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Abstract

Some accidental scenarii studied in the framework of the nuclear safety analysis involve
liquids undergoing strong pressure drops at high temperature. In order to perform realis-
tic simulations of such situations, a code based on a model that can handle both the ther-
modynamical disequilibrium between liquid and vapor and complex equations of state is
required. We propose herein to test a homogeneous model built on the basis of the Euler
system of equations and complemented by a mixture pressure law. The latter is defined in
accordance with the Gibbs relation on the basis of the phasic pressures which are defined
through a look-up table based on the IAPWS-97 formulation. A wide range of verifica-
tion problems (Riemann problems) is then studied to assess the behavior of the numerical
schemes for this complex equation of state. The tested relaxation scheme is the best compro-
mise between accuracy and stability. At last, a simple test case of vaporization near a wall is
investigated in order to test some return to thermodynamical-equilibrium time-scale based
on the nucleation theory.

Introduction

A nuclear pressurized water reactor (PWR) is composed of several heat exchangers in which
the water is used as a heat-transfer medium and can undergo phase change (vaporization
and condensation). A PWR contains two main loops in which water flows in liquid or
vapour state: the primary and the secondary circuits, exchanging heat through the steam
generator. The primary circuit contains liquid water which collects the heating power of the
nuclear core and brings it into the steam-generator. In this circuit, the temperature can reach
320�C and, to avoid vaporization, the pressure is maintained at 155 bars, that means, above
the saturation pressure. In the steam generator, the primary coolant flows into pipes that
are surrounded by the water of the secondary circuit. The secondary fluid enters the steam
generator as liquid. It then receives heat of the primary coolant on contact with the primary
pipes and vaporizes. The steam-generator’s outlet of the secondary circuit is then mainly
composed of steam. The latter is used to generate electric power through turbines and it
is afterwards condensed (through the use of an other heat-exchanger and a third circuit) to
re-enter the steam generator as liquid. In this secondary circuit, the pressure level is much
lower than in the primary circuit (in the range 50 � 70 bars, depending on the steam gener-
ator).

When the reactor is at nominal operating point, the mass transfer and the heat exchanges
imply small thermodynamical variations. Nevertheless, when accidental scenarii are con-
sidered, brutal thermodynamical variations are assumed. For instance, if one focuses on the
breaches in the shell of the primary circuit, two major scenarii are studied.

• The Loss Of Coolant Accident (or LOCA) corresponds to a breach for which the pri-
mary liquid coolant enters into contact with the air of the reactor building at 1 bar. The
violent pressure drop from 155 bars to 1 bar implies a rapid blowdown and the prop-
agation of a depressurization wave into the primary circuit. This depressurization is
associated with the vaporization of the primary coolant.

• When a breach in a pipe that contains the primary coolant in the steam generator
occurs, the pressurized liquid water enters into contact with a steam-liquid mixture at
a lower pressure. As in the LOCA situation, a depressurization wave propagates into
the primary circuit leading to the steam creation in the primary loop.

These two scenarii are associated with high pressure drops and high temperatures. In such
situations, the fast transients can thus lead to non-equilibrium thermodynamics [4]. Hence,
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the simulation of such rapid transients requires a model in which the thermodynamical dis-
equilibria between the two phases are taken into account.

A first class of models that can be used for such scenarii is the so-called two-fluid model
as those proposed in [2, 42, 28, 39, 14, 26]. In this class of models, the full thermodynamical
disequilibrium is accounted for, in terms of the pressure, the temperature and the chemical
potential (or Gibbs free enthalpy). Moreover, each phase is described by its own velocity.
This two-velocity assumption has a drawback when dealing with the numerical simulation.
Indeed, these models can possess eigenvalues that are very close to each other, for instance
in situations involving a strong drag force. In order to distinguish the different waves asso-
ciated with these close eigenvalues on the numerical approximations, one can thus have to
deal with meshes that contain small enough cells, leading to an unaffordable computational
cost for industrial applications in 3D. In the sequel, we choose to present a model that pos-
sesses a simpler eigenstructure. The latter makes the assumption that the two phases have
the same velocity and is based on a model relying on the Euler set of equations. Therefore,
the model inherits the Euler eigenstructure and enters the so-called class of the homoge-
neous models.

Most of two-phase flow homogeneous models proposed since around 40 years are based
on one or more thermodynamical equilibrium assumptions (for instance: [42, 1, 21, 22, 29,
16, 24]). The homogeneous model used in this work does not make any equilibrium as-
sumption for the thermodynamics: the phasic temperatures, pressures and chemical poten-
tials may be different within each phase. On the one hand, this choice has been made to
account for the full thermodynamical disequilibrium: the pressure disequilibrium may al-
low to enrich the model by introducing a bubble dynamics model as proposed in [26, 17, 18].
On the other hand, this allows to tackle some specificity of the mixture Equations Of States
(EOS) obtained with equilibrium assumptions. It has indeed been reported that equilibrium
assumptions may lead to a loss of strict concavity of the mixture entropy [3, 27, 23] and then
to non-uniqueness of solutions of the Riemann problems.

This homogeneous model proposed in [3, 38, 31], and studied for instance in [21, 44, 41,
33], is based on the Euler system of equations complemented by a complex pressure law
and by three unknowns: a volume fraction, a mass fraction and an energy fraction. These
fractions allow to quantify the gap to the equilibrium state, reached when the system is iso-
lated from the surroundings. In the model, the return to this equilibrium state is ensured by
three source terms on the fractions involving a unique relaxation time-scale law. The whole
model is built in order to be consistent with the second law of thermodynamics and is hy-
perbolic if each phasic entropy is concave with respect to the phasic specific volume and the
phasic specific internal energy, and if the mixture temperature is positive [23, 35, 36]. The
model and its properties are presented in section 1.1.

The model has been tested either on Riemann problems [35, 32] and on simulations re-
producing elementary experimental facilities [36]. In both cases, the phasic EOS were de-
fined through Stiffened Gas EOS [45] which is an extension of the perfect gas EOS. Even if
the results presented in [36] are satisfactory, the Stiffened Gas EOS is too rough to describe
accurately all the thermodynamical properties of the water on situations with large varia-
tions of the thermodynamical states, such as those depicted above. A look-up table has then
been developed, based on the idea of [34] and using the IAPWS-97 [52] formulation as input
data. The main recipes of this look-up table are presented in section 1.2.

The whole numerical scheme is described in section 1.3. In [35, 36, 32], the numerical

4



schemes used to compute the numerical approximations of the solutions of the model were
all robust enough to deal with Stiffened Gas EOS. Unfortunately, few of these numerical
schemes are able to handle complex EOS as the one proposed in section 1.2. Indeed, three
numerical schemes for the convective part have been tested : the Rusanov scheme [48], a
VFRoe-ncv scheme [6] and a relaxation scheme [10], based on the ideas of [49, 13, 5, 12]. In
practise, problems of robustness have been encountered with VFRoe-ncv scheme used with
the look-up table; therefore, only Rusanov scheme and the relaxation scheme have been
compared when using it. In section 1.4, their behavior is then studied on a wide range of
Riemann problems for the EOS defined through the look-up table of section 1.2. This verifi-
cation procedure is mandatory to grasp the behavior of the numerical schemes in canonical
situations. Furthermore it is required in the framework of the safety studies, where proofs
of confidence on the simulation tools are to be given. The relaxation scheme is the best com-
promise between accuracy and robustness when using the look-up table.

In [36], the impact of the relaxation time-scale law has been shown by the mean of toy
laws. These laws have no physical background, and they are based on the observations re-
ported in [16]. In section 1.5, we propose a model for the relaxation time-scale on the basis of
the classical nucleation theory [15], with some simple assumptions used in [8] or [43]. Since
the nucleation theory only holds for the birth of steam bubbles in liquid, we have chosen
a situation where the domain is entirely filled with liquid and where steam production re-
mains reasonable: a depressurization occuring near a wall. This case can be schematic of
what happens downstream a valve suddendly closed in a pipe in which high pressurized
water flows. On can note that a very similar phenomenon occurs in the early stage of the
SUPERCANON experiment reported in [47] and which was reproduced in [36].
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1.1 A homogeneous model for two-phase flows

In this section, the considered model is only briefly presented in intensive variables. The
whole building approach is available in appendix 1.A, starting from an extensive descrip-
tion of the system by a volume V (in m3) of the mixture, corresponding to a mass M (in kg)
and an internal energy E (in J).

Thermodynamically, each phase k = l, v (liquid or vapor) is described by its own com-
plete equation of state, expressed as a specific entropy sk(tk, ek) (JK�1kg�1) as a function of
tk the specific volume (m3kg�1) and ek the specific energy (Jkg�1) and satisfying the Gibbs
relation:

Tkdsk = dek + Pkdtk, (1.1)

where
1
Tk

=
∂sk
∂ek

����
tk

;
Pk
Tk

=
∂sk
∂tk

����
ek

. (1.2)

Let us introduce the volume fraction ak, the mass fraction yk and the energy fraction zk of
phase k:

Yk = (ak, yk, zk). (1.3)

These fractions satisfy conservation relations:

1 = al + av ; 1 = yl + yv ; 1 = zl + zv, (1.4)

and vary in accordance with the second principle of thermodynamics (cf appendix 1.A).
Thanks to them, phasic quantities can be expressed from the mixture quantities:

tk =
ak
yk

t ; ek =
zk
yk

e. (1.5)

The mixture entropy s is defined as:

s(Y, t, e) = ylsl(tl , el) + yvsv(tv, ev). (1.6)

Using phasic Gibbs relations (1.1), thermodynamical mixture quantities can be deduced
from phasic ones; they read:

P(Y, t, e) =
al

Pl
Tl
+ av

Pv
Tv

zl
Tl
+ zv

Tv

;
1
T
(Y, t, e) =

zl
Tl

+
zv

Tv
. (1.7)

The set of partial differential equations in conservative form is:

8
>>>>>>>>><

>>>>>>>>>:

∂

∂t
(rY) +

∂

∂x
(rUY) = rG,

∂

∂t
(r) +

∂

∂x
(rU) = 0,

∂

∂t
(rU) +

∂

∂x
�
rU2 + P

�
= 0,

∂

∂t
(rE) +

∂

∂x
(U(rE + P)) = 0.

