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Abstract

Some accidental scenarii studied in the framework of the nuclear safety analysis involve
liquids undergoing strong pressure drops at high temperature. In order to perform real-
istic simulations of such situations, a code based on a model that can handle both the
thermodynamical disequilibrium between liquid and vapor and complex equations of state
is required. We propose herein to test a homogeneous model built on the basis of the
Euler system of equations and complemented by a mixture pressure law. The latter is
defined in accordance with the Gibbs relation on the basis of the phasic pressures which
are defined through a look-up table based on the IJAPWS-97 formulation. A wide range
of verification problems (Riemann problems) is then studied to assess the behavior of the
numerical schemes for this complex equation of state. The tested relaxation scheme is the
best compromise between accuracy and stability. At last, a simple test case of vaporization
near a wall is investigated in order to test some return to thermodynamical-equilibrium
time-scale based on the nucleation theory.



Introduction

A nuclear pressurized water reactor (PWR) is composed of several heat exchangers in
which the water is used as a heat-transfer medium and can undergo phase change (va-
porization and condensation). A PWR contains two main loops in which water flows in
liquid or vapour state: the primary and the secondary circuits, exchanging heat through
the steam generator. The primary circuit contains liquid water which collects the heat-
ing power of the nuclear core and brings it into the steam-generator. In this circuit, the
temperature can reach 320°C' and, to avoid vaporization, the pressure is maintained at
155 bars, that means, above the saturation pressure. In the steam generator, the primary
coolant flows into pipes that are surrounded by the water of the secondary circuit. The
secondary fluid enters the steam generator as liquid. It then receives heat of the primary
coolant on contact with the primary pipes and vaporizes. The steam-generator’s outlet of
the secondary circuit is then mainly composed of steam. The latter is used to generate
electric power through turbines and it is afterwards condensed (through the use of an
other heat-exchanger and a third circuit) to re-enter the steam generator as liquid. In
this secondary circuit, the pressure level is much lower than in the primary circuit (in the
range 50 — 70 bars, depending on the steam generator).

When the reactor is at nominal operating point, the mass transfer and the heat ex-
changes imply small thermodynamical variations. Nevertheless, when accidental scenarii
are considered, brutal thermodynamical variations are assumed. For instance, if one fo-
cuses on the breaches in the shell of the primary circuit, two major scenarii are studied.

e The Loss Of Coolant Accident (or LOCA) corresponds to a breach for which the
primary liquid coolant enters into contact with the air of the reactor building at 1
bar. The violent pressure drop from 155 bars to 1 bar implies a rapid blowdown and
the propagation of a depressurization wave into the primary circuit. This depressur-
ization is associated with the vaporization of the primary coolant.

e When a breach in a pipe that contains the primary coolant in the steam generator
occurs, the pressurized liquid water enters into contact with a steam-liquid mixture
at a lower pressure. As in the LOCA situation, a depressurization wave propagates
into the primary circuit leading to the steam creation in the primary loop.

These two scenarii are associated with high pressure drops and high temperatures. In
such situations, the fast transients can thus lead to non-equilibrium thermodynamics [1].
Hence, the simulation of such rapid transients requires a model in which the thermody-
namical disequilibria between the two phases are taken into account.

A first class of models that can be used for such scenarii is the so-called two-fluid model
as those proposed in [2, 3, 4, 5, 6, 7]. In this class of models, the full thermodynamical
disequilibrium is accounted for, in terms of the pressure, the temperature and the chemical
potential (or Gibbs free enthalpy). Moreover, each phase is described by its own velocity.




This two-velocity assumption has a drawback when dealing with the numerical simula-
tion. Indeed, these models can possess eigenvalues that are very close to each other, for
instance in situations involving a strong drag force. In order to distinguish the different
waves associated with these close eigenvalues on the numerical approximations, one can
thus have to deal with meshes that contain small enough cells, leading to an unaffordable
computational cost for industrial applications in 3D. In the sequel, we choose to present
a model that possesses a simpler eigenstructure. The latter makes the assumption that
the two phases have the same velocity and is based on a model relying on the Euler set of
equations. Therefore, the model inherits the Euler eigenstructure and enters the so-called
class of the homogeneous models.

Most of two-phase flow homogeneous models proposed since around 40 years are based
on one or more thermodynamical equilibrium assumptions (for instance: [3, 8, 9, 10,
11, 12, 13]). The homogeneous model used in this work does not make any equilibrium
assumption for the thermodynamics: the phasic temperatures, pressures and chemical
potentials may be different within each phase. On the one hand, this choice has been
made to account for the full thermodynamical disequilibrium: the pressure disequilib-
rium may allow to enrich the model by introducing a bubble dynamics model as proposed
in [7, 14, 15]. On the other hand, this allows to tackle some specificity of the mixture
Equations Of States (EOS) obtained with equilibrium assumptions. It has indeed been
reported that equilibrium assumptions may lead to a loss of strict concavity of the mix-
ture entropy [16, 17, 18] and then to non-uniqueness of solutions of the Riemann problems.

This homogeneous model proposed in [16, 19, 20], and studied for instance in [9, 21,
22, 23], is based on the Euler system of equations complemented by a complex pressure
law and by three unknowns: a volume fraction, a mass fraction and an energy fraction.
These fractions allow to quantify the gap to the equilibrium state, reached when the sys-
tem is isolated from the surroundings. In the model, the return to this equilibrium state
is ensured by three source terms on the fractions involving a unique relaxation time-scale
law. The whole model is built in order to be consistent with the second law of thermo-
dynamics and is hyperbolic if each phasic entropy is concave with respect to the phasic
specific volume and the phasic specific internal energy, and if the mixture temperature is
positive [18, 24, 25]. The model and its properties are presented in section 1.

The model has been tested either on Riemann problems [24, 26] and on simulations
reproducing elementary experimental facilities [25]. In both cases, the phasic EOS were
defined through Stiffened Gas EOS [27] which is an extension of the perfect gas EOS.
Even if the results presented in [25] are satisfactory, the Stiffened Gas EOS is too rough to
describe accurately all the thermodynamical properties of the water on situations with
large variations of the thermodynamical states, such as those depicted above. A look-up
table has then been developed, based on the idea of [28] and using the IAPWS-97 [29]
formulation as input data. The main recipes of this look-up table are presented in section 2.




The whole numerical scheme is described in section 3. In [24, 25, 26], the numerical
schemes used to compute the numerical approximations of the solutions of the model were
all robust enough to deal with Stiffened Gas EOS. Unfortunately, few of these numerical
schemes are able to handle complex EOS as the one proposed in section 2. Indeed, three
numerical schemes for the convective part have been tested : the Rusanov scheme [30], a
VFRoe-ncv scheme [31] and a relaxation scheme [32], based on the ideas of [33, 34, 35, 36].
In practise, problems of robustness have been encountered with VFRoe-ncv scheme used
with the look-up table; therefore, only Rusanov scheme and the relaxation scheme have
been compared when using it. In section 4, their behavior is then studied on a wide range
of Riemann problems for the EOS defined through the look-up table of section 2. This
verification procedure is mandatory to grasp the behavior of the numerical schemes in
canonical situations. Furthermore it is required in the framework of the safety studies,
where proofs of confidence on the simulation tools are to be given. The relaxation scheme
is the best compromise between accuracy and robustness when using the look-up table.

In [25], the impact of the relaxation time-scale law has been shown by the mean of toy
laws. These laws have no physical background, and they are based on the observations
reported in [12]. In section 5, we propose a model for the relaxation time-scale on the
basis of the classical nucleation theory [37], with some simple assumptions used in [38] or
[39]. Since the nucleation theory only holds for the birth of steam bubbles in liquid, we
have chosen a situation where the domain is entirely filled with liquid and where steam
production remains reasonable: a depressurization occuring near a wall. This case can be
schematic of what happens downstream a valve suddendly closed in a pipe in which high
pressurized water flows. On can note that a very similar phenomenon occurs in the early
stage of the SUPERCANON experiment reported in [40] and which was reproduced in [25].




1 A homogeneous model for two-phase flows

In this section, the considered model is only briefly presented in intensive variables. The
whole building approach is available in appendix A, starting from an extensive description
of the system by a volume V (in m?) of the mixture, corresponding to a mass M (in kg)
and an internal energy £ (in J).

Thermodynamically, each phase k = [, v (liquid or vapor) is described by its own com-
plete equation of state, expressed as a specific entropy sy (7%, ex) (JK 'kg™!) as a function
of 75, the specific volume (m?kg~!) and e, the specific energy (Jkg™!) and satisfying the
Gibbs relation:

desk = dek + Pdek, (1)
where
1 sy, Py Osg
=k oo )
Tk 8ek Th Tk 87’k en
Let us introduce the volume fraction a4, the mass fraction y; and the energy fraction z
of phase k:
Yi = (%, Yk, 21)- (3)

These fractions satisfy conservation relations:
l=agy+a, ; 1=y+y ; 1=z+z, (4)

and vary in accordance with the second principle of thermodynamics (cf appendix A).
Thanks to them, phasic quantities can be expressed from the mixture quantities:
a z
o= —r e = e (5)
Yk Yk

The mixture entropy s is defined as:
S(K T, 6) = y151<7—l;€l) +yv5v(7_’uv€v>‘ (6)

Using phasic Gibbs relations (1), thermodynamical mixture quantities can be deduced
from phasic ones; they read:

Pl P’u
alT +OéUT— 1 z] Zy
P(Y,1,e) = ————= : =Y, 1,e) = =+ —. (7)
’Tll + T_z T T, T,

The set of partial differential equations in conservative form is:

([ DoY)+ L oUY) =
9 (0) + o () = 0, N
% (pU) + a% (pU? + P) =0,

| (0B)+ o (UE +P) =0,




with the following source terms:

r— = Y=Yy Z— A
) U U ’

where (ay, 71, z;) are the equilibrium fractions which maximize the mixture entropy for a
given (7,e). The user must specify one EOS (see section 2) for each phase and the time-
scale A > 0 describing the return to the thermodynamical equilibrium (see section 5 and
appendix C).

It can been shown that this model has interesting mathematical properties. These
properties are summarized here and the reader can refer to [16, 18, 19, 20, 21, 22, 25, 41]
for more details.

e The eigenstructure of the model is composed of 2 genuinely non-linear waves associ-
ated to the eigenvalues U = ¢, where ¢ is the mixture sound speed, and one linearly
degenerate wave associated to the eigenvalue U.

e The model is hyperbolic provided that the phasic entropies s, are concave (see (Hr)
in appendix A) and that the mixture temperature is non-negative. The condition on
the mixture temperature is of importance. Indeed, the concavity of the entropies to-
gether with the positivity of the mass fractions guarantees that ¢?/T is non-negative.
However some simple EOS (as the Van der Waals EOS) admit non-positive energy.
This may lead to non-positive energy fractions and a possible drawback is to get a
negative mixture temperature even when assumption (Hyg) (see appendix A) holds.
Such situations can then correspond to a loss of hyperbolicity.

e Shocks are defined in a unique manner through the Rankine-Hugoniot relations.

e Assuming classical assumptions on the initial and boundary conditions for the frac-
tions, and provided that the equilibrium fractions remain in [0,1]?, the fractions
remain in [0, 1]3.




