a fixed and immutable program P , it
means that any new function, nor block cannot be created or modified during
the execution. We introduce a new notation for computations, we note · the
result of a computation, for example 5

df
= 2 + 3. The main object used in our

rewriting rules are configurations which represent a state of the program during
the execution.
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Definition 13 (Configurations). A configuration is a tuple (seq , H, F ), where:

– seq is a sequence of instructions;
– H is a heap;
– F is a frame.

A configuration is noted
(

seq
)
H,F

. ♦

The set of inference rules for expressions is shown in figure 8; expressions are
evaluated to values in a frame context. The set of inference rules for sequence
and commands are shown in figure 9; sequences and commands are evaluated to
other sequences in a heap-frame context.

One can remark the stacking up of frames in pcall and fcall rules, it corre-
sponds to the frame replacement in the subsumption of these rules for evaluating
the body of a subprogram.

This semantics mixes up small-step and big-step reductions. Indeed, the most
of rules are small-step except for pcall and fcall rules. In these two rules, we link
the computation to its result and we make a sequence of reductions in the rule
subsumption.

6 Results

6.1 Interpreting data structures.

The link between Petri Nets and their implementation is formalised with a family
of interpretation functions for all data structures.

Definition 14 (Interpretations). An interpretation is a partial function which
maps a pair formed of a heap and a pointer to a marking, a set of markings,
a multiset of tokens or a single token depending on the interpreted object. The
interpretations are noted JH, pK∗ with H ∈ H, p ∈ P∪D and where ∗ is an anno-
tation describing the interpreted object. In case where p is a pointer, we suppose
that the result depends only on the accessible data from p, i.e., p ↓H . Moreover
every interpretation function have to hold the following requirement. ♦

Requirement. Let H, H ′ be two heaps, J·, ·K∗ the interpretation function, and
p, p′ two pointers or values. If (H, p) =st (H ′, p′) then JH, pK∗ = JH ′, p′K∗. ♦

As presented in section 4, we use data structures and functions in order
to reach our goal, they are supposed given or produced by the Petri net com-
pilation process. Each of these functions and data structures are specified or
axiomatized by a formal interface. Mainly, it helps to ensure independence and
modularity between components in a programmatic and formal way. Specifying
an interface leads to define a set of primitives that hold certain set of derivations
and interpretations. For example, let H be a heap and F a frame such that,
F (xmset) = pmset and is a pointer on a structure multiset of elements of type
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F (x) = p H(p) = (t, v)(
load x

)
H,F
 
(
v
)
H

load
F (x) = p p[i] défini(

gep x, 0, i
)
H,F
 
(
p[i]
)
H

gep0

F (x1) + F (x2) = v(
add x1, x2

)
H,F
 
(
v
)
H

add
(H ′, p) = new(H, t)(

alloc t
)
H,F
 
(
p
)
H⊕H′

alloc

F (x1) op F (x2) = v op ∈ {=, 6=, <,≤}(
icmp op, x1, x2

)
H,F
 
(
v
)
H

icmp

1 ≤ i ≤ n(
phi (x1, l1), . . . , (xn, ln)

)
H,(li, lc, β)

 
(
F (xi)

)
H

phi

fL a1, . . . , an M ∈ dom(P )
F0 = (⊥, fL a1, . . . , an M, {a1 7→ F (r1), . . . , an 7→ F (rn)})(

P (fL a1, . . . , an M)
)
H,F0

 ∗
(
v
)
H′(

fcall f (r1, . . . , rn)
)
H,F
 
(
v
)
H′

fcall

(
ret r

)
H,F
 
(
F (r)

)
H

ret

Fig. 8. Rules for expressions.