(1.8)

with the following source terms:

G =

✓
āl � al

l
,

ȳl � yl
l

,
z̄l � zl

l

◆
,
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where (āl , ȳl , z̄l) are the equilibrium fractions which maximize the mixture entropy for a
given (t, e). The user must specify one EOS (see section 1.2) for each phase and the time-
scale l > 0 describing the return to the thermodynamical equilibrium (see section 1.5 and
appendix 1.C).

It can been shown that this model has interesting mathematical properties. These prop-
erties are summarized here and the reader can refer to [3, 23, 38, 31, 44, 41, 36, 37] for more
details.

• The eigenstructure of the model is composed of 2 genuinely non-linear waves associ-
ated to the eigenvalues U ± c, where c is the mixture sound speed, and one linearly
degenerate wave associated to the eigenvalue U.

• The model is hyperbolic provided that the phasic entropies sk are concave (see (H7)
in appendix 1.A) and that the mixture temperature is non-negative. The condition
on the mixture temperature is of importance. Indeed, the concavity of the entropies
together with the positivity of the mass fractions guarantees that c2/T is non-negative.
However some simple EOS (as the Van der Waals EOS) admit non-positive energy.
This may lead to non-positive energy fractions and a possible drawback is to get a
negative mixture temperature even when assumption (H9) (see appendix 1.A) holds.
Such situations can then correspond to a loss of hyperbolicity.

• Shocks are defined in a unique manner through the Rankine-Hugoniot relations.

• Assuming classical assumptions on the initial and boundary conditions for the frac-
tions, and provided that the equilibrium fractions remain in [0, 1]3, the fractions remain
in [0, 1]3.
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1.2 Complex equations of state

In order to close the model presented in section 1.1, we need to specify: one EOS for each
phase in terms of the specific entropy (tk, ek) 7! sk(tk, ek), and a law for the time-scale l
which describes the return to the thermodynamical equilibrium defined by W̄. We focus
here on the phasic EOS.

A classical way to deal with steam-liquid simulation is to use Stiffened Gas EOS [45].
These EOS are extensions of the perfect gas EOS. They are associated with quite simple
formula involving five parameters. The specific phasic entropy then reads:

sk(tk, ek) = Cv,k ln
⇣
(ek � Pktk)t

gk�1
k

⌘
+ s0

k , (1.9)

where Cv,k is the heat capacity, �Pk is the minimal pressure1, gk is the adiabatic coefficient
(gk > 1) and s0

k is a reference specific-entropy.

In the situations that we intend to address, the domain of evolution of the thermody-
namical quantities is important and these Stiffened Gas EOS may be not accurate enough,
at least not for all the quantities. A more complex EOS with a better description of the
properties of the fluids on wide domains is thus needed. Such EOS have been proposed,
as Cubic EOS or Viriel formulations, but they are unfortunately not in complete form [23],
which means that some thermodynamical quantities may not be defined. The IAPWS-97
formulation [52] is defined in a complete form since the the EOS is given as the Gibbs free
enthalpy with respect to the pressure and the temperature. Nevertheless, this function is
very complex and an important drawback is the high computational cost which is a crucial
point for the simulation of fluid dynamics. In order to decrease this computational cost, a
Look-up Table (LuT) has been implemented on the basis of the IAPWS-97 formulation2.

We describe here how this LuT is built. Since the model deals with non-equilibrium ther-
modynamics and since each phase has to possess its own EOS, a LuT is built for each phase.

The (P, T)-plane is chosen as an entry of the LuT and the Gibbs free enthalpy µk(P, T) is
given for each phase. In order to remain consistent with the Gibbs relation for each phase
(1.1), all the other quantities have to be computed from the derivatives of

µk(P, T) = ek(P, T) + Ptk(P, T)� Tsk(P, T).

Indeed, by differentiating µk and by using the phasic Gibbs relation (1.1) we get:

dµk = tkdP � skdT,

so that the specific volume and the specific entropy are respectively defined as:

tk(P, T) = ∂µk/∂P|T and sk(P, T) = �∂µk/∂T|P.

The specific energy then follows ek(P, T) = µk(P, T)� Ptk(P, T) + Tsk(P, T).

Remark 1.1 — In order to fulfill the phasic Gibbs relation (1.1), the quantities tk, sk and ek
should not be tabulated independently. ⇤

1The phasic entropy and the phasic sound speeds are defined for Pk > �Pk; and the phasic temperature is
positive for Pk > �Pk

2The methodology proposed here to build a LuT is obviously not restricted to the IAPWS formulation.
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As in [34], the thermodynamical plane (P, T) is discretized using a Quadtree approach
which is balanced to get a regular discretization of the plane, enabling a quick research
through the look-up table in practical simulations. Some domains of the (P, T)-plane are
refined. This is actually the case: in the neighborhood of the saturation curve, at low pres-
sures, at low temperatures and at high pressures on the saturation curve. The LuT used
in the next sections has been built for pressures from 0.1 bar to 219 bars, so that we avoid
vicinity of the critical point. The temperature range is [283.0 K; 1070.0 K].

Figure 1.1 shows some visualizations of the quadtree mesh for different ranges of pres-
sures and temperatures. On each cell of the (P, T)-plane, the IAPWS-97 Gibbs enthalpy µk is
interpolated using a polynomial spline in P and T. The most important point is to preserve
the Gibbs relations (1.1). It is required that µk belongs to C

1 on the whole domain. Therefore,
splines of order 3 are used and a specific treatment is applied to each cell connected to wider
cells. For these cells, at each node that is common with a wider cell, the values of µk and its
derivatives are not obtained from IAPWS-97. These values are replaced by the values of µk
and its derivatives computed from the interpolated spline of the wider cell. Hence we en-
sure the continuity of the interpolated value µk and of its derivatives with respect to P and T
at the junction between the cells of different sizes. For this purpose, the computation of the
spline coefficients is then done by decreasing order of the size of the cells. The final level of
refinement of the quadtree is chosen so as to get a relative error between the IAPWS values
of µk and the interpolated values less than a threshold. In the LuT used in the next sections,
this threshold has been chosen equal to 10�5, and the final mesh contains more than 163000
cells.

The use of meshes based on quadtree techniques is a great advantage because it allows
the local refinement of the description together with a reasonable computational cost for the
search of the cell in which the properties have to be estimated. In fact, for a given (P0, T0),
the cost of the search of the quadtree’s cell containing (P0, T0) is proportional to the depth
of this cell in the quadtree structure (i.e. the smaller the target cell is, the more expensive its
search is).

Figure 1.1 – Mesh of the (P, T)-plane. The left figure shows the whole mesh, and the log-like
domain corresponds to the mesh refinement around the saturation curve. The two
figures on the right show zooms on the saturation curve zone.

We are dealing with compressible phenomena so that the model of section 1.1 has to be
discretized in conservative form (numerical schemes are described in section 1.3). Hence the
“natural” variables for the conservative part of the model are (t, e). Since the LuT EOS is
defined in the (P, T)-plane, and in order to maintain the consistency of the thermodynamical
description through a complete LuT, we need to compute the change of variables (tk, ek) 7!
(Pk, Tk). More precisely, for any value of the specific volume t0

k and specific energy e0
k , we
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have to find the pressure Pk and the temperature Tk that fulfill:
⇢

ek(Pk, Tk) = e0
k ,

tk(Pk, Tk) = t0
k , (1.10)

where the functions (Pk, Tk) 7! ek(Pk, Tk) and (Pk, Tk) 7! tk(Pk, Tk) are obtained from the
LuT. From a numerical point of view, the computation of an approximate solution of (1.10)
through a Newton-type algorithm can be tricky and it requires an accurate initial guess of
the solution. For this purpose, a second LuT has been built for each phase. This second
LuT is based on a non-balanced quadtree for the (t, e)-plane. At each vertice (ti

k, ei
k) of the

mesh corresponds a couple (Pi
k, Ti

k) such that ek(Pi
k, Ti

k) = ei
k and tk(Pi

k, Ti
k) = ti

k. This second
LuT is not used directly, but using bilinear interpolation, it represents a database to provide
initial guesses to solve the general problem (1.10). With the help of this second LuT, solving
(1.10) requires less iterations and it is more robust. For the sections below, this second LuT
contains 166000 cells.

Remark 1.2 — In practice, considering the Stiffened Gas EOS as a reference, the order of
magnitude of the computation costs is 700 times higher for the direct IAPWS formulation
and it is 8 times higher with the LuT EOS as depicted above. Obviously, the gain in CPU
time strongly depends on the test case and on the LuT used (the local refinement and the
depth of the quadtree are strongly involved). ⇤
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1.3 Numerical method

The overall numerical method is based on a fractional step method [53] using a Lie-Trotter
splitting. The initial condition problem associated with system of equations (1.8) can be
written:

∂

∂t
(W) = �

∂

∂x
(F (W)) + G(W), W(t = 0) = W0, (1.11)

where F correspond to the convective flux and G to the source terms. A straightforward
Lie-Trotter splitting has been chosen here. It consists in solving at time t = tn the following
two sub-systems during a time step Dtn:

(i)
∂

∂t
(Wa) = �

∂

∂x
(F (Wa)) , Wa(tn) = Wn, (1.12)

which gives Wa(tn + Dtn);

(ii)
∂

∂t
(Wb) = G(Wb), Wb(t = tn) = Wa(tn + Dtn). (1.13)

Since this splitting is first order with respect to time, each sub-system is solved using
first order schemes.

The first sub-system takes into account the convective part. For that purpose, first-order
explicit and conservative finite volumes schemes are used. Their general form for a one-
dimensional framework with cells Wi is:

|Wi|(Wn+1
i � Wn

i ) = �Dtn((F(Wn
i , Wn

i+1)� F(Wn
i�1, Wn

i )), (1.14)

where Wn
i denotes the space-average value of W on the cell Wi at time tn. The time step Dtn

is computed from the variable Wn
i and from the mesh size |Wi| in order to fulfill stability

constraint. The two-point numerical flux F depends on the used scheme. In the following,
we have tested three different schemes: Rusanov scheme [48], a VFRoe-ncv scheme using
variables (Y, t, U, P) [6] and the relaxation scheme proposed in [10]. These schemes are de-
scribed in section 1.3.1.