2 Complex equations of state

In order to close the model presented in section 1, we need to specify: one EOS for each
phase in terms of the specific entropy (7%, €x) — Sk(7%, €x), and a law for the time-scale A
which describes the return to the thermodynamical equilibrium defined by W. We focus
here on the phasic EOS.

A classical way to deal with steam-liquid simulation is to use Stiffened Gas EOS [27].
These EOS are extensions of the perfect gas EOS. They are associated with quite simple
formula involving five parameters. The specific phasic entropy then reads:

Sk(Tk, ex) = Cyi In ((ek — Hka)T,Zk_l) + 59 9)

where C, ;, is the heat capacity, —IIj is the minimal pressure', ; is the adiabatic coeffi-
cient (7, > 1) and s? is a reference specific-entropy.

In the situations that we intend to address, the domain of evolution of the thermody-
namical quantities is important and these Stiffened Gas EOS may be not accurate enough,
at least not for all the quantities. A more complex EOS with a better description of the
properties of the fluids on wide domains is thus needed. Such EOS have been proposed, as
Cubic EOS or Viriel formulations, but they are unfortunately not in complete form [18],
which means that some thermodynamical quantities may not be defined. The TAPWS-97
formulation [29] is defined in a complete form since the the EOS is given as the Gibbs free
enthalpy with respect to the pressure and the temperature. Nevertheless, this function is
very complex and an important drawback is the high computational cost which is a crucial
point for the simulation of fluid dynamics. In order to decrease this computational cost, a
Look-up Table (LuT) has been implemented on the basis of the TAPWS-97 formulation?.

We describe here how this LuT is built. Since the model deals with non-equilibrium
thermodynamics and since each phase has to possess its own EOS, a LuT is built for each
phase.

The (P, T)-plane is chosen as an entry of the LuT and the Gibbs free enthalpy ux (P, T')
is given for each phase. In order to remain consistent with the Gibbs relation for each
phase (1), all the other quantities have to be computed from the derivatives of

,LL],C(P, T) = ek(P, T) + PTk(P, T) — TSk(P, T)
Indeed, by differentiating uy and by using the phasic Gibbs relation (1) we get:

dﬂk = deP — Sde,

!The phasic entropy and the phasic sound speeds are defined for P, > —II;; and the phasic temperature
is positive for P, > —II},
2The methodology proposed here to build a LuT is obviously not restricted to the IAPWS formulation.




so that the specific volume and the specific entropy are respectively defined as:
Tk(P, T) = EMU@HT and Sk(P, T) = —a,uk/aﬂp
The specific energy then follows ex(P,T) = up(P,T) — P1,(P,T) + T'sp (P, T).

Remark 1. In order to fulfill the phasic Gibbs relation (1), the quantities Ty, s and ey
should not be tabulated independently.

As in [28], the thermodynamical plane (P, T') is discretized using a Quadtree approach
which is balanced to get a regular discretization of the plane, enabling a quick research
through the look-up table in practical simulations. Some domains of the (P, T)-plane are
refined. This is actually the case: in the neighborhood of the saturation curve, at low
pressures, at low temperatures and at high pressures on the saturation curve. The LuT
used in the next sections has been built for pressures from 0.1 bar to 219 bars, so that we
avoid vicinity of the critical point. The temperature range is [283.0 K;1070.0 K].

Figure 1 shows some visualizations of the quadtree mesh for different ranges of pres-
sures and temperatures. On each cell of the (P, T)-plane, the IAPWS-97 Gibbs enthalpy
W is interpolated using a polynomial spline in P and 7. The most important point is
to preserve the Gibbs relations (1). It is required that py belongs to C' on the whole
domain. Therefore, splines of order 3 are used and a specific treatment is applied to each
cell connected to wider cells. For these cells, at each node that is common with a wider
cell, the values of p; and its derivatives are not obtained from IAPWS-97. These values
are replaced by the values of p; and its derivatives computed from the interpolated spline
of the wider cell. Hence we ensure the continuity of the interpolated value py and of its
derivatives with respect to P and T at the junction between the cells of different sizes. For
this purpose, the computation of the spline coefficients is then done by decreasing order
of the size of the cells. The final level of refinement of the quadtree is chosen so as to get
a relative error between the IAPWS values of p and the interpolated values less than a
threshold. In the LuT used in the next sections, this threshold has been chosen equal to
10~?, and the final mesh contains more than 163000 cells.

The use of meshes based on quadtree techniques is a great advantage because it allows
the local refinement of the description together with a reasonable computational cost for
the search of the cell in which the properties have to be estimated. In fact, for a given
(P°,T°), the cost of the search of the quadtree’s cell containing (P° T°) is proportional
to the depth of this cell in the quadtree structure (i.e. the smaller the target cell is, the
more expensive its search is).

We are dealing with compressible phenomena so that the model of section 1 has to be
discretized in conservative form (numerical schemes are described in section 3). Hence the
“natural” variables for the conservative part of the model are (7,e). Since the LuT EOS
is defined in the (P, T)-plane, and in order to maintain the consistency of the thermody-
namical description through a complete LuT, we need to compute the change of variables
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Figure 1: Mesh of the (P, T)-plane. The left figure shows the whole mesh, and the log-like
domain corresponds to the mesh refinement around the saturation curve. The two figures
on the right show zooms on the saturation curve zone.

(Tk, ex) = (Py, Tk). More precisely, for any value of the specific volume 77 and specific
energy e}, we have to find the pressure P, and the temperature T}, that fulfill:

er( Py, Ti) = €},
{ Tk(Pk,Tk) :TIS’ (1())
where the functions (Py, Ty) — ex( Py, T) and (Py, Ty) — 7 (Pg, Tk) are obtained from the
LuT. From a numerical point of view, the computation of an approximate solution of (10)
through a Newton-type algorithm can be tricky and it requires an accurate initial guess of
the solution. For this purpose, a second LuT has been built for each phase. This second
LuT is based on a non-balanced quadtree for the (7, e)-plane. At each vertice (77, ¢€%) of
the mesh corresponds a couple (P}, T}) such that e, (P}, T}) = e, and 7(P{, T}) = 7i. This
second LuT is not used directly, but using bilinear interpolation, it represents a database
to provide initial guesses to solve the general problem (10). With the help of this second
LuT, solving (10) requires less iterations and it is more robust. For the sections below,
this second LuT contains 166000 cells.

Remark 2. In practice, considering the Stiffened Gas FEOS as a reference, the order of
magnitude of the computation costs is 700 times higher for the direct IAPWS formulation
and it 1s 8 times higher with the LuT EOS as depicted above. Obuviously, the gain in CPU
time strongly depends on the test case and on the LuT used (the local refinement and the
depth of the quadtree are strongly involved).




3 Numerical method

The overall numerical method is based on a fractional step method [42] using a Lie-Trotter
splitting. The initial condition problem associated with system of equations (8) can be
written:

0 0

5 W) = =5 (FV) +G(W), W(t=0)=W" (11)

where F correspond to the convective flux and G to the source terms. A straightforward
Lie-Trotter splitting has been chosen here. It consists in solving at time ¢t = ¢" the following
two sub-systems during a time step At™:

(2) a (Wa) = _% (F<Wa>> ) Wa(tn> = an (12>

which gives W, (t" + At"™);

(i4) % (W) = G(W,),  Wilt = ") = W,(t" + At™). (13)

Since this splitting is first order with respect to time, each sub-system is solved using
first order schemes.

The first sub-system takes into account the convective part. For that purpose, first-
order explicit and conservative finite volumes schemes are used. Their general form for a
one-dimensional framework with cells €2; is:

QW] = W) = = A (F(W], W) — (W, W), (14)
where W denotes the space-average value of W on the cell §2; at time ¢". The time
step At™ is computed from the variable W and from the mesh size |§2;| in order to fulfill
stability constraint. The two-point numerical flux F' depends on the used scheme. In
the following, we have tested three different schemes: Rusanov scheme [30], a VFRoe-ncv
scheme using variables (Y, 7, U, P) [31] and the relaxation scheme proposed in [32]. These
schemes are described in section 3.1.

The second sub-system (13) corresponds to a system of ordinary derivative equations.
In this sub-system, the return to equilibrium is accounted for. Since the time-step is
computed to fulfill a stability constraint of the numerical scheme used for the first sub-
system, this second step is achieved using an implicit scheme. The latter is detailed in
section 3.2.

Remark 3. For the sake of simplicity, each sub-system is solved using a unique time-step
and the time-step for solving the source-terms step is the time-step computed for the con-
vective part.




3.1 Numerical schemes for the convective sub-system

This section is devoted to the numerical schemes used to compute the two-point numerical
fluxes F' considering two neighboring cells. The quantities in the cell on the left (resp.
right) of the interface between the two cells are denoted by a subscript [ (resp. 7).

Rusanov scheme (see [30]) and VFRoe-ncv scheme using variables (u, P, 7) (see [31]) are
very classical and the details about these schemes can be found in the previous references.

The studied relaxation scheme was initially proposed in [32] and it is based on the
work of [33, 34, 35, 43]. The main idea is to compute the numerical flux on the basis of
an enlarged hyperbolic system associated with a strong relaxation term. This enlarged
system is chosen so that all its characteristic fields are linearly degenerate. Hence, the
solution of the associated Riemann problem at each interface between two cells is easy to
compute. The relaxation term, accounted for in the enlarged system by a source term,
then allows to recover formally the initial system of equations.

We follow here the proposition detailed in [32]. One additional scalar unknown 7T is
introduced with the initial condition:

Va, T(0,z) =7(0,z).