(
cmd

)
H,F
 
(

seq ′
)
H′,F ′(

cmd ; seq
)
H,F
 
(

seq ′; seq
)
H′,F ′

seq

(
skip; seq

)
H,F
 
(

seq
)
H,F

seqskip

(
br l

)
H,(lp, lc, β)

 
(
P (l)

)
H,(lc, l, β)

branch1

(β(r) = true ∧ l = l1) ∨ (β(r) = false ∧ l = l2)(
br r, l1, l2

)
H,(lp, lc, β)

 
(
P (l)

)
H,(lc, l, β)

branch2

fL a1, . . . , an M ∈ dom(P )
F0 = (⊥, fL a1, . . . , an M, {a1 7→ F (r1), . . . , an 7→ F (rn)})(

P (fL a1, . . . , an M)
)
H,F0

 ∗
(
ret
)
H′,F ′(

pcall f (r1, . . . , rn)
)
H,F
 
(
skip

)
H′,F

pcall

(
expr

)
H,F
 
(
v
)
H′(

x = expr
)
H,F
 
(
skip

)
H′,F⊕{x 7→ v}

assign

F (rp) = p H(p) = (t, d) H ′ = {p 7→ t, F (rnew )}(
store rnew , rp

)
H,F
 
(
skip

)
H⊕H′,F

store

Fig. 9. Rules for sequences and commands.
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t in H. In these conditions, the function addmset that adds an element into a
multiset containing objects of type t is specified by:(

pcall addmset(xmset , x)
)
H,F
 
(

skip
)
H⊕H′,F (1)

dom(H) ∩ dom(H ′) ⊆ pmset ↓H (2)

JH ⊕H ′, pmsetK
mset(t)

= JH, pmsetK
mset(t)

+ {JH,F (x)Kt} (3)

The condition (1) describes the reduction, the condition (2) localises the modi-
fications in the heap and the condition (3) explains the comportment in terms
of Petri nets.

Moreover, the structures marking, i.e., every implementation, have to hold
two properties:

Requirement. (soundness) Let H, H ′ be two heaps, F , F ′ two frames, pmrq

a pointer in dom(H) on a structure marking, and ps a pointer on a structure
place in the pointed marking. If ps ∈ pmrq ↓H , JH, pmrqK

mrq
(s) = JH, psK

s
,(

seq
)
H,F
 
(
seq′

)
H⊕H′,F ′ et pmrq /∈ dom(H ′) then

JH ⊕H ′, pmrqK
mrq

(s) = JH ⊕H ′, psK
s

♦

Requirement. (separation) Let pmrq be a pointer on a structure marking in
a heap H. If ps and ps′ are pointers on a two distinct places in this structure
then we have ps↓H ∩ ps′ ↓H= ∅. ♦

The soundness property ensures that any modification made on a place with
a pointer returned by gets is reflected on the marking (not on a copy). The
separation property ensures that places do not share memory, i.e., when one
modifies a place in the marking these modifications have no side effects on other
places.

6.2 Insulation theorem.

One of the main results on the semantics is the insulation theorem. It allows to
consider reductions in minimal contexts, then generalize them to more complex
ones. The exposition of the theorem is long because we must address commands
and expressions in the same time.

Theorem 7. (insulation). Let seq be a sequence, H a heap and F a frame. In
this context, if(

seq
)
H,F
 ∗

(
v′
)
H⊕H′ or, resp.,

(
seq
)
H,F
 ∗

(
seq′

)
H⊕H′,F ′

then for all heap H0 and all binding β0 such that

(i) dom(H) ∩ dom(H0) = ∅
(ii) dom(β) ∩ dom(β0) = ∅
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(iii) any assigned variable in seq (or one of its redex) is not in dom(β0)

then on can make the same reduction in an environments widen by the heap H0

and the binding β0, i.e.:(
seq
)
H⊕H0,F⊕β0

 ∗
(
v′′
)
H⊕H0⊕H′′

or, resp.,
(
seq
)
H⊕H0,F⊕β0

 ∗
(
seq′

)
H⊕H0⊕H′′,F ′′⊕β0

with H ′′ a heap and F ′′ a frame such that:

dom(H0) ∩ dom(H ′′) = ∅ (4)