The second sub-system (1.13) corresponds to a system of ordinary derivative equations.
In this sub-system, the return to equilibrium is accounted for. Since the time-step is com-
puted to fulfill a stability constraint of the numerical scheme used for the first sub-system,
this second step is achieved using an implicit scheme. The latter is detailed in section 1.3.2.

Remark 1.3 — For the sake of simplicity, each sub-system is solved using a unique time-
step and the time-step for solving the source-terms step is the time-step computed for the
convective part.

1.3.1 Numerical schemes for the convective sub-system

This section is devoted to the numerical schemes used to compute the two-point numerical
fluxes F considering two neighboring cells. The quantities in the cell on the left (resp. right)
of the interface between the two cells are denoted by a subscript l (resp. r).

Rusanov scheme (see [48]) and VFRoe-ncv scheme using variables (u, P, t) (see [6]) are
very classical and the details about these schemes can be found in the previous references.
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The studied relaxation scheme was initially proposed in [10] and it is based on the work
of [49, 13, 5, 40]. The main idea is to compute the numerical flux on the basis of an en-
larged hyperbolic system associated with a strong relaxation term. This enlarged system is
chosen so that all its characteristic fields are linearly degenerate. Hence, the solution of the
associated Riemann problem at each interface between two cells is easy to compute. The re-
laxation term, accounted for in the enlarged system by a source term, then allows to recover
formally the initial system of equations.

We follow here the proposition detailed in [10]. One additional scalar unknown T is
introduced with the initial condition:

8x, T (0, x) = t(0, x).

A new pressure P is also defined, which can be seen as a linearization of the pressure P with
respect to the variable t around T :

P = P(Y, T , e) + a2(T � t), (1.15)

where a is a positive parameter. At last, a relaxation specific total energy S is introduced in
order to be consistent with the pressure P:

S =
u2

2
+ e +

P2
� P2(Y, T , e)

2a2 , (1.16)

We set Z the enlarged variable: Z = (Y, t, U, S, T ). The enlarged system to solve is then the
following: 8

>>>>><

>>>>>:

∂t(rY) + ∂x(rYU) = 0,
∂tr + ∂x(rU) = 0,
∂t(rU) + ∂x(rU2 + P) = 0,
∂t(rS) + ∂x(rUS + UP) = 0,

∂t(rT ) + ∂x(rT U) =
1
e

r(t � T ),

(1.17)

where the relaxation source terms for T are characterized by the parameter e � 0. A crucial
point is that all the characteristic fields of the convective part of system (1.17) are linearly
degenerate and associated with the speed waves:

l1 = Ul � atl , l2 = U⇤, l3 = Ur + atr, (1.18)

with:
U⇤ =

1
2
(Ul + Ur) +

1
2a

(Pl � Pr). (1.19)

The parameter a, that appears in the definitions of P and s (resp. (1.15) and (1.16)), should
satisfy a stability condition [5] which is related to the sub-characteristic condition for the
enlarged system (1.17):

a > max
✓

cl(Yl , tl , el)
tl

,
cr(Yr, tr, er)

tr

◆
, (1.20)

where c(Y, t, e) denotes the sound speed associated with the pressure law P:

c(Y, t, e) = �t2 ∂

∂t
(P)

����
Y,s

.

Moreover, a is chosen so that the eigenvalues fulfill the relation:

l1 < l2 < l3, (1.21)
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where lk is detailed in (1.18); this last condition is equivalent to:

t⇤

l > 0 and t⇤

r > 0. (1.22)

Thanks to relations (1.21), the self-similar solution Z (x/t, Zl , Zr) of the Riemann prob-
lem at the interface separating two cells (l and r) for the convective part of system (1.17) can
be written:

Z

⇣ x
t

, Zl , Zr

⌘
=

8
>><

>>:

Zl , if x/t < l1
Z⇤

l , if l1 < x/t < l2
Z⇤

r , if l2 < x/t < l3
Zr, if l3 < x/t

(1.23)

with
t⇤

l = tl +
1
a
(U⇤

� Ul) ; t⇤

r = tr �
1
a
(U⇤

� Ur) ; (1.24)

S⇤

l = Sl +
1
a
(PlUl � P⇤U⇤); S⇤

r = Sr �
1
a
(PrUr � P⇤U⇤) ; (1.25)

T
⇤

l = Tl ; T
⇤

r = Tr ; Y⇤

l = Yl ; Y⇤

r = Yr ; (1.26)

U⇤

l = U⇤

r = U⇤ ; P⇤

l = P⇤

r = P⇤ (1.27)

where we have set:
P⇤ =

1
2
(Pl + Pr) +

a
2
(Ul � Ur)

and where U⇤ is given in (1.19). From a numerical point of view, we have chosen an instan-
taneous relaxation: e ! 0. As a consequence, we have T ! t, P ! P and S ! E, so that
the two-point numerical flux corresponding to the relaxation scheme [10] is solely based on
the value Z (x/t = 0, Zl , Zr) of the solution Z at the interface between the two-cells l and r.
It reads:

F(Wl , Wr) =

✓
YU
t

,
U
t

,
U2

t
+ P,

US
t

+ UP
◆

,

where Y, t, U, and S are the components of Z (x/t = 0, Zl , Zr) and where P also arises from
the solution Z (x/t = 0, Zl , Zr).

Remark 1.4 — For all the simulations that we have performed, the choice of a in agreement
with the constraint (1.20) has always been sufficient to ensure that the constraint (1.21) was
fulfilled. ⇤

We briefly recall some important properties of the relaxation scheme, proved in [9] for a
more general context of Euler system with several pressures. In the following, index j refers
to one mesh cell:

• L1 stability: rn+1
j > 0 and en+1

j > 0 8j;

• discrete entropy inequality:

rSn+1
j  rSn

j �
Dt
Dx

{(rSu)(0; Zj
n; Zj+1

n)� (rSu)(0; Zj�1
n; Zj

n)};

• maximum principle:

min(Sn
j�1, Sn

j , Sn
j+1)  Sn+1

j  max(Sn
j�1, Sn

j , Sn
j+1).
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1.3.2 Numerical scheme for the source-term sub-system

The second sub-system (1.13) corresponds to a system of ordinary differential equations:
8
>>>>>>>>><

>>>>>>>>>:

∂

∂t
(Y) =

Y(t, e)� Y
l

,

∂

∂t
(r) = 0,

∂

∂t
(rU) = 0,

∂

∂t
(rE) = 0.

(1.28)

We first remark that the specific volume and the specific energy are constant, as a conse-
quence it can be written in an equivalent manner:

8
>>>>>>>>><

>>>>>>>>>:

∂

∂t
(Y(t)) =

Y(t(0), e(0))� Y(t)
l(t)

,

∂

∂t
(r(t)) = 0,

∂

∂t
(U(t)) = 0,

∂

∂t
(e(t)) = 0.

(1.29)

Obviously, when the parameter l is constant, system (1.29) can be integrated exactly. Thus,
in system (1.29), l(t) is replaced by its initial value l(0), and the approximate solutions for
the fraction are then computed as the exact solutions of the approximated sub-system:

∂

∂t
(Y(t)) =

Y(t(0), e(0))� Y(t)
l(0)

. (1.30)

For an initial condition given by the value at time tn, the final approximation at time tn+1 =
tn + Dtn then reads:

8
>>>>><

>>>>>:

Y(tn+1) = Y(tn) e

�Dtn

l(tn) + Y(tn) (1 � e

�Dtn

l(tn) ),
r(tn+1) = r(tn),
U(tn+1) = U(tn),
e(tn+1) = e(tn).

(1.31)

Remark 1.5 — It can easily be checked than when dealing with instantaneous thermody-
namical relaxation, l(0) ! 0, the scheme gives Y(tn+1) ! Y(tn). The associated ther-
modynamical states then correspond to the states that maximize the mixture entropy at
(t, e)(tn). When Y(tn) 2]0, 1[, the pressure, temperature and chemical potential equilibria
are ensured. ⇤

Remark 1.6 — The update formula (1.31) for the fraction Y(tn+1) is a barycenter between
Y(tn) and Y(tn). Hence, provided that Y(tn) and Y(tn) lie in [0, 1]3, Y(tn+1) also lies in
[0, 1]3. ⇤
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1.4 Approximate solutions of Riemann problems

In this section, the numerical schemes of section 1.3 are assessed by the mean of Riemann
Problems. For that purpose, Stiffened Gas EOS and the LuT of section 1.2 have been used.
Considering the consistency of the schemes or the asymptotic rate of convergence, it could
be sufficient to focus on Stiffened Gas EOS. Nevertheless, verification procedure can be
seen as an unbiased tool to compare numerical schemes with respect to a known reference-
solution. Different aspects can thus be compared as: the accuracy with respect to the mesh-
size, the accuracy with respect to the CPU-time -which is very important for industrial
applications-, the behavior for canonical solutions as isolated waves.

In the following, several Riemann problems are considered for the model of section 1.1.
They are only composed of contact waves and shock waves. As depicted on figure (1.2),
we consider: a ghost wave for the field U � c, a contact wave U and a shock wave U + c.
Depending on the test case, the contact wave U and the shock U + c may be ghost waves
in order to study the accuracy of the schemes for isolated waves. The analytical rarefaction
waves are far more complex to evaluate with accuracy when using the LuT, as depicted in
appendix 1.B. We do not consider these regular waves in the sequel.

Considering that the model of section 1.1 possesses a convective part and source terms
that bring the system back to the thermodynamical equilibrium, “out-of-equilibrium” Rie-
mann problems -with l ! •- and “at-equilibrium” Riemann problem -with l ! 0- are pro-
posed. For out-of-equilibrium Riemann problems, only the convective part of the numerical
procedure is considered. For the latter, the analytical solutions of the Riemann problem
are computed using the mixture EOS for Y = Y. In the simulation, we apply the whole
scheme of section 1.3 based on a Lie-splitting: we first account for the convective terms with
an out-of-equilibrium mixture EOS, and the thermodynamical equilibrium is then enforced
through the source terms. The aim of these tests is to check the convergence of the relaxation
approach for the simulation of cases where the mixture EOS is not regular (in particular the
sound speed of the mixture EOS at-equilibrium).