A new pressure II is also defined, which can be seen as a linearization of the pressure P
with respect to the variable 7 around T

I1=PY,T,e)+ad*(T —7), (15)

where a is a positive parameter. At last, a relaxation specific total energy ¥ is introduced
in order to be consistent with the pressure II:

2 HQ_PQY
E:u—+6+ (7T7€)

5 5,2 , (16)

We set Z the enlarged variable: Z = (Y, 7,U, %, T). The enlarged system to solve is then
the following:

( 0(pY) + 0x(pYU) =0

0+ 8$(pU) =0

1 (pX) + 0. (pUX + UIL) =0

(pT) +

OpT) + 0:(pTU) = Zp(r —T)

QD

\

where the relaxation source terms for 7 is characterized by the parameter ¢ > 0. A crucial
point is that all the characteristic fields of the convective part of system (17) are linearly
degenerate and associated with the speed waves:

>\1 - Ul — aTy, >\2 = U*7 )\3 = U’r’ + aTy, (18>

10



with:

1 1
£ 2 (I, — T1,). 1

The parameter a, that appears in the definitions of IT and o (resp. (15) and (16)), should
satisfy a stability condition [35] which is related to the sub-characteristic condition for the
enlarged system (17):

Cl(naTlaeﬂ CT‘(Y;“?TWGT)) (20)

a > max ,
71 Tr

where ¢(Y, 7, e) denotes the sound speed associated with the pressure law P:

0
_ 2 7
cY,r,e) =—1 57 (P)

Y,s

Moreover, a is chosen so that the eigenvalues fulfill the relation:
)\1 < )\2 < )\3, (21)
where )\ is detailed in (18); this last condition is equivalent to:

77>0 and 7 >0. (22)

Thanks to relations (21), the self-similar solution Z (z/t, Z;, Z,) of the Riemann prob-
lem at the interface separating two cells (I and r) for the convective part of system (17)
can be written:

Zl, if I/t<)\1

x )z i M <zft< A
2 <t’Zl’Z’“) TN 25 0 A</t <A (23)
Zn, if A3 < ZL’/t
with 1 1
Tl*:Tl+—(U*—Ul) ; T::Tr__(U*_Ur) ; (24)
a a
1 1
=% 4 —(ILU, — [T'U*); 2% = 8, — ~(ILU, — II*U*) ; (25)
a a
=T ; T, =T ; Y'=Y; Y'=Y; (26)
Ur=Ur=U* ; IIf =1 =1II" (27)

where we have set:

1
I = (I + 11, + g(Ul —u)

and where U* is given in (19). From a numerical point of view, we have chosen an
instantaneous relaxation: ¢ — 0. As a consequence, we have 7 — 7, I — P and ¥ — F,
so that the two-point numerical flux corresponding to the relaxation scheme [32] is solely

11



based on the value Z (x/t =0, Z;, Z,.) of the solution Z at the interface between the two-
cells [ and r. It reads:
YU U U? Ux.
F<M/Z7W7"> = <_7_7_+H7_+UH> ’
A T
where Y, 7, U, and ¥ are the components of Z (z/t =0, Z;, Z,) and where II also arises
from the solution Z (z/t =0, Z;, Z,).

Remark 4. For all the simulations that we have performed, the choice of a in agree-
ment with the constraint (20) has always been sufficient to ensure that the constraint (21)

was fulfilled.

We briefly recall some important properties of the relaxation scheme, proved in [44]
for a more general context of Euler system with several pressures. In the following, index
j refers to one mesh cell:

o Ly stability: p!*' > 0 and €*' > 0 Vj;

e discrete entropy inequality:
n+1 n At n n n n
pS;T < pSi — E{(PSU)(()? Z;" Zjn") — (pSu)(0; Z;1"™; Z;™) 15

e maximum principle:

: 1
min(S7_y, S7,S7,,) < 7 < max(S7y, ST, ST ).

3.2 Numerical scheme for the source-term sub-system

The second sub-system (13) corresponds to a system of ordinary differential equations:

(0 Y(r,e)-Y
o=
0 =0

% (p) (28)
% (pU) =0
| 2 (pE) = 0.

12



We first remark that the specific volume and the specific energy are constant, as a conse-
quence it can be written in an equivalent manner:

(0 Y(7(0),e(0)) = Y(t)

O (ol =0
0
T
O ety =0

(29)
(U(t) =0

\

Obviously, when the parameter \ is constant, system (29) can be integrated exactly. Thus,
in system (29), A(¢) is replaced by its initial value A(0), and the approximate solutions for
the fraction are then computed as the exact solutions of the approximated sub-system:

0 _ Y(7(0),e(0)) - Y (1)

(30)

For an initial condition given by the value at time t", the final approximation at time
t" Tl =" + At" then reads:

— A" — A"
() = v () e A 4 Ty (1 e A,
P+ = p(t") (31)
Uttty = U(tn)
e(t™t) = e(t").

Remark 5. [t can easily be checked than when dealing with instantaneous thermody-
namical relazation, A(0) — 0, the scheme gives Y (t"*1) — Y (t"). The associated ther-
modynamical states then correspond to the states that maximize the mixture entropy at
(1,e)(t"). When Y (t") €]0,1], the pressure, temperature and chemical potential equilibria
are ensured.

Remark 6. The update formula (31) for the fraction Y (t"*1) is a barycenter between
Y (t") and Y (t"). Hence, provided that Y (t") and Y (t") lie in [0,1]3, Y (t"*1) also lies in
[0, 1]3.

13



4 Approximate solutions of Riemann problems

In this section, the numerical schemes of section 3 are assessed by the mean of Riemann
Problems. For that purpose, Stiffened Gas EOS and the LuT of section 2 have been
used. Considering the consistency of the schemes or the asymptotic rate of convergence,
it could be sufficient to focus on Stiffened Gas EOS. Nevertheless, verification procedure
can be seen as an unbiased tool to compare numerical schemes with respect to a known
reference-solution. Different aspects can thus be compared as: the accuracy with respect
to the mesh-size, the accuracy with respect to the CPU-time -which is very important for
industrial applications-, the behavior for canonical solutions as isolated waves.

In the following, several Riemann problems are considered for the model of section 1.
They are only composed of contact waves and shock waves. As depicted on figure (2), we
consider: a ghost wave for the field U — ¢, a contact wave U and a shock wave U + c.
Depending on the test case, the contact wave U and the shock U + ¢ may be ghost waves in
order to study the accuracy of the schemes for isolated waves. The analytical rarefaction
waves are far more complex to evaluate with accuracy when using the LuT, as depicted
in appendix B. We do not consider these regular waves in the sequel.

Considering that the model of section 1 possesses a convective part and source terms
that bring the system back to the thermodynamical equilibrium, “out-of-equilibrium” Rie-
mann problems -with A\ — oo- and “at-equilibrium” Riemann problem -with A\ — 0- are
proposed. For out-of-equilibrium Riemann problems, only the convective part of the nu-
merical procedure is considered. For the latter, the analytical solutions of the Riemann
problem are computed using the mixture EOS for Y = Y. In the simulation, we apply
the whole scheme of section 3 based on a Lie-splitting: we first account for the convective
terms with an out-of-equilibrium mixture EOS, and the thermodynamical equilibrium is
then enforced through the source terms. The aim of these tests is to check the conver-
gence of the relaxation approach for the simulation of cases where the mixture EOS is not
regular (in particular the sound speed of the mixture EOS at-equilibrium).

The general setting of the Riemann problems is the following, see figure (2). We con-
sider the one-dimensional domain x € [0 m, 1 m| and the initial discontinuity is located at
g = 1/2 m. This domain is discretized using uniform meshes. The exact solution consists
in the left and right initial states, respectively denoted by 1 and 3 on figure (2), separated
by a uniform intermediate state, denoted by 2 on figure (2). When two ghost waves are
imposed, the state 2 obviously coincides with the state 1 or 3. For each EoS, Stiffened
Gas or LuT, we can compute the analytical solution of the Riemann problem. In the case
of the LuT EoS, the initialization of each state must be done carefully because the LuT is
defined on the (P,T)—plane and the use of an other plane may lead to a loss of accuracy.
This is obviously not the case for Stiffened Gas EoS. The method used to compute the
analytical solutions of the Riemann problem is classical. Several different test cases have
been considered. The table 1 sums up their main characteristics and the initial data for
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each test case are reported in appendix D.

The analytical solutions are then used to compute the relative L'-error of the numer-
ical approximations obtained with the different schemes. For an approximated solution
parrror and an exact solution W since the mesh size is uniform, the relative L'-error
is computed at time " on the whole mesh as:

Z@' ‘\Ij?pprox,n _ \I;ezact(xi’ tn)‘
Zi |\I;exact(xi, tn)| ’

where x; is the barycenter of the cell 2. Obviously, when ). |0 (z;, t")| = 0 this relative
error is meaningless and we then consider the mere L!-error:

D — e g 7).
%

u+c

Figure 2: Riemann problem with one intermediate state; U-C: ghost wave; U: contact
wave; U+C: shock wave

§ | Waves | Eq. ? | EOS | Initial states Left/Right | Data
411 C+S No SG liq. + vap. / liq. + vap. D.1
411 C+S No LuT liq. + vap. / liq. + vap. D.1
421 C+ S Yes LuT liq. + vap. / liq. + vap. D.2
4.3 C Yes LuT liq. / lig. + vap. D.3
4.3 S Yes LuT liq. / lig. + vap. D.4

Table 1: List of the presented test cases. In the second colmun, “C” stands for contact and
“S” for shock. The third column "Eq. ?” specifies if the EOS is at equilibrium (“Yes”),
with A — 0, or out-of-equilibrium (“No”), with A — 4o00. The fourth column recalls
the nature of the initial states (liquid, vapor or mixture). The last column refers to the
appendix where initial data are given.
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4.1 Out of equilibrium test cases for the Stiffened Gas EOS and
the LuT

In this section, we investigate the behavior of the three schemes of section 3.1 for Riemann
problems involving the out-of-equilibrium EOS. For both test cases we focus on the con-
vective part and the source terms are not accounted for, i.e. A — oo. The first Riemann
problem is based on the Stiffened Gas EOS, whereas the second one involved the mixture
EOS using the LuT. Since these two Riemann problems only involve a contact wave and a
shock wave, it is possible to choose the same left states and the same intermediate states.
The right states have then been chosen so that the right densities are equal. Obviously,
since the Stiffened Gas EOS and the LuT are different for the right pressures, the right
velocities and the shock speeds are different.

We first want to point out that VFRoe-ncv scheme fails during the very first iterations
on the test case with the LuT. lie outside the domain of definition of the LuT. section 2.
Rusanov scheme and the relaxation scheme are not subject to these drawbacks and are
thus more robust while using the LuT. As a consequence, only Rusanov scheme and the
relaxation scheme have been used with the LuT in the following. For the Stiffened Gas
EOS, the three numerical schemes have been tested.

4.1.1 Asymptotic rate of convergence

The convergence curves at time t.,,q = 2.5 107* s are plotted on figure (3a) for the Stiffened
Gas EOS and on figure (3b) for the LuT. Since we are dealing with Riemann problems
that involve linearly degenerate waves and genuinely non-linear waves, the asymptotic rate
of convergence should be 1/2. Indeed, this order 1/2 is reached for the volume fraction
a (the behavior is the same for the three fractions) on the finest mesh for all schemes in
both cases: all the other quantities will reach the same order with finer meshes.