∀p ∈ dom(H), (H ′, p) =st (H ′′, p) (5)

(H ⊕H ′, v′) =st (H ⊕H ′′, v′′) (6)

or, respectively, (4), (5) and

(F ′, H ′) =st (F ′′, H ′′) (7)

dom(β0) ∩ dom(βF ′′) = ∅ (8)

dom(βF ′) = dom(βF ′′) (9)

Intuitively, the result (4) ensures that one does not modify the heap H0, and
so the evaluation of the sequence have no side effects. The result (5) ensures
that H ′ is sound with H ′′, i.e. that every structure reachable from H which was
modified during the reduction have been modified in H ′′ in the same way. The
results (6) and (7) ensures that the reduction produces the same computation.
The result (8) ensure that one does not modify a variable in dom(β0). The result
(9) ensures that the same variables were added into the frames.

Proof. The proof is made by induction on derivation trees ordered by a lexico-
graphic order with respect to the maximal height of the derivation trees during
the reduction and the step count in the reduction.

– initial case: (
seq
)
H,F
 ∗

(
seq′

)
H⊕H′,F ′

we have: (
seq
)
H⊕H0,F⊕β0

 ∗
(
seq′

)
H⊕H0⊕H′′,F ′′⊕β0

where seq = seq′, H ′ = H ′′ = ∅ and F = F ′ = F ′′. Structural equivalence
consequences and equalities on domains are trivial.

– Inductive cases: we consider the first step during the reduction sequence.
Indeed, if one prove that the property holds for the first step then we can
conclude by the induction hypothesis since the remaining reduction is smaller
(the remaining reduction sequence maximal height is less or equal but a step
shorter).
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1. seq case: If the first step is an application of the seq rule:(
cmd

)
H,F
 
(

seq ′
)
H⊕H′,F ′(

cmd ; seq
)
H,F
 
(

seq ′; seq
)
H⊕H′,F ′

seq

We apply the induction hypothesis on the rule subsumption, we have:(
cmd

)
H⊕H0,F⊕β0

 
(

seq ′
)
H⊕H0⊕H′′,F ′′⊕β0

with a heap H ′′ and a frame F ′′ such that:

dom(H0) ∩ dom(H ′′) = ∅ (10)

∀p ∈ dom(H), (H ′, p) =st (H ′′, p) (11)

dom(β0) ∩ dom(βF ′′) = ∅ (12)

dom(βF ′) = dom(βF ′′) (13)

(F ′, H ′) =st (F ′′, H ′′) (14)

By reinjecting into the rule, we have:(
cmd ; seq

)
H⊕H0,F⊕β0

 
(

seq ′; seq
)
H⊕H0⊕H′′,F ′′⊕β0

Structural equality and domain constraints are the same.
2. seqskip : similar to the initial case.
3. branch1 and branch2 cases:

(
br l

)
H,(lp,lc,β)

 
(
P (l)

)
H⊕H′,(lc,l,β)

branch1

where H ′ = ∅. We have(
br l

)
H⊕H0,(lp,lc,β)⊕β0

 
(
P (l)

)
H⊕H0⊕H′′,(lc,l,β)⊕β0

branch1

where H ′′ = ∅, because

(lp, lc, β)⊕ β0 = (lp, lc, β ⊕ β0)

(lc, l, β)⊕ β0 = (lc, l, β ⊕ β0)

Structural equality and domain constraints are trivial since H ′ = H ′′ = ∅
and dom(β′) = dom(β′′) = dom(β).
The branch2 case is similar.