The general setting of the Riemann problems is the following, see figure (1.2). We con-
sider the one-dimensional domain x 2 [0 m, 1 m] and the initial discontinuity is located at
xd = 1/2 m. This domain is discretized using uniform meshes. The exact solution consists
in the left and right initial states, respectively denoted by 1 and 3 on figure (1.2), separated
by a uniform intermediate state, denoted by 2 on figure (1.2). When two ghost waves are
imposed, the state 2 obviously coincides with the state 1 or 3. For each EoS, Stiffened Gas or
LuT, we can compute the analytical solution of the Riemann problem. In the case of the LuT
EoS, the initialization of each state must be done carefully because the LuT is defined on the
(P, T)�plane and the use of an other plane may lead to a loss of accuracy. This is obviously
not the case for Stiffened Gas EoS. The method used to compute the analytical solutions of
the Riemann problem is classical. Several different test cases have been considered. The ta-
ble 1.1 sums up their main characteristics and the initial data for each test case are reported
in appendix 1.D.

The analytical solutions are then used to compute the relative L1-error of the numerical
approximations obtained with the different schemes. For an approximated solution Yapprox

and an exact solution Yexact, since the mesh size is uniform, the relative L1-error is computed
at time tn on the whole mesh as:

Âi |Y
approx,n
i � Yexact(xi, tn)|

Âi |Yexact(xi, tn)|
,
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where xi is the barycenter of the cell i. Obviously, when Âi |Yexact(xi, tn)| = 0 this relative
error is meaningless and we then consider the mere L1-error:

Â
i
|Yapprox,n

i � Yexact(xi, tn)|.

Figure 1.2 – Riemann problem with one intermediate state; U-C: ghost wave; U: contact wave;
U+C: shock wave

§ Waves Eq. ? EOS Initial states Left/Right Data
1.4.1 C + S No SG liq. + vap. / liq. + vap. 1.D.1
1.4.1 C + S No LuT liq. + vap. / liq. + vap. 1.D.1
1.4.2 C + S Yes LuT liq. + vap. / liq. + vap. 1.D.2

1.4.3.1 S Yes LuT liq. / liq. + vap. 1.D.3
1.4.3.2 C Yes LuT liq. / liq. + vap. 1.D.4

Table 1.1 – List of the presented test cases. In the second colmun, “C" stands for contact and
“S" for shock. The third column "Eq. ?" specifies if the EOS is at equilibrium
(“Yes"), with l ! 0, or out-of-equilibrium (“No"), with l ! +•. The fourth
column recalls the nature of the initial states (liquid, vapor or mixture). The last
column refers to the appendix where initial data are given.

1.4.1 Out of equilibrium test cases for the Stiffened Gas EOS and the LuT

In this section, we investigate the behavior of the three schemes of section 1.3.1 for Riemann
problems involving the out-of-equilibrium EOS. For both test cases we focus on the convec-
tive part and the source terms are not accounted for, i.e. l ! •. The first Riemann problem
is based on the Stiffened Gas EOS, whereas the second one involved the mixture EOS using
the LuT. Since these two Riemann problems only involve a contact wave and a shock wave,
it is possible to choose the same left states and the same intermediate states. The right states
have then been chosen so that the right densities are equal. Obviously, since the Stiffened
Gas EOS and the LuT are different for the right pressures, the right velocities and the shock
speeds are different.

We first want to point out that VFRoe-ncv scheme fails during the very first iterations on
the test case with the LuT. lie outside the domain of definition of the LuT. Rusanov scheme
and the relaxation scheme are not subject to these drawbacks and are thus more robust while
using the LuT. As a consequence, only Rusanov scheme and the relaxation scheme have been
used with the LuT in the following. For the Stiffened Gas EOS, the three numerical schemes
have been tested.
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1.4.1.1 Asymptotic rate of convergence

The convergence curves at time tend = 2.5 10�4 s are plotted on figure (1.3a) for the Stiffened
Gas EOS and on figure (1.3b) for the LuT. Since we are dealing with Riemann problems that
involve linearly degenerate waves and genuinely non-linear waves, the asymptotic rate of
convergence should be 1/2. Indeed, this order 1/2 is reached for the volume fraction a (the
behavior is the same for the three fractions) on the finest mesh for all schemes in both cases:
all the other quantities will reach the same order with finer meshes.
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(a) Stiffened Gas test case.
-6 -5 -4 -3

-5

-4

-3

-2

P rusanov
u rusanov
rho rusanov
alpha rusanov

P relaxCC
u relaxCC
rho relaxCC
alpha relaxCC

Order 1/2

(b) LuT test case.

Figure 1.3 – Convergence curves for the Riemann problems out of equilibrium: logarithm of
the relative L1

�error versus the logarithm of the mesh size with uniform meshes
containing from 500 to 250 000 cells.. The error is plotted for the approximate
solutions obtained with the different schemes and for P, U, r, a.

When focusing on the Stiffened Gas test case (see figure (1.3a)), the relaxation scheme
and VFRoe-ncv scheme have very similar behaviors and they are less diffusive than Ru-
sanov scheme. This can be observed with the results for the fraction a. Considering the
analytical solution, the fraction does not depend on the genuinely linear waves and it trav-
els with the velocity of the contact wave which is equal to 1 m/s in our case (see appendix
1.D.1). Hence at time tend = 2.5 10�4 s, the initial discontinuity on a has covered a distance
of L = 1 ⇥ tend = 2.5 10�4 m. As long as the size of a cell of the mesh is greater than L, the
approximated contact will remain in the same cell during the simulation t 2 [0, tend]. So that
the relative error with respect to the exact solution will not vary a lot. Since the logarithm
(base 10) of L is equal to �3.6, this explains the constant relative error for a on the coarse
meshes on figure (1.3a) (i.e. for abscissa greater than �3.6). The same behavior occurs for the
LuT test case with the relaxation scheme on figure (1.3b). This behavior is not observed here
for Rusanov scheme because of its high level of numerical diffusion on the contact waves.

1.4.1.2 Accuracy and efficiency

Due to our choice for the analytical solutions, the profiles for P, U and a along the domain
are uniform on each side of a traveling discontinuity:

• P and U only jump across the shock wave;

• a only jumps across the contact wave.

On the contrary, the density r has two jumps, one across the shock wave and one across
the contact wave. Preservation of pressure or velocity through the contact wave is a well
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known problem; see for instance [50]. Moreover, it has been shown in [25] that preservation
of constant values through a contact wave requires some constraints on the EOS depending
on the numerical diffusivity of the numerical method. Here, due to the form of the mixture
EOS of the studied model, it is not possible to get the same behavior on the approximated
solutions for the contact wave, at least on coarse meshes. Indeed, U and P present spuri-
ous waves at the location of the contact wave. Even if these spurious waves tend to vanish
when the mesh is refined (approximate solutions converge towards the analytical solution
with [U] = [P] = 0 in the contact wave), the accuracy is influenced by these spurious waves.
These waves can be observed on figure (1.8).

For the two test cases, see figures (1.3a) and (1.3b), VFRoe-ncv scheme and the relaxation
scheme provide a better accuracy than Rusanov scheme, at least for the density and the frac-
tions, which strongly depend on the contact wave. The accuracy on the pressure and on the
velocity is only slightly improved for coarse meshes. Nevertheless, this improvement in-
creases when the mesh is refined. This is due to the low velocity of the contact wave (1 m/s)
and is related to the remark of the previous section. Indeed, as soon as the mesh is fine
enough to provide an accurate approximation of the contact wave, the accuracy on pres-
sure and the velocity increases because the spurious waves described above tend to vanish
rapidly.

For the LuT test case, see figure (1.3b), we observe similar behavior: the relaxation
scheme is far better than Rusanov scheme for the fractions and the density and the error
is comparable for on U and P on coarse meshes. Moreover, the accuracy improvement with
the relaxation scheme becomes more and more important when the mesh is refined.

On the figures (1.4a) and (1.4b), the error is plotted as a function of CPU-time in order
to compare the schemes in term of efficiency. For a given CPU-time, the relaxation scheme
gives the best accuracy for both EOS. When focusing on the Stiffened Gas test case, the relax-
ation scheme and VFRoe-scheme have a very similar efficiency (see figure 1.4a), with a slight
advantage for the relaxation scheme. Indeed, the computation of VFRoe-ncv flux requires
an additional thermodynamical computation. In the LuT test case, the efficiency gain with
the relaxation scheme compared with Rusanov scheme is even more significant than in the
Stiffened Gas test case. With the LuT, the number of thermodynamical computations is the
same than with the stiffened gas EOS but each one is more CPU-time consuming. Rusanov
scheme and the relaxation scheme require exactly the same calls to the LuT, but the gain
in accuracy with the relaxation scheme allows to use coarser meshes. As a consequence, a
given accuracy is then achieved with far less calls to the LuT with the relaxation scheme and
CPU-time is thus saved.
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(a) Stiffened Gas test case.
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Figure 1.4 – Comparison of the CPU-time for Riemann problems out of equilibrium with uni-
form meshes containing from 500 to 250 000 cells: logarithm of the relative
L1
�error versus the logarithm of the CPU-time. The error and CPU-time are

plotted for the approximate solutions obtained with the different schemes and for P,
U, r, a.

1.4.2 At equilibrium test case: convection and relaxation effects

In this paragraph, a Riemann problem assuming thermodynamical equilibrium is consid-
ered (see appendix 1.D.2). This means that the source terms are now taken into account: for
each time-iteration, after the convection step, the fractions relax towards the equilibrium.
We want to assess here the convergence rate of the Lie splitting described in section 1.3 with
a source-term step that ensures the instantaneous relaxation towards the thermodynamical
equilibrium. The Riemann problem cosidered here is composed of a contact wave and a
U + c shock wave. The convergence curves are presented on figure (1.5).
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Figure 1.5 – Convergence curve for the Riemann problems at equilibrium computed with the
LuT: logarithm of the error versus logarithm of the mesh size. Four quantites are
plotted: P, U, r, a for two different numerical schemes (Rusanov and relaxation).
The meshes contain from 100 to 200 000 regular cells.

Since the numerical schemes used for the convection step have an asymptotic rate of
convergence of 1/2, since the source terms are discretized using a first order scheme in time
and since the Lie splitting is a first order splitting, the asymptotic rate of convergence of
the whole fractional step algorithm should be 1/2. This order can be observed for Rusanov
scheme when considering the fractions and the density. Nevertheless, the pressure and
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the velocity have not yet reached this asymptotic rate of convergence. When turning to
the numerical approximations obtained with the relaxation scheme, none of the variables
has reached 1/2, even if the slopes of the curves for the density and the fractions tend to
decrease on fine meshes.