When focusing on the Stiffened Gas test case (see figure (3a)), the relaxation scheme
and VFRoe-ncv scheme have very similar behaviors and they are less diffusive than Ru-
sanov scheme. This can be observed with the results for the fraction a. Considering the
analytical solution, the fraction does not depend on the genuinely linear waves and it trav-
els with the velocity of the contact wave which is equal to 1 m/s in our case (see appendix
D.1). Hence at time t¢,q = 2.5 10~* s, the initial discontinuity on o has covered a distance
of L =1 X tepg = 2.5 107* m. As long as the size of a cell of the mesh is greater than L,
the approximated contact will remain in the same cell during the simulation ¢ € [0, tenq).
So that the relative error with respect to the exact solution will not vary a lot. Since the
logarithm (base 10) of L is equal to —3.6, this explains the constant relative error for a on
the coarse meshes on figure (3a) (i.e. for abscissa greater than —3.6). The same behavior
occurs for the LuT test case with the relaxation scheme on figure (3b). This behavior is
not observed here for Rusanov scheme because of its high level of numerical diffusion on
the contact waves.

16



T T
+ = P rusanov | + = P rusanov

+= — urusanov += — U rusanov

+ = rho rusanov + = rho rusanov
|~ — alpha rusanov _» |+ = alpha rusanov
e—= PrelaxCC e—= PrelaxCC

e—e urelaxCC o—e urelaxCC
e— rho relaxCC 1 e— rho relaxCC
e—e alpha relaxCC e—e alpha relaxCC
X-+X P VFRoe R Order 1/2

%X u VFRoe

XX rho VFRoe

- -x alpha VFRoe
Order 1/2

(a) Stiffened Gas test case. (b) LuT test case.

Figure 3: Convergence curves for the Riemann problems out of equilibrium: logarithm of
the relative L' —error versus the logarithm of the mesh size with uniform meshes containing
from 500 to 250 000 cells.. The error is plotted for the approximate solutions obtained
with the different schemes and for P, U, p, a.

4.1.2 Accuracy and efficiency

Due to our choice for the analytical solutions, the profiles for P, U and « along the domain
are uniform on each side of a traveling discontinuity:

e P and U only jump across the shock wave;
e « only jumps across the contact wave.

On the contrary, the density p has two jumps, one across the shock wave and one across
the contact wave. Preservation of pressure or velocity through the contact wave is a well
known problem; see for instance [45]. Moreover, it has been shown in [46] that preser-
vation of constant values through a contact wave requires some constraints on the EOS
depending on the numerical diffusivity of the numerical method. Here, due to the form
of the mixture EOS of the studied model, it is not possible to get the same behavior on
the approximated solutions for the contact wave, at least on coarse meshes. Indeed, U
and P present spurious waves at the location of the contact wave. Even if these spurious
waves tend to vanish when the mesh is refined (approximate solutions converge towards
the analytical solution with [U] = [P] = 0 in the contact wave), the accuracy is influenced
by these spurious waves. These waves can be observed on figure (8) of section 4.3.2.

For the two test cases, see figures (3a) and (3b), VFRoe-ncv scheme and the relaxation
scheme provide a better accuracy than Rusanov scheme, at least for the density and the
fractions, which strongly depend on the contact wave. The accuracy on the pressure and
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on the velocity is only slightly improved for coarse meshes. Nevertheless, this improvement
increases when the mesh is refined. This is due to the low velocity of the contact wave
(1 m/s) and is related to the remark of the previous section. Indeed, as soon as the mesh
is fine enough to provide an accurate approximation of the contact wave, the accuracy on
pressure and the velocity increases because the spurious waves described above tend to
vanish rapidly.

For the LuT test case, see figure (3b), we observe similar behavior: the relaxation
scheme is far better than Rusanov scheme for the fractions and the density and the error
is comparable for on U and P on coarse meshes. Moreover, the accuracy improvement
with the relaxation scheme becomes more and more important when the mesh is refined.

On the figures (4a) and (4b), the error is plotted as a function of CPU-time in order to
compare the schemes in term of efficiency. For a given CPU-time, the relaxation scheme
gives the best accuracy for both EOS. When focusing on the Stiffened Gas test case, the
relaxation scheme and VFRoe-scheme have a very similar efficiency (see figure 4a), with
a slight advantage for the relaxation scheme. Indeed, the computation of VFRoe-ncv flux
requires an additional thermodynamical computation. In the LuT test case, the efficiency
gain with the relaxation scheme compared with Rusanov scheme is even more significant
than in the Stiffened Gas test case. With the LuT, the number of thermodynamical com-
putations is the same than with the stiffened gas EOS but each one is more CPU-time
consuming. Rusanov scheme and the relaxation scheme require exactly the same calls to
the LuT, but the gain in accuracy with the relaxation scheme allows to use coarser meshes.
As a consequence, a given accuracy is then achieved with far less calls to the LuT with
the relaxation scheme and CPU-time is thus saved.

4.2 At equilibrium test case: convection and relaxation effects

In this paragraph, a Riemann problem assuming thermodynamical equilibrium is consid-
ered (see appendix D.2). This means that the source terms are now taken into account: for
each time-iteration, after the convection step, the fractions relax towards the equilibrium.
We want to assess here the convergence rate of the Lie splitting described in section 3 with
a source-term step that ensures the instantaneous relaxation towards the thermodynami-
cal equilibrium. The Riemann problem cosidered here is composed of a contact wave and
a U + ¢ shock wave. The convergence curves are presented on figure (5).

Since the numerical schemes used for the convection step have an asymptotic rate of
convergence of 1/2 (see section 4.1.1), since the source terms are discretized using a first
order scheme in time and since the Lie splitting is a first order splitting, the asymptotic
rate of convergence of the whole fractional step algorithm should be 1/2. This order can be
observed for Rusanov scheme when considering the fractions and the density. Nevertheless,
the pressure and the velocity have not yet reached this asymptotic rate of convergence.
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(a) Stiffened Gas test case. (b) LuT test case.

Figure 4: Comparison of the CPU-time for Riemann problems out of equilibrium with
uniform meshes containing from 500 to 250 000 cells: logarithm of the relative L'—error
versus the logarithm of the CPU-time. The error and CPU-time are plotted for the
approximate solutions obtained with the different schemes and for P, U, p, a.
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Figure 5: Convergence curve for the Riemann problems at equilibrium computed with the
LuT: logarithm of the error versus logarithm of the mesh size. Four quantites are plotted:
P, U, p, a for two different numerical schemes (Rusanov and relaxation). The meshes
contain from 100 to 200 000 regular cells.

When turning to the numerical approximations obtained with the relaxation scheme, none
of the variables has reached 1/2, even if the slopes of the curves for the density and the
fractions tend to decrease on fine meshes.
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4.3 At equilibrium test cases with a pure liquid initial state

Industrial applications provide a lot of situations in which vaporization occurs in a pure
liquid domain. One is thus faced with the problem of computations that involve a pure
liquid domain and a domain in which liquid and vapour coexist. We thus propose here
Riemann problems at thermodynamical equilibrium, with a transition from pure liquid
towards a mixture of liquid and vapour. Two Riemann problems are considered with a
liquid left state and a right state composed of a mixture of liquid and vapour. Each of
these two Riemann problems involves only one wave (see appendixes D.3 and D.4):

1. for the first one we only consider a U + ¢ shock-wave;

2. for the second one we only consider a contact-wave.

The two other waves are then ghost waves. These cases are difficult to handle for the
numerical schemes because the liquid thermodynamical behavior is very different from
the mixture one. The transition through the single wave is thus associated with strong
variations of the physical quantities, in particular considering the sound speed.

4.3.1 Shock-wave with a liquid left initial state

+ = P rusanov

+— — U rusanov
-1{+ — rho rusanov
+ — alpha rusanov
e—e PrelaxCC
o— urelaxCC
e— rho relaxCC
-2 | = alpha relaxCC
Order 1/2
Order 1

s i \ \ | \ | L]
5 45 4 35 3 25 2

Figure 6: Convergence curve for a shock-wave: logarithm of the error versus logarithm of
the mesh size. The left initial state is a pure liquid state and the right initial state is a
mixture of liquid and vapour, both are at thermodynamical equilibrium. Four quantities
are plotted: P, U, p, a. The meshes contain from 100 to 150 000 regular cells.

For this test case, the relaxation scheme was not robust enough and the computation
stops in the very first iterations. In fact, in order to compute the fluxes between two cells,
denoted by the subscripts r and [, the relaxation scheme uses an intermediate state with
a modified pressure II* computed as:

1
I = %(Ul — Ur) + Q(Hl + HT)
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with the parameter
a’® > max(ﬂ, 2).
T Tr

In the present case, [ is a liquid state and r a liquid-vapour mixture state (see appendix
D.3). Hence ¢;/7; >> ¢, /7., and ¢; /7 is very large, which leads to large parameter a. This
has two drawbacks. First, the time-step is based on the value of a through the spectral
radius and large values of a imply very small time-step. Moreover, since the difference
between left and right initial velocities is not equal to zero, the pressure II* reaches too
large values. Then the balance of the resulting numerical fluxes leads after few iterations
to thermodynamical states that do not belong to the domain of definition of the LuT and

the computation stops.

To overcome these difficulties, we have introduced a “Rusanov switch” into our code
when computing the numerical fluxes with the relaxation scheme. Indeed, if the maximal
eigenvalue computed with the parameter a is much greater than the maximal eigenvalue
computed with Rusanov scheme, the relaxation numerical fluxes are replaced by the nu-
merical fluxes obtained using Rusanov scheme. This modified version of the relaxation
scheme is denoted in the following by the relaxation scheme with Rusanov switch. For the
present test case, this switch only occurs on few cell-interfaces around the contact wave.
For instance, for a mesh with 1000 cells, Rusanov switch only occurs for the interface at
the middle of the domain during the first 12 time iterations.

The relaxation scheme with Rusanov switch is robust enough for the present test case.
Since the switch only occurs on few cell-interfaces the accuracy of the relaxation scheme
with Rusanov switch remains more accurate than Rusanov scheme. On the next test case,
a comparison of Rusanov scheme, the relaxation scheme and the relaxation scheme with
Rusanov switch is proposed.