4. pcall case: If the first reduction step is pcall , we know that

fL a1, . . . , an M ∈ dom(P )
F0 = (⊥, fL a1, . . . , an M, {a1 7→ F (r1), . . . , an 7→ F (rn)})(

P (fL a1, . . . , an M)
)
H,F0

 ∗
(
ret
)
H⊕H′,F1(

pcall f (r1, . . . , rn)
)
H,F
 
(
skip

)
H⊕H′,F

pcall
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where H ′ = ∅. We build the conclusion by applying induction hypothesis
on the subsumption (smaller derivation tree).

fL a1, . . . , an M ∈ dom(P )
F0 = (⊥, fL a1, . . . , an M, {a1 7→ F (r1), . . . , an 7→ F (rn)})(
P (fL a1, . . . , an M)

)
H⊕H0,F0⊕∅

 ∗
(
ret
)
H⊕H0⊕H′′,F1⊕∅(

pcall f (r1, . . . , rn)
)
H⊕H0,
F⊕β0

 
(
skip

)
H⊕H0⊕H′′,
F⊕β0

pcall

Structural equivalence and domain equalities are true because they were
for the subsumption (induction hypothesis) and F ′ = F ′′ = F ⊕ β0.
The fcall case is similar, the induction hypothesis provides conclusions
for the expressions.

5. assign case: If the first reduction step is assign, we know that(
expr

)
H,F
 
(
v′
)
H⊕H′(

x = expr
)
H,F
 
(
skip

)
H⊕H′,F⊕{x 7→ v′}

assign

By applying the induction hypothesis (smaller derivation tree)(
expr

)
H⊕H0,F⊕β0

 
(
v′′
)
H⊕H0⊕H′′

where H ′′ is a heap such that:

dom(H0) ∩ dom(H ′′) = ∅ (15)

∀p ∈ H, (H ′, p) =st (H ′′, p) (16)

(H ′, v′) =st (H ′′, v′′) (17)

By reinjecting in the derivation we have:(
x = expr

)
H⊕H0,F⊕β0

 
(
skip

)
H⊕H0⊕H′′,F⊕β0⊕{x 7→ v′′}

The consequences (4) and (5) are true beacuse of the induction hypoth-
esis consequences (15) and (16). Since x is not an assigned variable x /∈
dom(β0), so β0 and {x 7→ v′′} commutes, and so F ⊕β0⊕{x 7→ v′′} =
F ⊕{x 7→ v′′}⊕β0 and dom(F ⊕{x 7→ v′′})∩dom(β0) = ∅ which gives
us the consequence (8). The consequence (9) is trivial because dom(β′) =
dom(β′′) = {x}. It remains to show that (F ′, H⊕H ′) =st (F ′′, H⊕H ′′),
i.e.. (F ⊕ {x 7→ v′}, H ⊕H ′) =st (F ⊕ {x 7→ v′′}, H ⊕H ′′), showing
that ({x 7→ v′}, H ′) =st ({x 7→ v′′}, H ′′) is sufficient since (16) implies
the result for F , but this result is a immediate consequence of (17).

6. store case:

F (rp) = p H(p) = (t, d) H ′ = {p 7→ t, F (rnew )}(
store rnew , rp

)
H,F
 
(
skip

)
H⊕H′,F ′

store
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where F = F ′, we build the conclusion:

(F ⊕ β0)(rp) = F (rp) = p (H ⊕H0)(p) = H(p) = (t, d)
H ′′ = {p 7→ t, F (rnew )}(

store rnew , rp
)
H⊕H0,F⊕β0

 
(
skip

)
H⊕H0⊕H′′,F ′′⊕β0

store

where F = F ′′, because dom(F )∩dom(β0) = ∅ and dom(H)∩dom(H0) =
∅. Since H ′ = H ′′ and F = F ′ = F ′′, structural equalities and domain
constraints are trivially held.

7. load case:

F (x) = p H(p) = (t, v)(
load x

)
H,F
 
(
v
)
H⊕H′

load

where H ′ = ∅, immediate

(F ⊕ β0)(x) = F (x) = p (H ⊕H0)(p) = H(p) = (t, v)(
load x

)
H⊕H0,F⊕β0

 
(
v
)
H⊕H0⊕H′′

load

where H ′′ = ∅, because dom(F )∩dom(β0) = ∅ and dom(H)∩dom(H0) =
∅. Structural equalities and domain constraints are trivial.