1.4.3 At equilibrium test cases with a pure liquid initial state

Industrial applications provide a lot of situations in which vaporization occurs in a pure liq-
uid domain. One is thus faced with the problem of computations that involve a pure liquid
domain and a domain in which liquid and vapour coexist. We thus propose here Riemann
problems at thermodynamical equilibrium, with a transition from pure liquid towards a
mixture of liquid and vapour. Two Riemann problems are considered with a liquid left state
and a right state composed of a mixture of liquid and vapour. Each of these two Riemann
problems involves only one wave (see appendixes 1.D.3 and 1.D.4):

1. for the first one we only consider a U + c shock-wave;

2. for the second one we only consider a contact-wave.

The two other waves are then ghost waves. These cases are difficult to handle for the nu-
merical schemes because the liquid thermodynamical behavior is very different from the
mixture one. The transition through the single wave is thus associated with strong varia-
tions of the physical quantities, in particular considering the sound speed.

1.4.3.1 Shock-wave with a liquid left initial state
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Figure 1.6 – Convergence curve for a shock-wave: logarithm of the error versus logarithm of the
mesh size. The left initial state is a pure liquid state and the right initial state is
a mixture of liquid and vapour, both are at thermodynamical equilibrium. Four
quantities are plotted: P, U, r, a. The meshes contain from 100 to 150 000 regular
cells.

For this test case, the relaxation scheme was not robust enough and the computation
stops in the very first iterations. In fact, in order to compute the fluxes between two cells,
denoted by the subscripts r and l, the relaxation scheme uses an intermediate state with a
modified pressure P⇤ computed as:

P⇤ =
a
2
(Ul � Ur) +

1
2
(Pl + Pr)
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with the parameter

a2 > max(
cl
tl

,
cr

tr
).

In the present case, l is a liquid state and r a liquid-vapour mixture state (see appendix
1.D.3). Hence cl/tl >> cr/tr, and cl/tl is very large, which leads to large parameter a. This
has two drawbacks. First, the time-step is based on the value of a through the spectral radius
and large values of a imply very small time-step. Moreover, since the difference between left
and right initial velocities is not equal to zero, the pressure P⇤ reaches too large values. Then
the balance of the resulting numerical fluxes leads after few iterations to thermodynamical
states that do not belong to the domain of definition of the LuT and the computation stops.

To overcome these difficulties, we have introduced a “Rusanov switch" into our code
when computing the numerical fluxes with the relaxation scheme. Indeed, if the maximal
eigenvalue computed with the parameter a is much greater than the maximal eigenvalue
computed with Rusanov scheme, the relaxation numerical fluxes are replaced by the nu-
merical fluxes obtained using Rusanov scheme. This modified version of the relaxation
scheme is denoted in the following by the relaxation scheme with Rusanov switch. For the
present test case, this switch only occurs on few cell-interfaces around the contact wave.
For instance, for a mesh with 1000 cells, Rusanov switch only occurs for the interface at the
middle of the domain during the first 12 time iterations.

The relaxation scheme with Rusanov switch is robust enough for the present test case
(see figure 1.6). Since the switch only occurs on few cell-interfaces the accuracy of the re-
laxation scheme with Rusanov switch remains more accurate than Rusanov scheme. On the
next test case, a comparison of Rusanov scheme, the relaxation scheme and the relaxation
scheme with Rusanov switch is proposed.

1.4.3.2 Contact-wave with a liquid left state

For this test case (see 1.D.4), the "relative" velocity at the shock location remains small and
the relaxation scheme -without Rusanov switch- is robust enough. We are thus able to com-
pare the results obtained with: Rusanov scheme, the relaxation scheme and the relaxation
scheme with Rusanov switch. On figure (1.7), the error between the numerical approxima-
tions and the analytical solution is plotted with respect to the mesh size. The asymptotic con-
vergence rate of 1

2 is recovered for the finer meshes, even if Rusanov scheme needs very fine
meshes to provide good approximations of the velocity. Moreover, the relaxation scheme
enables a great improvement of the accuracy compared with Rusanov scheme: a little more
than one order of magnitude on each quantity (see figure (1.7)). Indeed, Rusanov scheme
creates large spurious waves around the contact wave as illustrated on figure (1.8). Some
pressure oscillations are also created with the relaxation scheme and relaxation scheme with
Rusanov switch, but their amplitude is a hundred times smaller. This behaviour is classical
and it has been reported in [25].

When focusing on the comparison of the relaxation scheme and the relaxation scheme
with Rusanov switch, one can evaluate the loss of accuracy due to the switch with figure
(1.7). It can be noted that the introduction of the switch reduces the accuracy of the relaxation
scheme on coarse meshes but that this loss tends to vanish when the mesh is refined. Indeed,
Rusanov switch only occurs on a few cell-interfaces and the loss of accuracy concerns an
almost constant number of cell-interfaces whatever the mesh size is. Hence, the more cells
there are in the whole mesh, the less significant is the loss of accuracy due to Rusanov switch.
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Figure 1.7 – Convergence curve for a contact-wave: logarithm of the error versus logarithm of
the mesh size. The left initial state is a pure liquid state and the right initial state
is a mixture of liquid and vapour, both are at thermodynamical equilibrium. Four
quantities are plotted: P, U, r, a. The meshes contain from 100 to 150 000 regular
cells.

0 0,2 0,4 0,6 0,8 1

X (m)

1,1e+07

1,2e+07

1,3e+07

1,4e+07

1,5e+07

P
re

ss
u

re
 (

P
a)

Exact solution
Rusanov
RelaxCC
RelaxCC Switch

Figure 1.8 – Pressure as a function of x at tend = 2.5 10�4 s for a mesh with 5000 cells. The
contact wave remains close to x = 0.5 and spurious numerical waves are created
on both sides of the contact wave.

1.4.3.3 Conclusions for the at equilibrium test case with a liquid left state

In all cases, we have not encountered a loss of the asymptotic rate of convergence despite
the sudden transition from liquid to two-phase flow. Nevertheless, the relaxation scheme
is not always robust enough. This is the case for the shock-wave case proposed above. In
order to tackle this loss of robustness the relaxation scheme with Rusanov switch as been
tested when the parameter a arising from the Whitham condition becomes too high. This
modification is applied only on a few cell-interfaces, the loss of accuracy is thus limited to
coarse meshes, as it has been illustrated with the contact-wave case. However, it should be
noted that even on very coarse meshes, the relaxation scheme with Rusanov switch provides
a better accuracy than Rusanov scheme.

1.4.4 Conclusions

• When considering Stiffened Gas equation-of-state, the relaxation scheme is as accurate
and efficient as VFRoe-ncv scheme. Unfortunately, VFRoe-ncv scheme is not robust
enough when using the LuT. For the LuT, using an accurate scheme as the relaxation
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scheme enables to consider coarser meshes than with Rusanov scheme. This leads to
fewer computations of the thermodynamical quantities for a given accuracy, and thus
to far less expensive computations of the approximated solutions.

• Nevertheless, for the most severe cases, the relaxation scheme may fail. The relaxation
scheme with Rusanov switch is robust enough for such cases and enables to keep a
correct accuracy level.

• Verification test-cases are possible even with a complex equation of state and it allows
to assess the behaviour of different schemes for canonical situations. The test-cases
proposed above involve sudden phase transition from liquid to a two-phase flow, and
the source terms have been accounted for considering equilibrium situations. Indeed,
analytical solutions of the system with non-instantaneous thermodynamical relaxation
are far more complex to exhibit.

23



1.5 Validation case: study of vaporization near a wall due to a rar-
efaction wave

Our model aims to simulate some accidental scenarii, like a LOCA scenario. The SUPER-
CANON experiment [47] is an experimental device representative of this scenario: a tube
contains pressurized liquid water at T = 573.15K and P = 150 bar. The surronding room
contains air at atmospheric pressure P = 1 bar. The cap is opened at the beginning of
the experiment. The pressure then drops until a value close to the saturation pressure at
T = 573.15K. This first pressure wave is a rarefaction wave that travels with a high speed
in the liquid. When the rarefaction wave reaches the closed-end of the tube, vaporization
begins and is strongly influenced by out of equilibrium effects. In the model of the section
1.1, these effects are ruled by the relaxation time l chosen by the user. A study has been
realized in [36], using toy laws for the relaxation time: it appears that the arrival of the first
rarefaction wave on the wall and the first vaporization of the liquid due to the pressure drop
are very sensitive to the choice of the closure law for l. Experiments [47] also present vari-
ous behaviors for a same experimental set up, which might be explained by the quantity of
impurities in the liquid.

In this last section, we study a more simple case: vaporization near a wall due to a sud-
den pressure drop in the liquid. The aim is to focus on two types of relaxation time laws:
constant values for this characteristic time scale as well as closure laws based on the nucle-
ation theory have been tested. For the latter, we study a simplified model with only two
parameters.

1.5.1 Presentation of the test case

We consider a tube filled with liquid water at P=150 bar and T=593.15K, closed on the left
and open on the right (see figure 1.9). The initial fluid velocity is imposed at +10 m/s: it in-
duces a depressurization wave at the wall, which propagates towards the right outlet. When
pressure decreases at the wall, vapor appears : the same phenomenon can be observed in the
SUPERCANON experiment. This case can also be schematic of what happens downstream
a valve closed abruptly in a pipe in which flows high pressurized water

Wall Outflow

P = 150 bar ; T = 593.15 K

u = 10 m/s

0

x (m)

1

Figure 1.9 – Sketch of the validation test case: depressurization wave in out-going liquid

1.5.2 Simple model for relaxation time based on Nucleation Theory

Nucleation refers to the apparition of the first new phase nuclei during a first order phase
transition. A classical assumption (see for instance [15]) is that the bubble nucleation rate J
(the number of bubbles created per unit time in unit volume) follows an Arrhenius law:

J = J0 exp
✓
�

Ea

kBT

◆
, (1.32)
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where kB is the Boltzmann constant, T is the liquid temperature, J0 is a prefactor and Ea is
an activation energy. From this nucleation rate J, we propose a simplified model for a time
scale tnuc characterizing the nucleation. From assumptions made for instance in [8] or [43],
we define:

tnuc =
⇣ a0

DP

⌘3
exp

✓
jEa

kBT

◆
, (1.33)

where Ea is defined by (1.85): Ea =
16pg3

3(DP)2 , and g is estimated with the IAPWS 94 correla-

tion [46]. j 2 [0, 1] depends on the nucleation type : homogeneous nucleation occurs when
j = 1; whereas heterogeneous nucleation occurs when j is in ]0, 1[. The whole approach to
get this simplified model as well as the chosen correlation for g, are described in appendix
1.C.