4.3.2 Contact-wave with a liquid left state

For this test case (see D.4), the "relative” velocity at the shock location remains small
and the relaxation scheme -without Rusanov switch- is robust enough. We are thus able
to compare the results obtained with: Rusanov scheme, the relaxation scheme and the
relaxation scheme with Rusanov switch. On figure (7), the error between the numerical
approximations and the analytical solution is plotted with respect to the mesh size. The
asymptotic convergence rate of % is recovered for the finer meshes, even if Rusanov scheme
needs very fine meshes to provide good approximations of the velocity. Moreover, the re-
laxation scheme enables a great improvement of the accuracy compared with Rusanov
scheme: a little more than one order of magnitude on each quantity (see figure (7)). In-
deed, Rusanov scheme creates large spurious waves around the contact wave as illustrated
on figure (8). Some pressure oscillations are also created with the relaxation scheme and
relaxation scheme with Rusanov switch, but their amplitude is a hundred times smaller.
This behaviour is classical and it has been reported in [46].
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Figure 7: Convergence curve for a contact-wave: logarithm of the error versus logarithm
of the mesh size. The left initial state is a pure liquid state and the right initial state is a
mixture of liquid and vapour, both are at thermodynamical equilibrium. Four quantities
are plotted: P, U, p, a. The meshes contain from 100 to 150 000 regular cells.
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Figure 8: Pressure as a function of x at t.,q = 2.5 107% s for a mesh with 5000 cells. The
contact wave remains close to x = 0.5 and spurious numerical waves are created on both
sides of the contact wave.

When focusing on the comparison of the relaxation scheme and the relaxation scheme
with Rusanov switch, one can evaluate the loss of accuracy due to the switch with figure
(7). It can be noted that the introduction of the switch reduces the accuracy of the
relaxation scheme on coarse meshes but that this loss tends to vanish when the mesh
is refined. Indeed, Rusanov switch only occurs on a few cell-interfaces and the loss of
accuracy concerns an almost constant number of cell-interfaces whatever the mesh size
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is. Hence, the more cells there are in the whole mesh, the less significant is the loss of
accuracy due to Rusanov switch.

4.3.3 Conclusions for the at equilibrium test case with a liquid left state

In all cases, we have not encountered a loss of the asymptotic rate of convergence despite
the sudden transition from liquid to two-phase flow. Nevertheless, the relaxation scheme
is not always robust enough. This is the case for the shock-wave case proposed above. In
order to tackle this loss of robustness the relaxation scheme with Rusanov switch as been
tested when the parameter a arising from the Whitham condition becomes too high. This
modification is applied only on a few cell-interfaces, the loss of accuracy is thus limited to
coarse meshes, as it has been illustrated with the contact-wave case. However, it should
be noted that even on very coarse meshes, the relaxation scheme with Rusanov switch
provides a better accuracy than Rusanov scheme.

4.4 Conclusions

e When considering Stiffened Gas equation-of-state, the relaxation scheme is as ac-
curate and efficient as VFRoe-ncv scheme. Unfortunately, VFRoe-ncv scheme de-
scribed in section 3.1.2 is not robust enough when using the LuT. For the LuT, using
an accurate scheme as the relaxation scheme enables to consider coarser meshes than
with Rusanov scheme. This leads to fewer computations of the thermodynamical
quantities for a given accuracy, and thus to far less expensive computations of the
approximated solutions.

e Nevertheless, for the most severe cases, the relaxation scheme described in section
3.1.3 may fail. The relaxation scheme with Rusanov switch is robust enough for such
cases and enables to keep a correct accuracy level.

e Verification test-cases are possible even with a complex equation of state and it allows
to assess the behaviour of different schemes for canonical situations. The test-cases
proposed above involve sudden phase transition from liquid to a two-phase flow,
and the source terms have been accounted for considering equilibrium situations.
Indeed, analytical solutions of the system with non-instantaneous thermodynamical
relaxation are far more complex to exhibit.
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5 Validation case: study of vaporization near a wall
due to a rarefaction wave

Our model aims to simulate some accidental scenarii, like a LOCA scenario. The SUPER-
CANON experiment [40] is an experimental device representative of this scenario: a tube
contains pressurized liquid water at 7' = 573.15K and P = 150 bar. The surronding room
contains air at atmospheric pressure P = 1 bar. The cap is opened at the beginning of
the experiment. The pressure then drops until a value close to the saturation pressure at
T = 573.15K. This first pressure wave is a rarefaction wave that travels with a high speed
in the liquid. When the rarefaction wave reaches the closed-end of the tube, vaporization
begins and is strongly influenced by out of equilibrium effects. In the model of the sec-
tion 1, these effects are ruled by the relaxation time A chosen by the user. A study has
been realized in [25], using toy laws for the relaxation time: it appears that the arrival of
the first rarefaction wave on the wall and the first vaporization of the liquid due to the
pressure drop are very sensitive to the choice of the closure law for A. Experiments [40]
also present various behaviors for a same experimental set up, which might be explained
by the quantity of impurities in the liquid.

In this last section, we study a more simple case: vaporization near a wall due to a
sudden pressure drop in the liquid. The aim is to focus on two types of relaxation time
laws: constant values for this characteristic time scale as well as closure laws based on the
nucleation theory have been tested. For the latter, we study a simplified model with only
two parameters.

5.1 Presentation of the test case

We consider a tube filled with liquid water at P=150 bar and T=593.15K, closed on the
left and open on the right (see figure 9). The initial fluid velocity is imposed at +10
m/s: it induces a depressurization wave at the wall, which propagates towards the right
outlet. When pressure decreases at the wall, vapor appears : the same phenomenon can
be observed in the SUPERCANON experiment. This case can also be schematic of what
happens downstream a valve closed abruptly in a pipe in which flows high pressurized water

P=150bar; T=593.15K

u=10m/s
| | x (m)
0 1

Figure 9: Sketch of the validation test case: depressurization wave in out-going liquid
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5.2 Simple model for relaxation time based on Nucleation The-
ory
Nucleation refers to the apparition of the first new phase nuclei during a first order phase

transition. A classical assumption (see for instance [37]) is that the bubble nucleation rate
J (the number of bubbles created per unit time in unit volume) follows an Arrhenius law:

E,
J = Jyexp (— k;BT) , (32)

where kg is the Boltzmann constant, 7" is the liquid temperature, .Jy is a prefactor and E,
is an activation energy. From this nucleation rate J, we propose a simplified model for a
time scale t,,. characterizing the nucleation. From assumptions made for instance in [3§]

or [39], we define:
o Qg 3 (pEa

167®
where E, is defined by (85): E, = ﬁ, and 7 is estimated with the IAPWS 94 cor-
relation [47]. ¢ € [0, 1] depends on the nucleation type : homogeneous nucleation occurs
when ¢ = 1; whereas heterogeneous nucleation occurs when ¢ is in ]0,1[. The whole
approach to get this simplified model as well as the chosen correlation for ~, are described

in appendix C.

In the simplified model (33), we have only two parameters to define: aq in (Pa.s),
homogeneous to a dynamical viscosity, and ¢ € [0, 1]. Even if it is not a complete realistic
model, it describes two important physical effects :

e Thanks to the Arrhenius law, heteregeneous nucleation only begins if a minimal
energy barrier is reached;

e Dependance on reflects a physical behaviour which seems relevant: when

P3
AP — 00, the return towards thermodynamical equilibrium becomes instantaneous;
whereas when AP ~ 1, the return towards equilibrium may require a finite time,

which enables the persistence of out-of-equilibrium states for small AP.

5.3 Numerical results

In the following simulations, the domain is [0, 1], the mesh contains 5000 cells and the
final time is 10~3s. Empirically, we observe that, according to the CFL condition and the
mesh size, the time step is almost constant, around 5 10~%s.
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5.3.1 Constant relaxation times

Constant relaxation times have first been considered. Although they are probably not
physically relevant, they enable to illustrate how out of equilibrium effects can change or
not the solution.

The difference between pressure (P) and saturation pressure (Py,) near the wall is
plotted on figure 10. Because of water moving to the right of the tube, a rarefaction wave
appears at the wall, travelling to the right: pressure then decreases, until it reaches the
saturation pressure. After that, vaporization may occur.
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Figure 10: Difference between the pressure and the saturation pressure near the wall as
a function of time (s) for several constant relaxation times. The second window inside
the first graph shows a zoom on the beginning of the simulation for the smaller relaxation
times.

When relaxation time tends to zero (case ‘A = 1073 ), thermodynamical equilibrium
is instantaneously reached: it means that P = P,,; during the whole simulation. In fact,
as soon as the relaxation time is small enough, pressure almost directly decreases to reach
the saturation pressure and remains constant at this value during the whole simulation.
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However, when the relaxation time is high, a pressure undershoot appears at the very
beginning of the simulation: the pressure decreases below the saturation pressure, which
postpones the beginning of the vaporization. The higher A is, the more the pressure
decreases. Indeed, high relaxation times prevent from reaching the thermodynamical
equilibrium: the vaporization can not occur and the flow remains liquid. Without phase
change, the only possibility to release energy of the rarefaction wave for the system is to
reduce the pressure. After the first brutal drop, pressure increases rather slowly towards
the saturation pressure, depending on the time scale .

On figure 11, pressure and volume fraction are plotted with respect to = at the end
of the simulation (+ = 1072 s). For small relaxation times, vapor creation is located at
the left side of the tube, whereas vapor is more spread throughout the tube when the
relaxation time is high. The pressure undershoot is more important when A is high.
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Figure 11: Pressure (Pa) and volume fraction as a function of x (m) for several constant
relaxation times at the end of the simulation (t=1073 s).
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5.3.2 Relaxation times based on nucleation theory

In this part, we take A = t,,. as expressed by (33). Two parameters have to be chosen:
ag and .

e For this first study, we fix ag = 1.7 10° Pa.s. This choice is not based on physical
argument. Remembering the order of magnitude of AP in the simulation of section
5.3.1, this value of a( empirically gives A with the same order of magnitude than the
time step. The idea here is to study the behaviour of the exponential term in ,,,.

e Several ¢ have thus been tested: p € {1; 6.51073; 51073; 3.31073; 5107%; 1 107}.
We recall that homogeneous nucleation occurs when ¢ = 1; when heterogeneous
nucleation occurs, ¢ is in |0, 1].
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Figure 12: Difference between the pressure and the saturation pressure near the wall as
a function of time (s) for several nucleation relaxation times, with fixed ay and variable
. The more ¢ is closed to 0, the more nucleation is facilated. The second window inside
the first graph shows a zoom on the beginning of the simulation for relaxation times with
@ — 0.