8. gep0 case:

F (x) = p p[i]H défini(
gep x, 0, i

)
H,F
 
(
p[i]H

)
H⊕H′

gep0

where H ′ = ∅. Since p[i]H is defined, we heve p, p[i]H ∈ H, and we
conclude with

(F ⊕ β0)(x) = F (x) = p p[i]H⊕H0 = p[i]H defined(
gep x, 0, i

)
H⊕H0,F⊕β0

 
(
p[i]H⊕H0

)
H⊕H0⊕H′′

gep0

whereH ′′ = ∅, because dom(H)∩dom(H0) = ∅. The structural equalities
and domain constraints are trivially held.

9. icmp and add cases:

F (x1) op F (x2) = v op ∈ {=, 6=, <,≤}(
icmp op, x1, x2

)
H,F
 
(
v
)
H⊕H′

icmp

where H ′ = ∅, we conclude

(F ⊕ β0)(x1) op (F ⊕ β0)(x2) = v op ∈ {=, 6=, <,≤}(
icmp op, x1, x2

)
H⊕H0,F⊕β0

 
(
v
)
H⊕H0⊕H′′

icmp

where H ′′ = ∅ because (F ⊕ β0)(x1) = F (x1) et (F ⊕ β0)(x2) = F (x2).
Structural equalities and domain constraints are trivial.
The add case is similar.
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10. phi case:

1 ≤ i ≤ n(
phi (x1, l1), . . . , (xn, ln)

)
H,(li,lc,β)

 
(
β(xi)

)
H⊕H′

phi

where H ′ = ∅, we have

1 ≤ i ≤ n(
phi (x1, l1), . . . , (xn, ln)

)
H⊕H0,
(li,lc,β)⊕β0

 
(

(β ⊕ β0)(xi)
)
H⊕H0⊕H′′

phi

where H ′′ = ∅. By hypothesis dom(β)∩dom(β0) = ∅, which implies that
(β ⊕ β0)(xi) = β(xi), thus we have the same computation result (6).
H ′ = H ′′ = ∅ and so (4) and (5) are trivial.

11. alloc case:

(H ′, p′) = new(H, t)(
alloc t

)
H,F
 
(
p′
)
H⊕H′

alloc

We build the conclusion:

(H ′′, p′′) = new(H ⊕H0, t)(
alloc t

)
H⊕H0,F

 
(
p′′
)
H⊕H0⊕H′′

alloc

by definition of new (section 5.1, property 5.), we have (H ′, p′) =st

(H ′′, p′′), moreover dom(H ′′) ∩ dom(H ⊕ H0) = ∅, and so dom(H ′′) ∩
dom(H0) = ∅. (4), (5) and (6) are true.

12. ret case: trivial because (β ⊕ β0)(r) = β(r).

6.3 Correction of firet

Theorem 8. (Correction of firet ). Let M be a marking, H a heap and pmrq a
pointer on a structure marking such that dom(H) = pmrq ↓H and JH, pmrqK

mrq
=

M . Let β
df
= {x1 7→ v1, . . . , xn 7→ vn} be a LLVM mode of the transition t, which

implies that each vi is a value or a pointer encoding a token (for the place si)

and JH, viK
t(si) ∈ M(si). Let F be a frame such that βF

df
= β ⊕ {xmrq 7→ pmrq}.

If

M [t, β〉M ′ and
(

fcall firet(xmrq , x1, . . . , xn)
)
H,F
 
(
p′mrq

)
H⊕H′

then q
H ⊕H ′, p′mrq

ymrq
= M ′ and dom(H) ∩ dom(H ′) = ∅

In order to achieve the proof we need two auxiliary lemmas: one for the token
consumption and one for the token production.
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Lemma 1. Let H be a heap, p′mrq a pointer on a structure marking such that

dom(H) = p′mrq ↓H and
q
H, p′mrq

ymrq
= M . Let F be a frame such that βF

df
=

{x′mrq 7→ p′mrq , x1 7→ v1, . . . , xn 7→ vn} where all vi are pointers or values of

si places types and JH, viK
t(si) ∈ M(si) (for 1 ≤ i ≤ n). We consider the seq

sequence corresponding to the consumption of tokens in the firet function:

seq
df
=


xs1 = fcall gets1 (x′mrq)
pcall rems1 (xs1 , x1)
. . .
xsn = fcall getsn (x′mrq)
pcall remsn (xsn , xn)