In the simplified model (1.33), we have only two parameters to define: a0 in (Pa.s), ho-
mogeneous to a dynamical viscosity, and j 2 [0, 1]. Even if it is not a complete realistic
model, it describes two important physical effects :

• Thanks to the Arrhenius law, heteregeneous nucleation only begins if a minimal en-
ergy barrier is reached;

• Dependance on
1

DP3 reflects a physical behaviour which seems relevant: when DP !

•, the return towards thermodynamical equilibrium becomes instantaneous; whereas
when DP ' 1, the return towards equilibrium may require a finite time, which enables
the persistence of out-of-equilibrium states for small DP.

1.5.3 Numerical results

In the following simulations, the domain is [0, 1], the mesh contains 5000 cells and the final
time is 10�3s. Empirically, we observe that, according to the CFL condition and the mesh
size, the time step is almost constant, around 5 10�8s.

1.5.3.1 Constant relaxation times

Constant relaxation times have first been considered. Although they are probably not phys-
ically relevant, they enable to illustrate how out of equilibrium effects can change or not the
solution.

The difference between pressure (P) and saturation pressure (Psat) near the wall is plotted
on figure 1.10. Because of water moving to the right of the tube, a rarefaction wave appears
at the wall, travelling to the right: pressure then decreases, until it reaches the saturation
pressure. After that, vaporization may occur.

When relaxation time tends to zero (case ‘l = 10�30 s’), thermodynamical equilibrium
is instantaneously reached: it means that P = Psat during the whole simulation. In fact, as
soon as the relaxation time is small enough, pressure almost directly decreases to reach the
saturation pressure and remains constant at this value during the whole simulation.

However, when the relaxation time is high, a pressure undershoot appears at the very
beginning of the simulation: the pressure decreases below the saturation pressure, which
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Figure 1.10 – Difference between the pressure and the saturation pressure near the wall as a func-
tion of time (s) for several constant relaxation times. The second window inside the
first graph shows a zoom on the beginning of the simulation for the smaller relax-
ation times.

postpones the beginning of the vaporization. The higher l is, the more the pressure de-
creases. Indeed, high relaxation times prevent from reaching the thermodynamical equilib-
rium: the vaporization can not occur and the flow remains liquid. Without phase change,
the only possibility to release energy of the rarefaction wave for the system is to reduce the
pressure. After the first brutal drop, pressure increases rather slowly towards the saturation
pressure, depending on the time scale l.

On figure 1.11, pressure and volume fraction are plotted with respect to x at the end of
the simulation (t = 10�3 s). For small relaxation times, vapor creation is located at the left
side of the tube, whereas vapor is more spread throughout the tube when the relaxation
time is high. The pressure undershoot is more important when l is high.

1.5.3.2 Relaxation times based on nucleation theory

In this part, we take l = tnuc as expressed by (1.33). Two parameters have to be chosen: a0
and j.

• For this first study, we fix a0 = 1.7 105 Pa.s. This choice is not based on physical argu-
ment. Remembering the order of magnitude of DP in the simulation from the previous
subsection, this value of a0 empirically gives l with the same order of magnitude than
the time step. The idea here is to study the behaviour of the exponential term in tnuc.

• Several j have thus been tested: j 2 {1; 6.5 10�3; 5 10�3; 3.3 10�3; 5 10�4; 1 10�4
}.

We recall that homogeneous nucleation occurs when j = 1; when heterogeneous
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Figure 1.11 – Pressure (Pa) and volume fraction as a function of x (m) for several constant relax-
ation times at the end of the simulation (t=10�3 s).

nucleation occurs, j is in ]0, 1[.

On figure 1.12, the difference P � Psat (Pa) is plotted as a function of the time t (s) near
the wall. A violent pressure undershoot below the saturation pressure occurs at the very
beginning of the simulation. When nucleation is completely homogenenous (j = 1), the
pressure stays almost constant and far below saturation pressure: this case is very similar
to the case with constant and very high relaxation time (‘l = 1 s’, see figure 1.10). With a
homogeneous nucleation, Ea is thus high and does not allow to create bubbles. The param-
eter j that tends to decrease this energy then plays an important role. The magnitude of the
undershoot slightly vary with j: the more heterogeneous nucleation is (j ! 0), the lower
the pressure undershoot is. In fact, the parameter j has a greater influence on the duration
of the pressure undershoot than on its magnitude.

On figure 1.13, pressure and volume fraction are plotted at the end of the simulation
with respect to x: by comparison with the simulations with constant l, the stiffness of the
Arrhenius term in tnuc (1.33) leads to complex behaviors for the pressure drop. Some oscil-
lations occur for x ' 0.05 m, around the frontier between the pure liquid domain and the
two-phase domain. These oscillations are numerically stable and tend to vanish when the
mesh is refined. Last, it can be observed that the relaxation time law based on nucleation
theory modifies the vapor creation: contrary to constant relaxation times (see figure 1.11), a
greater amount of vapor appears in a more localized area close to the wall (see figure 1.13).
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Figure 1.12 – Difference between the pressure and the saturation pressure near the wall as a func-
tion of time (s) for several nucleation relaxation times, with fixed a0 and variable j.
The more j is closed to 0, the more nucleation is facilated. The second window in-
side the first graph shows a zoom on the beginning of the simulation for relaxation
times with j ! 0.

Finally, changing the relaxation time laws leads to a change of the thermodynamical
path towards thermodynamical equilibrium. Several behaviors of the mixture are observed
depending on the chosen relaxation time law. They are summed up on figure 1.14:

• an initial strong pressure undershoot without return towards equilibrium before the
simulation ends (‘l = 1 s’ or ‘Nucleation, j = 1.0’);

• a mixture staying almost at thermodynamical equilibrium during the whole simula-
tion (‘l = 5.0 10�8 s’);

• an initial strong pressure undershoot with smooth return towards thermodynamical
equilibrium (‘l = 1.0 10�5 s’);

• an initial strong pressure undershoot with jumps throughout T-P plane (‘Nucleation
with j = 5.0 10�3’ or ‘Nucleation with j = 1.0 10�4’).

Even if our simplified nucleation model is not completely physical in its current form,
this study shows how strongly relaxation time laws can modify mixture behavior through-
out the simulation.
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Figure 1.13 – Pressure (Pa) and volume fraction as a function of x (m) for several relaxation times
based on nucleation theory at the end of the simulation (t=10�3 s). The two smaller
windows inside the main graph are two zooms: one on the smaller x, the other on
the smaller volume fractions.
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Conclusion

The homogeneous model of section 1.1 has been used with a complex equation of state
based on the look-up table (LuT) of section 1.2. This LuT allows to save computation time
with respect to the direct use of the IAPWS-97 formulation (computations with the LuT are
90 times faster) and provides more realistic values than a classical analytical EOS as the
Stiffened Gas on a wide range of pressure and temperature. In a numerical point of view,
the relaxation scheme proposed in [10] has been implemented and its behaviour has been
assessed on different Riemann problems involving both a Stiffened Gas EOS and the look-up
table described in section 1.2. This relaxation scheme provides a great accuracy and a very
satisfactory robustness, which are both mandatory when using industrial look-up tables.
In section 1.5, the influence of the time-scale l that rules the return to the thermodynamical
equilibrium has been investigated: various values of l have been compared to a very simple
- yet non-linear - model based on the nucleation theory. The results are very interesting and
this work should be pursued by performing some comparisons on the basis of relevant
out-of-equilibrium experiments. Moreover, the nucleation theory includes surface tension
effects and a further improvement of the present work could be to include in the model both
the interfacial area and the surface tension effects.
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Appendices

1.A Building of the homogeneous model

In this section, we build step by step a homogeneous model to describe a mixture of liquid
and vapour, by considering at first the extensive variables [7], as made in [3, 38, 31, 44, 41].
The only equilibrium assumption in the model is a kinematic equilibrium. In particular,
the model enables to describe the mixture out of the thermodynamical equilibrium. The
return to equilibrium is ensured by a relaxation process in agreement with the second law
of thermodynamics.

1.A.1 Extensive description of the system

Three extensive quantities are needed to describe a two-phase mixture [7]. Let us consider a
volume V (in m3) of the mixture, corresponding to a mass M (in kg) and an internal energy
E (in J). Within this mixture, each phase k = l, v is described with the same quantities: a
volume Vk (in m3), a mass Mk (in kg) and an energy Ek (in J).

Some assumptions are made:

(H1) The geometric repartition of the phases inside the volume V is not taken into account.

(H2) The surface tension is neglected.

(H3) The whole volume V is occupied by some fluid (vacuum occurrence is not considered
here).

(H4) The phases are not miscible.

With these assumptions, we can easily express the conservation of volume, mass and energy
as:

V = Vl + Vv ; M = Ml +Mv ; E = El + Ev. (1.34)

The hypothesis (H3) and (H4) are mandatory to write the first equation of (1.34) on the vol-
umes. When dealing with the miscible case (i.e. when (H4) is not fulfilled), one can for
instance make the assumption that the two phases occupy the whole volume. In such a
case, the first equation of (1.34) is replaced by two equations describing the equality of the
volumes, V = Vl = Vv, which leads to another system of equations. This case does not enter
the scope of the present work and it has been investigated in details in [27, 23, 30].

The aim is now to describe the evolution of this system in accordance with the first and
second laws of thermodynamics and Newton’s laws of dynamics. We proceed in two steps
by adopting a lagrangian point of view. In section 1.A.2 and 1.A.3 we first consider the
thermodynamical behavior of a fixed quantity of mixture. For this purpose we follow a
classical approach [44, 41] based on the evolution of a closed and isolated mass of mixture
in agreement with the second law of thermodynamics. Then, in section 1.A.4, we account
for the evolution of this mass of mixture within the whole flow by applying the first law of
thermodynamics and Newton’s law.