On figure 12, the difference P — Py, (Pa) is plotted as a function of the time ¢ (s)
near the wall. A violent pressure undershoot below the saturation pressure occurs at the
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very beginning of the simulation. When nucleation is completely homogenenous (¢ = 1),
the pressure stays almost constant and far below saturation pressure: this case is very
similar to the case with constant and very high relaxation time (‘\ = 1 ', see figure 10).
With a homogeneous nucleation, F, is thus high and does not allow to create bubbles.
The parameter ¢ that tends to decrease this energy then plays an important role. The
magnitude of the undershoot slightly vary with ¢: the more heterogeneous nucleation is
(¢ — 0), the lower the pressure undershoot is. In fact, the parameter ¢ has a greater
influence on the duration of the pressure undershoot than on its magnitude.

On figure 13, pressure and volume fraction are plotted at the end of the simulation
with respect to x: by comparison with the simulations with constant A, the stiffness of the
Arrhenius term in t,,. (33) leads to complex behaviors for the pressure drop. Some oscil-
lations occur for x ~ 0.05 m, around the frontier between the pure liquid domain and the
two-phase domain. These oscillations are numerically stable and tend to vanish when the
mesh is refined. Last, it can be observed that the relaxation time law based on nucleation
theory modifies the vapor creation: contrary to constant relaxation times (see figure 11),
a greater amount of vapor appears in a more localized area close to the wall (see figure 13).

Finally, changing the relaxation time laws leads to a change of the thermodynamical
path towards thermodynamical equilibrium. Several behaviors of the mixture are observed
depending on the chosen relaxation time law. They are summed up on figure 14:

e an initial strong pressure undershoot without return towards equilibrium before the
simulation ends (‘A =1 8" or ‘Nucleation, ¢ = 1.0");

e a mixture staying almost at thermodynamical equilibrium during the whole simula-
tion (‘A = 5.0 1078 8”);

e an initial strong pressure undershoot with smooth return towards thermodynamical
equilibrium (‘A = 1.0 107° 8’);

e an initial strong pressure undershoot with jumps throughout T-P plane (‘Nucleation
with ¢ = 5.0 107" or ‘Nucleation with ¢ = 1.0 10~%).

Even if our simplified nucleation model is not completely physical in its current form,
this study shows how strongly relaxation time laws can modify mixture behavior through-
out the simulation.
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Figure 13: Pressure (Pa) and volume fraction as a function of x (m) for several relaxation
times based on nucleation theory at the end of the simulation (=102 s). The two smaller
windows inside the main graph are two zooms: one on the smaller x, the other on the
smaller volume fractions.

Conclusion

The homogeneous model of section 1 has been used with a complex equation of state
based on the look-up table (LuT) of section 2. This LuT allows to save computation time
with respect to the direct use of the IAPWS-97 formulation (computations with the LuT
are 90 times faster) and provides more realistic values than a classical analytical EOS as
the Stiffened Gas on a wide range of pressure and temperature. In a numerical point of
view, the relaxation scheme proposed in [32] has been implemented and its behaviour has
been assessed on different Riemann problems involving both a Stiffened Gas EOS and the
look-up table described in section 2. This relaxation scheme provides a great accuracy and
a very satisfactory robustness, which are both mandatory when using industrial look-up
tables. In section 5, the influence of the time-scale \ that rules the return to the ther-
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Figure 14: Thermodynamical path within the time near the wall is plotted in the Temper-
ature (K) - Pressure (Pa) plane. The initial point for all curves is on the hand-right corner
(denoted by the circle I). The thermodynamical equilibrium (denoted by the circle F) is
the point that all simulations should reach for large enough time, provided that A > 0.
If A\ = 0, the final point is the point P = 9.4810° Pa T = 589 K at the bottom of the
figure. Here some simulations are still out of thermodynamical equilibrium at the final
simulation time t = 1073 s. The paths towards thermodynamical equilibrium depends on
the characteristic time-scale \. Arrows show the travel directions in the T-P plane along
the simulation time.

modynamical equilibrium has been investigated: various values of A have been compared
to a very simple - yet non-linear - model based on the nucleation theory. The results are
very interesting and this work should be pursued by performing some comparisons on the
basis of relevant out-of-equilibrium experiments. Moreover, the nucleation theory includes
surface tension effects and a further improvement of the present work could be to include
in the model both the interfacial area and the surface tension effects.
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Appendix

A Building of the homogeneous model

In this section, we build step by step a homogeneous model to describe a mixture of
liquid and vapour, by considering at first the extensive variables [48], as made in [16, 19,
20, 21, 22]. The only equilibrium assumption in the model is a kinematic equilibrium.
In particular, the model enables to describe the mixture out of the thermodynamical
equilibrium. The return to equilibrium is ensured by a relaxation process in agreement
with the second law of thermodynamics.

A.1 Extensive description of the system

Three extensive quantities are needed to describe a two-phase mixture [48]. Let us con-
sider a volume V (in m?) of the mixture, corresponding to a mass M (in kg) and an
internal energy £ (in J). Within this mixture, each phase k = [, v is described with the
same quantities: a volume Vj (in m?), a mass My, (in kg) and an energy & (in J).

Some assumptions are made:
(H1) The geometric repartition of the phases inside the volume V is not taken into account.
(Hy) The surface tension is neglected.

(H3) The whole volume V is occupied by some fluid (vacuum occurrence is not considered
here).

(H4) The phases are not miscible.

With these assumptions, we can easily express the conservation of volume, mass and
energy as:

vV=vi+V, ; M=M+M, ; E=&+E,. (34)

The hypothesis (H3) and (H4) are mandatory to write the first equation of (34) on the
volumes. When dealing with the miscible case (i.e. when (Hy) is not fulfilled), one can
for instance make the assumption that the two phases occupy the whole volume. In such
a case, the first equation of (34) is replaced by two equations describing the equality of
the volumes, V = V, = V,, which leads to another system of equations. This case does
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not enter the scope of the present work and it has been investigated in details in [17, 18, 49].

The aim is now to describe the evolution of this system in accordance with the first
and second laws of thermodynamics and Newton’s laws of dynamics. We proceed in two
steps by adopting a lagrangian point of view. In section 1.2 and 1.3 we first consider the
thermodynamical behavior of a fixed quantity of mixture. For this purpose we follow a
classical approach [21, 22| based on the evolution of a closed and isolated mass of mixture
in agreement with the second law of thermodynamics. Then, in section 1.4, we account
for the evolution of this mass of mixture within the whole flow by applying the first law
of thermodynamics and Newton’s law.

A.2 Thermodynamical quantities
A.2.1 Kinematic equilibrium

The kinematic equilibrium between the phases is assumed, i.e.:
(Hs) both phases are convected with the same velocity U.

Thanks to this assumption of equal velocity (U, = U, = U), the dynamical behavior of
the system can be described by modelling the behavior of an element (V, M, &) of the
mixture along a streamline. In particular, since U, = U, the derivative along a streamline
of phase k of a quantity P,

dp® = (0P + Ux0,P) dt,

corresponds to the same operator for both phases. So that the derivative along a streamline
does not depend on the indice k:

dp® = (0,9 + U, D) dt = do. (35)

This last equation (35) is a key relation which will enable us to simply derive the model.

A.2.2 Phasic thermodynamical quantities

In order to close the system, we need to define a complete EOS for each phase. For this
purpose, we assume that each phase is described by an extensive entropy (Wy) +— Sk(Wk)
(in J/K), where we have set Wy = (Vg, My, E). Some hypotheses are needed on Sy, to
guarantee usefull properties for the final model:

(Hg) (Wy) = Sp(Wy) is C2.
(H7) (W) = Sp(Wy) is concave.
(Hg) Ya € R—i_,VWk, Sk(aWk) = aSk(Wk)

oS},
H. -
( 9) \V/Wk, 85k >0
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In agreement with the Classical Irreversible Thermodynamics (CIT) theory, the classical
Gibbs relation holds for each phase:

deké’k = dkgk + Pkdkvk — //l/kdk./\/lk- (36)
Thanks to (35), it can be rewritten as:
deSk = d(c;k + Pkdvk — ,udek. (37)

The extensive entropy Sy using the variables (Vg, My, &) is a complete EOS for phase k
when associated with the Gibbs relation (37). This means that all the thermodynamical
quantitites can be computed thanks to the derivatives of Sy:

P, 05

e _ TR 38
T. OV, My.Ex (38)
1 0Sy,
- ZER 39
T o0& VM, (39)
ik Sk,
7r 40
T, oM, Vi £ (40)

where Py is the pressure of phase &k (in Pa), T} (in K) is the temperature of phase k, and
pr (in J/kg) is the Gibbs free enthalpy of phase k.

A.2.3 Thermodynamical quantities of the mixture

We note W = (V,, My, &, V,, My, E,) = (W, W,). Thanks to (H,), we assume that the

entropy of the mixture S is:
(W) = S(W) = Sy (W) + Su(Wy) (41)

This mixture entropy should be defined using another relation if surface tension (or other
effects, see [7]) had to be accounted for.

We define H (M), a subset of (R* ) so that all the states W € H(M) have the same
total mass M:
H(M) ={W € (R} ; M+ M, = M}.
If the entropy S is concave thanks to the definition (41) and properties (Hs) and (Hy), it
can be proved that S is strictly concave on H(M) (see [18, 21, 22]).

Using the Gibbs relation for each phase (37), the definition of the mixture entropy (41)
and relation (35), a Gibbs relation for the mixture can be easily exhibited:

1 1
IS = dS +dS, = — d& + = dE,
T Ty (42)
v By Py B, - Pram
T T, " T T, ’
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Dy

Thanks to the relation d®, = ®&d ( T

P
) + Ekd(b Gibbs relation (42) for the mixture can

be written in the form:

o gl gfv 1 Vl -Pl V’U PU
ds = 5E+8T)%+< + 3 )dv
My My,

y
M MTM

+ e d (‘Zf) +5ﬁd (%) (43)

Vl Pv Vv
V Ld V—d|—
- vga(3) vra(5)
Hi Ml //Jv MU
- M=d M
E(WJ TL(M)
Then, using relation (43), we can identify a mixture pressure P, a mixture temperature T’
and a mixture Gibbs free enthalpy u:

===t (44)

=2 (45)

p_ Mo Mo
T~ ML MT, (46)
and we thus get the Gibbs relation:
dS — % (dc‘f + PdY — pdM)

& PV w o M

= 8 d —d | — —M=d|—
7 (6 Vr (V> M M) (47)

&J P Vv Moy Mv

The terms on the left-hand side of this relation define the evolution of the mixture quan-
tities and are related to the interaction with the surronding fluid, whereas the terms on
the right-hand side are exchange terms between the phases. In order to give a complete
time-evolution model of our system, we need to express the derivative terms of (47) in
terms of W.