If one reduces the sequence totally, i.e., if(

seq
)
H,F
 ∗

(
skip

)
H⊕H′,F⊕β

then
β

df
= {xs1 7→ ps1 , . . . , xsn 7→ psn} (18)

dom(H) ∩ dom(H ′) ⊆ ps1 ↓H ∪ · · · ∪ psn ↓H (19)
q
H ⊕H ′, p′mrq

ymrq
(si) = M(si)− {JH, viKt(si)} pour i ∈ {1, . . . , n} (20)

Proof. All three consequences are proved simultaneously by induction on n using
the specifications of get and rem functions as well as the SSA property. The SSA
property is needed in the inductive case for building a suitable binding from the
biding provided by the induction hypothesis. �

Lemma 2. Let H be a heap and p′mrq a pointer on a structure marking such

that dom(H) = p′mrq ↓H and
q
H, p′mrq

ymrq
= M . Let F be a frame such that

βF
df
= {x′mrq 7→ p′mrq , x1 7→ v1, . . . , xn 7→ vn} where all vi are pointers or values

of si places types (for 1 ≤ i ≤ n). We consider the seq sequence that corresponds
to token production in the function firet:

seq
df
=



xs′1 = fcall gets′1 (x′mrq)
os′1 = fcall fs′1 (x1, . . . , xn)
pcall adds′1

(xs′1 , os′1)
. . .
xs′m = fcall gets′m (x′mrq)
os′m = fcall fs′m (x1, . . . , xn)
pcall adds′m

(xs′m , os′m)


If one reduces the sequence totally, i.e., if

(
seq
)
H,F
 ∗

(
skip

)
H⊕H′,
F⊕β

then

β
df
=


xs′1 7→ ps′1 , os′1 7→ fs′1(v1, . . . , vn),
. . .

xs′m 7→ ps′m , os′m 7→ fs′m(v1, . . . , vn)

 (21)
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dom(H) ∩ dom(H ′) ⊆ ps′1 ↓H ∪ · · · ∪ ps′m ↓H (22)

q
H ⊕H ′, p′mrq

ymrq
(s′i) = M(s′i) +

{r
H ⊕H ′, fs′i(v1, . . . , vn)

zt(s′i)
}

pour 1 ≤ i ≤ m
(23)

Proof (Correction firet). The proof of the function firet uses the two lemmas:
one for the token consumption, and one for the token production. Both proved
by induction on the number of places in the structure marking. The final proof
consists in applying the two previous lemmas.

Corollary 3. Under the same hypothesis, the call of function firet terminates.
�

Proof. Immediate consequence of the correction theorem. �

6.4 Correction of succt

Theorem 9. (Correction of succt ). Let F be a frame and pmrq a pointer in
a heap H such that pmrq ↓H= dom(H), JH, pmrqK

mrq
= M , βF (xmrq) = pmrq

and βF (xset) = pset . If(
fcall succt(xmrq)

)
H,F
 ∗

(
pset

)
H⊕H′ and JH, psetK

set
= E

then
dom(H) ∩ dom(H ′)

JH ⊕H ′, psetK
set

= E ∪ {M ′ | ∃β, M [t, β〉M ′}

In order to achieve the proof we introduce a property that will serve as an
invariant.

Property 10. A pair (H,F ) where H is a heap and F a frame respects the
property P if the following conditions are true:

– pmrq ∈ dom(H) and JH, pmrqK
mrq

= M ;

– pset ∈ dom(H) and JH, psetK
set

is a set of markings ;
– F (xmrq) = pmrq ;
– F (xset) = pset .