1.A.2 Thermodynamical quantities

1.A.2.1 Kinematic equilibrium

The kinematic equilibrium between the phases is assumed, i.e.:
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(H5) both phases are convected with the same velocity U.

Thanks to this assumption of equal velocity (Ul = Uv = U), the dynamical behavior of the
system can be described by modelling the behavior of an element (V ,M, E) of the mixture
along a streamline. In particular, since Uk = U, the derivative along a streamline of phase k
of a quantity F,

dkF = (∂tF + Uk∂xF) dt,

corresponds to the same operator for both phases. So that the derivative along a streamline
does not depend on the indice k:

dkF = (∂tF + U∂xF) dt = dF. (1.35)

This last equation (1.35) is a key relation which will enable us to simply derive the model.

1.A.2.2 Phasic thermodynamical quantities

In order to close the system, we need to define a complete EOS for each phase. For this
purpose, we assume that each phase is described by an extensive entropy (Wk) 7! Sk(Wk)
(in J/K), where we have set Wk = (Vk,Mk, Ek). Some hypotheses are needed on Sk to
guarantee useful properties for the final model:

(H6) (Wk) 7! Sk(Wk) is C2.

(H7) (Wk) 7! Sk(Wk) is concave.

(H8) 8a 2 R+, 8Wk, Sk(aWk) = aSk(Wk).

(H9) 8Wk,
∂Sk
∂Ek

> 0

In agreement with the Classical Irreversible Thermodynamics (CIT) theory, the classical
Gibbs relation holds for each phase:

TkdkSk = dkEk + PkdkVk � µkdkMk. (1.36)

Thanks to (1.35), it can be rewritten as:

TkdSk = dEk + PkdVk � µkdMk. (1.37)

The extensive entropy Sk using the variables (Vk,Mk, Ek) is a complete EOS for phase k
when associated with the Gibbs relation (1.37). This means that all the thermodynamical
quantitites can be computed thanks to the derivatives of Sk:

Pk
Tk

=
∂Sk
∂Vk

����
Mk ,Ek

(1.38)

1
Tk

=
∂Sk
∂Ek

����
Vk ,Mk

(1.39)

µk
Tk

= �
∂Sk

∂Mk

����
Vk ,Ek

(1.40)

where Pk is the pressure of phase k (in Pa), Tk (in K) is the temperature of phase k, and µk (in
J/kg) is the Gibbs free enthalpy of phase k.
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1.A.2.3 Thermodynamical quantities of the mixture

We note W = (Vl ,Ml , El ,Vv,Mv, Ev) = (Wl , Wv). Thanks to (H2), we assume that the
entropy of the mixture S is:

(W) 7! S(W) = Sl(Wl) + Sv(Wv) (1.41)

This mixture entropy should be defined using another relation if surface tension (or other
effects, see [26]) had to be accounted for.

We define H(M), a subset of (R⇤
+)

6 so that all the states W 2 H(M) have the same total
mass M:

H(M) =
�

W 2 (R⇤

+)
6;Ml +Mv = M

 
.

If the entropy S is concave thanks to the definition (1.41) and properties (H5) and (H7), it can
be proved that S is strictly concave on H(M) (see [23, 44, 41]).

Using the Gibbs relation for each phase (1.37), the definition of the mixture entropy (1.41)
and relation (1.35), a Gibbs relation for the mixture can be easily exhibited:

dS = dSl + dSv =
1
T l

dEl +
1
T v

dEv

+
Pl
Tl

dVl +
Pv

Tv
dVv �

µl
Tl

dMl �
µv

Tv
dMv

(1.42)

Thanks to the relation dFk = Fd
✓

Fk
F

◆
+

Fk
F

dF, Gibbs relation (1.42) for the mixture can

be written in the form:

dS =

✓
El
E

1
Tl

+
Ev

E

1
Tv

◆
dE +

✓
Vl
V

Pl
Tl

+
Vv

V

Pv

Tv

◆
dV

�

✓
Ml
M

µl
Tl

+
Mv

M

µv

Tv

◆
dM

+ E
1
Tl

d
✓
El
E

◆
+ E

1
Tv

d
✓
Ev

E

◆

+ V
Pl
Tl

d
✓
Vl
V

◆
+ V

Pv

Tv
d
✓
Vv

V

◆

� M
µl
Tl

d
✓
Ml
M

◆
�M

µv

Tv
d
✓
Mv

M

◆

(1.43)

Then, using relation (1.43), we can identify a mixture pressure P, a mixture temperature T
and a mixture Gibbs free enthalpy µ:

P
T

=
Vl
V

Pl
Tl

+
Vv

V

Pv

Tv
(1.44)

1
T

=
El
E

1
Tl

+
Ev

E

1
Tv

(1.45)

µ

T
=

Ml
M

µl
Tl

+
Mv

M

µv

Tv
. (1.46)

and we thus get the Gibbs relation:

dS �
1
T (dE + PdV � µdM)

= E
1
Tl

d
✓
El
E

◆
+ V

Pl
Tl

d
✓
Vl
V

◆
�M

µl
Tl

d
✓
Ml
M

◆

+ E
1
Tv

d
✓
Ev

E

◆
+ V

Pv

Tv
d
✓
Vv

V

◆
�M

µv

Tv
d
✓
Mv

M

◆ (1.47)
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The terms on the left-hand side of this relation define the evolution of the mixture quanti-
ties and are related to the interaction with the surronding fluid, whereas the terms on the
right-hand side are exchange terms between the phases. In order to give a complete time-
evolution model of our system, we need to express the derivative terms of (1.47) in terms of
W.

1.A.3 Modelling exchange terms between the phases

Let us first focus on the exchange terms in (1.47). We thus consider an isolated amount of
mixture so that: dE = dV = dM = 0. In other words, we consider a subset D(V ,M, E) of
H(M) so that all the states W 2 D(V ,M, E) have the same total volume V , the same total
mass M and the same total energy E :

D(V ,M, E) = {W 2 H(M) ; Vl + Vv = V ; El + Ev = E} .

In order to respect the second law of thermodynamics, the mixture entropy S of such an
isolated system must increase. As a consequence, the models for d (Vk/V), d (Mk/M) and
d (Ek/E) must be chosen so that dS � 0.

The Gibbs relation (1.47) becomes for such an isolated system:

dS = E
1
Tl

d
✓
El
E

◆
+ V

Pl
Tl

d
✓
Vl
V

◆
�M

µl
Tl

d
✓
Ml
M

◆

+ E
1
Tv

d
✓
Ev

E

◆
+ V

Pv

Tv
d
✓
Vv

V

◆
�M

µv

Tv
d
✓
Mv

M

◆ (1.48)

As in [3], we assume that the time-evolution of these quantities are of the form:

(H8)

8
>>>>>><

>>>>>>:

d
✓
Vk
V

◆
=

V̄k � Vk
lV

dt,

d
✓
Mk
M

◆
=

M̄k �Mk
lM

dt,

d
✓
Ek
E

◆
=

Ēk � Ek
lE

dt,

(1.49)

with l > 0. The state W̄ = (V̄l ,M̄l , Ēl , V̄v,M̄v, Ēv) then corresponds to the state that the
system will asymptotically reach. Let us define W̄ so that models (1.49) comply with the
second law of thermodynamics.

By differentiating the mixture entropy S with respect to the variable W, we get:

dS = rW(S)(W).dW. (1.50)

Since we have an isolated system, dV = dM = dE = 0, which implies:

dW =

✓
Vd

✓
Vl
V

◆
,Md

✓
Ml
M

◆
, Ed

✓
El
E

◆
,

Vd
✓
Vv

V

◆
,Md

✓
Mv

M

◆
, Ed

✓
Ev

E

◆◆ (1.51)

From (1.49), (1.50) and (1.51) it follows that:

dS = rW(S).
✓

W̄ � W
l

◆
dt. (1.52)
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Since S is strictly concave on H(M), it is also strictly concave on D(V ,M, E). This property
implies that the tangent plane to S at any point W of H(M) is above S:

8W0 2 H(M), S(W0)  S(W) +rW(S)(W).(W0 � W). (1.53)

In particular, we can write the concavity condition (1.53) for W0 = W̄, which leads to:

rW(S)(W).(W̄ � W) � S(W̄)� S(W)

so that from (1.52) we get:

dS �
(S(W̄)� S(W))

l
dt. (1.54)

As a consequence, one possible choice to guarantee the growth of the entropy with the
models (1.49) is to define the state W̄ as the point which maximizes the mixture entropy for
a fixed (V ,M, E):

S(W̄) = max
D(V ,M,E)

(S(W)) (1.55)

Thanks to the strict concavity of S on D(V ,M, E), this point exists and is unique. Hence,
with the definition (1.55) for the state W̄, the growth of the mixture entropy of an isolated
system is ensured by the models (1.49).

Moreover, Gibbs relation (1.48) on D(V ,M, E) can be simplified by using relations (1.34).
Indeed, when focusing on the volume relation in (1.34), we have:

Âk d
⇣
Vk
V

⌘
= Âk

⇣⇣
dVk
V

⌘
� Vk

⇣
dV
V2

⌘⌘

= d(Âk Vk)
V

� (Âk Vk)
⇣

dV
V2

⌘
= 0

Obviously, the same results can be obtained for masses and energies, so that we have the
following relations:

d
✓
Vl
V

◆
= �d

✓
Vv

V

◆
;

d
✓
Ml
M

◆
= �d

✓
Mv

M

◆
; d

✓
El
E

◆
= �d

✓
Ev

E

◆
.