A.3 Modelling exchange terms between the phases

Let us first focus on the exchange terms in (47). We thus consider an isolated amount of
mixture so that: d€ = dV = dM = 0. In other words, we consider a subset D(V, M, §)
of H(M) so that all the states W € D(V, M, £) have the same total volume V), the same
total mass M and the same total energy &:

DV, M.E) ={WeHM); Vi+V, =V &+ =E}.
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In order to respect the second law of thermodynamics, the mixture entropy S of such
an isolated system must increase. As a consequence, the models for d (Vy./V), d (M /M)
and d (&;/€) must be chosen so that dS > 0.

The Gibbs relation (47) becomes for such an isolated system:

1 5[ Pl Vl 1% Ml
ds = E—d(Z) +vila(2) - mbla(2H
T, (5)”% <V> M, (M)

48)
1 g’U P’U Vv /-'L’U MU (
ceg(G) v (§) e ()
As in [16], we assume that the time-evolution of these quantities are of the form:
( Vi T}k -V
dl =) = dt
(v) ="
M, My, — M,
H, = 49
E) & — &
(3) -

with A > 0. The state W = ()_/l, ML ELYV,, My, S_U_) then corresponds to the state that the
system will asymptotically reach. Let us define W so that models (49) comply with the
second law of thermodynamics.

By differentiating the mixture entropy S with respect to the variable W, we get:
dS = Vw(S)(W).dWw. (50)

Since we have an isolated system, d} = dM = d€ = 0, which implies:
aw = (|Vd 1 , Md M ,Ed & ,
V M E 51
Yo\ wa (Mo ea (& o
i) ma (3 ) #a(3))

From (49), (50) and (51) it follows that:

w:VM$(W;W>ﬁ (52)

Since S is strictly concave on H(M), it is also strictly concave on D(V, M,E). This
property implies that the tangent plane to S at any point W of H(M) is above S:

YWy € H(MY), S(Wo) < S(V) + Vi (S)(W).(Wy — W), (53)
In particular, we can write the concavity condition (53) for Wy = W, which leads to:

Vi (S)(W).(W = W) > S(W) — S(W)
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so that from (52) we get:

15 > (SAV) = SO)

dt. (54)

As a consequence, one possible choice to guarantee the growth of the entropy with the
models (49) is to define the state W as the point which maximizes the mixture entropy

for a fixed (V, M, E):

SW) = max_(S(W)) (55)

Thanks to the strict concavity of S on D(V, M, £), this point exists and is unique. Hence,
with the definition (55) for the state W, the growth of the mixture entropy of an isolated
system is ensured by the models (49).

Moreover, Gibbs relation (48) on D(V, M, £) can be simplified by using relations (34).
Indeed, when focusing on the volume relation in (34), we have:

Sid(3) = 5 (%) - » ()
= S (S0 () =0

Obviously, the same results can be obtained for masses and energies, so that we have
the following relations:

Vl V’u
d(2) = a2
(v %

() e

Eventually, by introducing relations (56) in Gibbs relation (48), we obtain the following
relation on D(V, M, E):

(Lo D)a () v (BB, (Y
: ] ;((Tﬂ TZ?)dd( (gﬁ){))}(z’ r)(v) 57)

Since the mixture entropy is strictly concave on D(V, M, E), it possesses a unique maxi-
mum W on D(V, M, £). If this maximum is not reached on the boundary of D(V, M, &),
the derivative of S with respect to V,/V, M;/M and & /€ must vanish at W. The latter
is thus defined by the following relations:

PV, M, &) = P,(V,, My, E,)
(){17'/\417@) = v(]; M ‘(/i) (58)
Ml(Vl,Ml,gl) - MU(V M 5 )

When the maximum is reached on the boundary of D(V, M, ), system (58) does not
make sense since the derivatives of the mixture entropy do not vanish inside D(V, M, &).
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Such situations correspond to single-phase cases for which W; or W is equal to (0,0, 0).

The modelling of the evolution of the phasic volumes, phasic masses and phasic energies
(49) enforces the system to return to the equilibrium state W, which corresponds to the
classical thermodynamical equilibrium state. The latter is defined as the state ensuring
the pressure, temperature and Gibbs enthalpy equilibria (58). It has been shown in this
section that these source terms (49) comply with the second law of the thermodynamics
provided that the relaxation time-scale A is chosen non-negative.

A.4 Dynamical evolution of the mixture quantities

The previous subsection describes a model for the evolution of each phase of an element
(V, M, ) isolated from the rest of the fluid. The interaction between the surrounding
fluid and the the mixture described by the variables (V, M, &, U) is now considered by
using the following classical assumptions:

(Hyp) the mass M is conserved along the streamlines:

dM = 0; (59)

(Hy1) the variation of the volume V is due to the divergence of the velocity field U:

4V = VV,.(U)dt; (60)

(H1z) the variation of the velocity U follows the Newton’s law, considering here that only
the forces due to the pressure are accounted for:

dMU) = =VV,(P)dt, (61)
where P corresponds to the mixture pressure defined by (44);
(Hy3) the first law of thermodynamics applies to the energy &:
d€ = —PdY + Qdt; (62)

it means that the variation of £ is due to the work of the external forces (only the
pressure forces here) and to the heat exchange @ of the system with its surrondings.

Remark 7. Thanks to assumptions (Hyo) and (His3), with Q@ = 0, we have d€ + PdV —
pdM = 0. Hence the general Gibbs relation (A7) reduces to the Gibbs relation for a iso-
lated system (57).
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A.5 The set of Partial Derivative Equations (PDE) in intensive
form

From now the system has been described using extensive variables. Indeed, extensive
variables provide a more comprehensive description of the model. But, since our aim is to
build a set of partial derivative equations, it is convenient to use an intensive description
of the system. In this section, we derive the extensive descritption of the two-phase flow
of the previous sections into an intensive description.

A.5.1 Fractions and phasic specific quantities

The mass conservation assumption (Hjg) enables to define specific quantities (per unit of
mass). The specific volume of the mixture is thus defined as 7 = V/M (in m3/kg), and
the specific energy of the mixture is e = £/M (in J/kg). We recall the notations for the
volume fraction «y, the mass fraction y; and the energy fraction z; of phase k:

Vi My &g
Y, — — (2= R TR 63
k= (Q, Yk, 21) (V7M’5 (63)
The phasic specific volume and the phasic specific energy of phase k are then:
Vi Vi MV Qg
T M T VMM
k
Ex Ex M E 2k (64)
g = —f}— = ——— = —e.
F M, EM; M Yk
The conservation equations (34) become:
l=ag+a, ; 1=y+y ; 1=z+z,. (65)
The thermodynamical evolution equation (49) can be written:
ap — Yk — Yk 2k — 2k
day, = dt; dy, = dt; dz, = dt 66
6773 \ ) Yk \ ) 2k \ ( )

Vi My E

where Yy, = (ag, i, Zx) = (7, U f) denotes the equilibrium fractions.

A.5.2 Specific mixture entropy and Gibbs relation

Let us define the mass M, as M;, = M} I, where I, is equal to 1 kg and M), € Rt —{0}
is dimensionless. By denoting s, the specific entropy of phase k, sy = Si/ M., and by
using the property (Hg), we have:

o (Xe ) S X M) 1o f Xk M 1o (X
\My) M, Iy FAM My, Tk ’ M v
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where X} stands here for (Vy, &). We thus get the link between extensive and intensive

quantities:
X5 1 X5 Se( X, My)
%(Au) H@k<A%’@) M, (67)

The specific mixture entropy can be defined as:

W);ﬁ@Q (68)

VWEH(M>7M>O,S(M M

By using the relation (67) for the phasic entropies we get the expression of the specific
mixture entropy:

SGZ):&M®+SMM> M S | M, Su(WL)

M M M M, "M M,
_ M (X M X
- MM MM, )

The mixture entropy s can finally be re-written using the fractions of phase I:
1— 1—

( 045)77 ( Zz)€>
(I—w)  (1-wu)

In the same way, the Gibbs relation for the mixture can be written using the intensive
quantites:

ap  Z
3(04l7yl7 R, T, 6) = Y8 (—T, —€> + (1 - yl)sv (
U

1 P P P,
ds = Tde—l—TdT-f-T Tj_ﬁ doy

N GRS P () S o
L 1,)" N\ T1,)"

where the mixture temperature and the mixture pressure are:

Slw Si-
Y
>
D
Nl
=
g
™
<

A.5.3 Intensive PDE in a one dimensional framework

The equations (59), (61), (62) can be written with intensive quantities:

dr =7V,.(U)dt
dU = —71V,(P)dt (71)
de = —Pdr + qdt

where ¢ = QQ/M, the specific heat-power is set to zero in the following:

q=0. (72)
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Let us note the mixture density:

p=1/r, (73)
the specific total energy of the mixture:
E=e+|U]*/2, (74)
and the vector gathering the fractions:
Y = (o, 1, 21)" (75)

By using the relation (35), which states that:
d® = (0,2 + U0,®) dt, (76)

it can be shown that the set of derivative equations (71) and (66) lead to the set of partial
differential equations in conservative form:

(0

0
%(py) +8£ (pUY) = pl,
= () + 5= (pU) =0,
ot ox 77
) O (e o (77)
a(PUﬂ‘%(PU +P) =0,

9 (0B) + 2 (U(pE + P) =0,

\

The system (77) is closed with the relations (64), (65), (70), and the source terms are:

I — (041—041 Y — Y Zl—Zz)'

AT X T A

The time-scale A > 0 describing the return to the thermodynamical equilibrium has to be
chosen by the user.

Remark 8. Following the remark 1 of section 1.4, Gibbs relation for intensive quantities

(69) becomes
o ]Dl Pv 22 My 1 1
dS—T(Tl Tv>dal (Tl Tv)dyl+e<Tl Tv> dz. (78)

The mixture entropy s is then convected with the velocity U, and subjected to the source

terms I': 5 5
57 (P3) + 5 (pUs) = pI'Vy (s) (79)

|T,e "
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B Reference solution for a rarefaction wave with the
LuT

Let us consider a single phase flow with a complex EOS, for instance in the form of the
LuT proposed in the article. In the following we deal with a u — ¢ rarefaction wave, but
the conclusions would obviously be the same for a u + ¢ rarefaction wave. For any point
X in a u — ¢ rarefaction wave separating a left state L and a right state R, the Riemann
invariants are constant, which means in our case that:

pr
s* =5t and u*+/ L:u’:. (80)
Py, pC(SO’ P )
When using simple analytical EOS, as Stiffened Gas EOS for instance, the integral in
the second condition of (80) can be explicitly computed. It is also easy to compute an
isentropic path, which corresponds to the first condition of (80). Finally for such simple
EOS, the definition of a point in the rarefaction wave relies on a local implicit computation
(through a Newton algorithm or a dichotomy for instance) for system (80). The latter can
be done up to the round-off error of the computer.