The first lemma ensures that if the execution flow passes through a header t,k
block then it will reach a footer t,k+1 block, Moreover, it guaranties that we will
execute any block annotated by an index greater than k.

Lemma 3. Let n be the number of input places of t, let H be a heap and F a
frame such that (H,F ) satisfies P , then we have:(

P (header t,n)
)
H,F
 ∗

(
P (footer t,n+1)

)
H′,F ′
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where (H ′, F ′) satisfies P and without executing any block with an index greater
than n, i.e., (

P (header t,n)
)
H,F
 ∗

(
P (block t,i)

)
H′′,F ′′

for i > n and block ∈ {header , loop, body , footer} is not a strict prefix of the
previous reduction.

Proof. We proceed by induction on n with a second induction on the number of
tokens remaining in the nth place during the inductive case.

Corollary 4. Under the same hypothesis, the call of function succt terminates.

Proof. The proof proceeds by reducing the body of the succt function, checking
that the heap and the frame verify the property P and applying the previous
lemma.

The second lemma is used to show that we enumerate all combinations of
tokens for the input places. It implies that we enumerate all modes of t.

Lemma 4. Let H be a heap and F a frame such that (H,F ) satisfies P . Let

β = {xn 7→ vn, . . . , x1 7→ v1} be a LLVM binding such that JH, viK
t(si) ∈ M(si)

for 1 ≤ i ≤ n. If (
P (header t,n)

)
H,F
 ∗

(
P (header t,0)

)
H′,F ′

then β ⊆ βF ′ and (H ′, F ′) satisfies P . Moreover, the execution flow did not reach
any block indexed by i such that i > n, i.e.,(

P (header t,n)
)
H,F
 ∗

(
P (block t,i)

)
H′′,F ′′

for i > n and block ∈ {header , loop, body , footer} is not a strict prefix of the
previous reduction.

Proof. The proof proceeds exactly like the previous lemma.

Proof (correction succt). The first result is showed by remarking that any pointer
is used explicitly, thus it can be showed by using the specifications of called
functions. The second result is showed in two steps:

⊇. This part is proved using two auxiliary lemmas:
– one that if the execution flow passes through a header t,k block then it will

reach a footer t,k+1 block, Moreover, it guaranties that we will execute
any block annotated by an index greater than k;

– the second lemma is used to show that we enumerate all combinations of
tokens for the input places, which implies that we enumerate all modes
of t.

⊆. next we show that we only add the successor markings into the set, which
gives the other inclusion. This part is proved by remarking that if a marking
is added into the set, then it is added from the bodyt,0 block. So we show
that this block is executed if and only if the binding contains a mode of t.

Corollary 5. Under the same hypothesis, the call of function succt terminates.
�
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7 Conclusion

We have shown how a Petri Net can be compiled, targeting a fragment of the
LLVM language. This compilation process produces code that provides the prim-
itives to compute the state space of the compiled Petri net model. Then we have
defined formal semantics for the fragment of the LLVM language we use. To pro-
duce a readable and usable system of inference rules, we have defined a memory
model based on heaps and stacks. Finally we presented two theorems proving
the correction of the code generated by our compiler. The detailed proofs pro-
vided in [5] are quite long because they are very much detailed to improve our
confidence into their correctness, but they are at the same time easy to follow.

Current and future work will address a generalisation of the presented ap-
proach to compile a wider variety of coloured Petri nets, in particular nets em-
bedding annotation languages easier to use for the modeller than LLVM. We
are also interested in particular in exploiting remarkable structures of Petri net
models that allow to optimise the code generated by the compiler. Such optimi-
sations also need to be formally proved; preliminary results about this can be
found in [5]. A complementary aspect is to evaluate the performance of the state
space generation, that is of course another important motivation, see [6].
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niveau. PhD thesis, CNAM, Paris, France, 2006.
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