With our complex EOS based on the (P, T') plane, the isentropic path can only be ap-
proximated from the left state to the right state using Newton-like algorithm. Moreover,
the integral arising in the second condition of (80) can not be explicitly written. It must
also be approximated using classical integration algorithm along the isentropic path. We
have thus two sources of numerical approximation in the definition of the thermodynami-
cal path of the rarefaction wave.

On the other hand, our particular choice for the polynomials (cubic splines) of the LuT
leads to an even more important drawback. Indeed, as depicted above, we can approximate
the rarefaction wave in the thermodynamical plane (P, T") using numerical algorithms, but
we are not able to project this thermodynamical path onto the (¢, z) plane. A point .* of
the u — ¢ rarefaction wave is connected to the point (¢, 2*) thanks to the relation:

Since the rarefaction wave is a regular wave between two time-space points (¢, z%) and
(t,2®), u* — ¢* has to be continuous and monotonic to allow a regular projection. It
should then be noted that the sound speed ¢ can be written with respect to the second

order derivatives of u:
2 xr 1 042p -
2= 2L ’ (81)

T Cp
where o L o |
u u 1
C,=-T— - = - ——| . 82
P orz\, " 1 opdT Ty » XT = op? |, (82)
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Since our LuT is based on cubic splines, it only ensures a C! z1, but we can not ensure the
continuity of ¢ between to neighboring cells of the LuT. We are thus not able to perform
the projection of the rarefaction wave from the thermodynamical plane (P, T') to the (t, z)
plane.

Finally, due to our complex EOS, we could only perform a weak comparison between
the approximated solution given by our code and an approximated rarefaction wave in
the thermodynamical (P, T)—plane. This comparison is weak in the sense that we would
get a “reference” rarefaction wave obtained through a numerical integration and not an
analytical one. In order to perform this weak comparison in the (¢,x) plane, we should
use a higher polynomial basis instead of the splines, so that the sound speed would be
continuous and monotonic on the whole domain.

We propose here to build a “reference” solution for a u — ¢ rarefaction wave as de-
picted above. We consider initial data such that the left state is a pressurized liquid state
and the right state is pure vapor at saturation (see table 2). The quantities e, p and

=I5,

with respect to the pressure. The quantity £* =

are continuous and they have been plotted on figures 15, 16 and 17
pc(so, P)

*

r — Xy

= u* — c* is plotted on figure 18,

the non-monotonic behavior associated to ¢ can be clearly seen.

Data for LuT | Left state | Right state
o 0 1
y 0 1
z 0 1
p kg/m3 725.86 43.90
u (m/s) 0 9.90
P (Pa) 1.50 10" | 8.23 10°

Table 2: Initial data for an isolated rarefaction wave at equilibrium with liquid left state
and vapor right state.

As an illustration, a “reference” solution can be built by introducing € which corre-
sponds to a linear regression of ¢ (cf figure 18). This new quantity ¢ is continuous and
monotonic; moreover, at each f , we can associate unique values for the quantities P, p,
e, ¢, c. In this way, the thermodynamical path of the rarefaction wave can be projected
on the (¢, ) plane. Figure 19 show thermodynamical paths in the (P, T)-plane for three
different meshes at the final step compared with the reference solution. Mesh refinement
qualitatively improves the solution, in particular for states at low pressure. Final pressure
profiles seem correct (see figure 20). Obviously, this rarefaction wave can not be used for
verification purposes, the way of projecting the rarefaction wave through € is not accurate
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Figure 15: Specific internal energy e (in J.kg~') along the discrete isentropic path S,

(abscissas are the opposite of the pressure gap between the final pressure and the initial
left pressure equal to 150 10° Pa).
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Figure 16: Density p (in kg.m™3) along the discrete isentropic path (abscissas are the

opposite of the pressure gap between the final pressure and the initial left pressure equal
to 150 10° Pa).

enough and just allows to illustrate the encountered difficulties.
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Figure 18: & =

used in the reference solution (abscissas are the opposite of the pressure gap between the
final pressure and the initial left pressure equal to 150 10° Pa).

= u* — ¢* along the discrete isentropic path and regularized &

C Simple model for relaxation time based on Nucle-

ation Theory
The Classical Nucleation Theory has been developed for many years [37]. This theory

assumes that the bubble nucleation rate J (the number of bubbles created per unit time
in unit volume) follows an Arrhenius law:

E
J=Jyexp | ——= |, 83
k
B
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where kg = 1.38064852 102 J K ! is the Boltzmann constant, 7" is the liquid tempera-
ture, Jy is a prefactor and F|, is an activation energy. Jy and E, are defined in the following.

Indeed, when a bubble is created, it enables to dissipate extra energy of superheated
liquid: this energy amount decreases as R?, with R the radius of the created bubble. At the
same time, an energy amount, increasing as R?, is required to maintain the liquid-vapor
interface. Both effects balance each other for a critical radius R,:

(84)

where AP = P, — P,y and + is the liquid-vapor surface tension.

For spherical bubbles with a radius R., the required work for nucleation is minimal.
This minimal nucleation work is defined as the activation energy £, which appears in (83).
It reads:
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1673

E, = m (85)

It means that bubbles with a radius R < R, tend to disappear whereas bubbles with

a radius R > R, are able to grow. Following an Arrhenius law (83), nucleation occurs
when the barrier energy FE, has the same order of magnitude that thermal fluctuations
kgT. However, this energy barrier E, can be very high because it applies to pure liquid
without impurities (homogeneous nucleation), which are not the conditions that we may
find in industrial applications. Indeed, if impurities are present in water (which is the case
for nuclear circuits), bubbles creation is easier (heterogeneous nucleation). To take this

assumption into account, the activation energy is decreased as in [1] by multiplying £,

with ¢ €]0, 1]:
B _pE,
J = Jyexp < k:BT> : (86)

Then, the probability P(¢) that no bubble appears within a time ¢ is:
P(t) = exp(—JVt)

where V' is the volume of liquid. A commom assumption [38, 39, 50] provides that nucle-

ation indeed occurs after the time ¢ so that: P(t) = 7 Then, a characteristic time-scale

for the delay before nucleation appearance t,,. can be defined with P(t,,.) = 2 le.:
pE,
toue = to )
0, exp (kBT) (87)
with
In(2)
0 = . 88
nuc J()V ( )

There is no consensus in the litterature about the prefactor Jy. In [51], Jy is taken
almost constant with temperature and pressure. On the contrary, complex models have

been proposed, for instance in [52] or [53]. In our study, we chose a simple model, proposed

kgT 1
in [38] or [39]. Jy is taken as the product of thermal frequency BT and v where

c
3

4R
h = 6.62607015 10~3*Js is the Planck constant and V. = 7T3 € is the volume of a critical

nucleus:

kgT 3 1

Finally we get, with (84) and (89):

o _ @1 @) hodro, ) hodr (2 K
e Yy gy Vo kgT 3¢V kT 3 \AP
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We chose to simplify this prefactor: indeed, a lot of terms are almost constant during
our simulations. It allows to reduce the number of paramaters for our numerical studies.

We keep only the dependance with in our final simplified model:

AP3

o Qg 3 (PEa

e = (135) P ( kBT) , (90)
. 1677° N :
where FE, is defined by (85): E, = SIAPY and v is estimated with the IJAPWS 94
correlation [47]:
T T\"

=By(1+0(1—=))( = 1
v= Bl - ) (1) (o1)

where: By = 235.8 107 mN/m ; b = —0.625 ; v = 1.256 and T, = 647.096K (water
critical temperature).

In the simplified model (33), only two parameters have thus to be defined: ag in (Pa.s),
homogeneous to a dynamical viscosity, and ¢ € [0, 1].

D Initial data for Riemann problems test cases

D.1  Out of equilibrium test cases (4.1)

Here are the parameters used for the Stiffened Gas (SG) for the test case of section 4.1.
The parameters for the vapour are:

Cy,, = 4.477815802223535 10° JK kg™,
Yo = 1.084875362318841,
I, = 4.1904297086743001 10° Pa,
s% = —1.137650328291112 10* JK kg™,

and for the liquid we have:

Cy, = 1.395286166711847 10° JK kg1,
v = 1.665128030303030,
II; = 3.725876146842836 10°® Pa,
sV =1.010* JK kg™

Data for SG Left state Intermediate state
o 4.16003754536212 10~ ! | 4.68486052082106 10!
y 1.0 1071 1.2 1071
zZ 1.47660058572024 10~ | 1.75144882351565 10"
p (kg/m?) 393.940361842377 363.89814762278274
u (m/s) 1.0 1.0
P (Pa) 1.48 107 1.48 107
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Data for SG

Right state

«

4.68486052082106 10—+

y

1.210°1

Z

1.75144882351565 101

p (kg/m?)

351.12092230108595

u (m/s)

-33.6320500771937

P (Pa)

2.80621107450730 10°

0 =952.696245321188e m/s (shock speed)

Data for LuT | Left state | Intermediate state | Right state
a 4.16 101 4.68 10~1 4.68 10~ 1

y 1.0 107! 1.2 1071 1.2 1071

z 1.48 101 1.75 1071 1.75 1071

p (kg/m?3) 393.94 363.90 351.12

u (m/s) 1.0 1.0 -19.15

P (Pa) 1.48 107 1.48 107 1.07 107

0 =b54.61 m/s (shock speed)

D.2 Equilibrium test case with mixtures for both initial states

(4.2)

Data for LuT | Left state | Intermediate state | Right state
a 4.16 1071 6.16 10~1 8.31 1071
y 1.0 1071 2.0 107! 2.84 101
z 1.48 1071 2.80 1071 4.20 1071
p (kg/m3) 393.94 291.57 162.27
u (m/s) 1.0 1.0 -113.53
P (Pa) 1.48 107 1.48 107 1.00 107

0 =554.607603536485 m/s (shock speed)

D.3 Equilibrium test case with only a shock, with a liquid left
initial state (4.3.1)

Data for LuT | Left state | Right state
o 0 6.8910~!
y 0 6.73 102
z 0 1.40 1071
p (kg/m?3) 742.97 259.49
u (m/s) 1.0 -155.77
P (Pa) 1.48 107 5.0 10°

0 =85.14 m/s (shock speed)
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D.4 Equilibrium test case with only a contact, with a liquid left

initial state (4.3.2)

Data for LuT | Left state | Right state

o 0 6.16 1071

y 0 2.0 1071

z 0 2.8010~1

p (kg/m3) 742.97 291.57

u (m/s) 1.0 1.0
P (Pa) 1.48 107 1.48 107
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