(1.56)

Eventually, by introducing relations (1.56) in Gibbs relation (1.48), we obtain the follow-
ing relation on D(V ,M, E):

dS = E

✓
1
Tl

�
1
Tv

◆
d
✓
El
E

◆
+ V

✓
Pl
Tl

�
Pv

Tv

◆
d
✓
Vl
V

◆

� M

✓
µl
Tl

�
µv

Tv

◆
d
✓
Ml
M

◆ (1.57)

Since the mixture entropy is strictly concave on D(V ,M, E), it possesses a unique maximum
W̄ on D(V ,M, E). If this maximum is not reached on the boundary of D(V ,M, E), the
derivative of S with respect to Vl/V , Ml/M and El/E must vanish at W̄. The latter is thus
defined by the following relations:

8
<

:

Pl(V̄l ,M̄l , Ēl) = Pv(V̄v,M̄v, ¯Ev)
Tl(V̄l ,M̄l , Ēl) = Tv(V̄v,M̄v, Ēv)
µl(V̄l ,M̄l , Ēl) = µv(V̄v,M̄v, Ēv)

(1.58)

When the maximum is reached on the boundary of D(V ,M, E), system (1.58) does not make
sense since the derivatives of the mixture entropy do not vanish inside D(V ,M, E). Such
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situations correspond to single-phase cases for which W1 or W2 is equal to (0, 0, 0).

The modelling of the evolution of the phasic volumes, phasic masses and phasic energies
(1.49) enforces the system to return to the equilibrium state W̄, which corresponds to the
classical thermodynamical equilibrium state. The latter is defined as the state ensuring the
pressure, temperature and Gibbs enthalpy equilibria (1.58). It has been shown in this section
that these source terms (1.49) comply with the second law of the thermodynamics provided
that the relaxation time-scale l is chosen non-negative.

1.A.4 Dynamical evolution of the mixture quantities

The previous subsection describes a model for the evolution of each phase of an element
(V ,M, E) isolated from the rest of the fluid. The interaction between the surrounding fluid
and the the mixture described by the variables (V ,M, E , U) is now considered by using the
following classical assumptions:

(H10) the mass M is conserved along the streamlines:

dM = 0; (1.59)

(H11) the variation of the volume V is due to the divergence of the velocity field U:

dV = Vrx.(U)dt; (1.60)

(H12) the variation of the velocity U follows the Newton’s law, considering here that only
the forces due to the pressure are accounted for:

d(MU ) = �Vrx(P)dt, (1.61)

where P corresponds to the mixture pressure defined by (1.44);

(H13) the first law of thermodynamics applies to the energy E :

dE = �PdV + Qdt; (1.62)

it means that the variation of E is due to the work of the external forces (only the
pressure forces here) and to the heat exchange Q of the system with its surrondings.

Remark 1.7 — Thanks to assumptions (H10) and (H13), with Q = 0, we have dE + PdV �

µdM = 0. Hence the general Gibbs relation (1.47) reduces to the Gibbs relation for a isolated
system (1.57).

1.A.5 The set of Partial Derivative Equations (PDE) in intensive form

From now the system has been described using extensive variables. Indeed, extensive vari-
ables provide a more comprehensive description of the model. But, since our aim is to build
a set of partial derivative equations, it is convenient to use an intensive description of the
system. In this section, we derive the extensive descritption of the two-phase flow of the
previous sections into an intensive description.
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1.A.5.1 Fractions and phasic specific quantities

The mass conservation assumption (H10) enables to define specific quantities (per unit of
mass). The specific volume of the mixture is thus defined as t = V/M (in m3/kg), and the
specific energy of the mixture is e = E/M (in J/kg). We recall the notations for the volume
fraction ak, the mass fraction yk and the energy fraction zk of phase k:

Yk = (ak, yk, zk) =

✓
Vk
V

,
Mk
M

,
Ek
E

◆
(1.63)

The phasic specific volume and the phasic specific energy of phase k are then:

tk =
Vk
Mk

=
Vk
V

M

Mk

V

M
=

ak
yk

t;

ek =
Ek
Mk

=
Ek
E

M

Mi

E

M
=

zk
yk

e.
(1.64)

The conservation equations (1.34) become:

1 = al + av ; 1 = yl + yv ; 1 = zl + zv. (1.65)

The thermodynamical evolution equation (1.49) can be written:

dak =
āk � a

l
dt; dyk =

ȳk � yk
l

dt; dzk =
z̄k � zk

l
dt (1.66)

where Ȳk = (āk, ȳk, z̄k) =

✓
V̄k
V

,
M̄k
M

,
Ēk
E

◆
denotes the equilibrium fractions.

1.A.5.2 Specific mixture entropy and Gibbs relation

Let us define the mass Mk as Mk = M
0

kIkg, where Ikg is equal to 1 kg and M
0

k 2 R+
� {0}

is dimensionless. By denoting sk the specific entropy of phase k, sk = Sk/Mk, and by using
the property (H8), we have:

sk

✓
Xk
Mk

◆
=

Sk(Xk,Mk)
Mk

=
1

Ikg
Sk

✓
Xk
M0k

,
Mk
M0k

◆
=

1
Ikg

Sk

✓
Xk
M0

k
, Ikg

◆
.

where Xk stands here for (Vk, Ek). We thus get the link between extensive and intensive
quantities:

sk

✓
Xk
Mk

◆
=

1
Ikg

Sk

✓
Xk
M0

k
, Ikg

◆
=

Sk(Xk,Mk)
Mk

(1.67)

The specific mixture entropy can be defined as:

8W 2 H(M), M > 0, s
✓

W
M

◆
=

S(W)
M

. (1.68)

By using the relation (1.67) for the phasic entropies we get the expression of the specific
mixture entropy:

s
✓

W
M

◆
=

Sl(Wl)
M

+
Sv(Wv)
M

=
Ml
M

Sl(Wl)
Ml

+
Mv

M

Sv(Wv)
Mv

=
M1

M
sl

✓
Xl
Ml

◆
+

Mv

M
sv

✓
Xv

Mv

◆
.
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The mixture entropy s can finally be re-written using the fractions of phase l:

s(al , yl , zl , t, e) = ylsl

✓
al
yl

t,
zl
yl

e
◆
+ (1 � yl)sv

✓
(1 � al)
(1 � yl)

t,
(1 � zl)
(1 � yl)

e
◆

In the same way, the Gibbs relation for the mixture can be written using the intensive quan-
tites:

ds =
1
T

de +
P
T

dt + t

✓
Pl
Tl

�
Pv

Tv

◆
dal

�

✓
µl
Tl

�
µv

Tv

◆
dyl + e

✓
1
Tl

�
1
Tv

◆
dzl

(1.69)

where the mixture temperature and the mixture pressure are:

1
T

= zl
1

Tl(tl , el)
+ zv

1
Tv(tv, ev)

;

P
T

= al
Pl(tl , el)
Tl(tl , el)

+ av
Pv(tv, ev)
Tv(tv, ev)

.

(1.70)

1.A.5.3 Intensive PDE in a one dimensional framework

The equations (1.59), (1.61), (1.62) can be written with intensive quantities:
8
<

:

dt = trx.(U)dt
dU = �trx(P)dt
de = �Pdt + qdt

(1.71)

where q = Q/M, the specific heat-power is set to zero in the following:

q = 0. (1.72)

Let us note the mixture density:
r = 1/t, (1.73)

the specific total energy of the mixture:

E = e + |U|
2/2, (1.74)

and the vector gathering the fractions:

Y = (al , yl , zl)
t. (1.75)

By using the relation (1.35), which states that:

dF = (∂tF + U∂xF) dt, (1.76)

it can be shown that the set of derivative equations (1.71) and (1.66) lead to the set of partial
differential equations in conservative form:

8
>>>>>>>>><

>>>>>>>>>:

∂

∂t
(rY) +

∂

∂x
(rUY) = rG,

∂

∂t
(r) +

∂

∂x
(rU) = 0,

∂

∂t
(rU) +

∂

∂x
�
rU2 + P

�
= 0,

∂

∂t
(rE) +

∂

∂x
(U(rE + P)) = 0.

(1.77)
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The system (1.77) is closed with the relations (1.64), (1.65), (1.70), and the source terms are:

G =

✓
āl � al

l
,

ȳl � yl
l

,
z̄l � zl

l

◆
.

The time-scale l > 0 describing the return to the thermodynamical equilibrium has to be
chosen by the user.

Remark 1.8 — Following remark 1.7, Gibbs relation for intensive quantities (1.69) becomes

ds = t

✓
Pl
Tl

�
Pv

Tv

◆
dal �

✓
µl
Tl

�
µv

Tv

◆
dyl + e

✓
1
Tl

�
1
Tv

◆
dzl . (1.78)

The mixture entropy s is then convected with the velocity U, and subjected to the source
terms G:

∂

∂t
(rs) +

∂

∂x
(rUs) = rGrY (s)

|t,e . (1.79)
⇤
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1.B Reference solution for a rarefaction wave with the LuT

Let us consider a single phase flow with a complex EOS, for instance in the form of the
LuT proposed in the article. In the following we deal with a u � c rarefaction wave, but the
conclusions would obviously be the same for a u + c rarefaction wave. For any point .⇤ in a
u � c rarefaction wave separating a left state L and a right state R, the Riemann invariants
are constant, which means in our case that:

s⇤ = sL, and u⇤ +
Z P⇤

PL

dP
rc(s0, P)

= uL. (1.80)

When using simple analytical EOS, as Stiffened Gas EOS for instance, the integral in the sec-
ond condition of (1.80) can be explicitly computed. It is also easy to compute an isentropic
path, which corresponds to the first condition of (1.80). Finally for such simple EOS, the
definition of a point in the rarefaction wave relies on a local implicit computation (through
a Newton algorithm or a dichotomy for instance) for system (1.80). The latter can be done
up to the round-off error of the computer.

With our complex EOS based on the (P, T) plane, the isentropic path can only be ap-
proximated from the left state to the right state using Newton-like algorithm. Moreover, the
integral arising in the second condition of (1.80) can not be explicitly written. It must also be
approximated using classical integration algorithm along the isentropic path. We have thus
two sources of numerical approximation in the definition of the thermodynamical path of
the rarefaction wave.

On the other hand, our particular choice for the polynomials (cubic splines) of the LuT
leads to an even more important drawback. Indeed, as depicted above, we can approximate
the rarefaction wave in the thermodynamical plane (P, T) using numerical algorithms, but
we are not able to project this thermodynamical path onto the (t, x) plane. A point .⇤ of the
u � c rarefaction wave is connected to the point (t, x⇤) thanks to the relation:

x⇤ � x0

t
= u⇤

� c⇤.

Since the rarefaction wave is a regular wave between two time-space points (t, xL) and
(t, xR), u⇤

� c⇤ has to be continuous and monotonic to allow a regular projection. It should
then be noted that the sound speed c can be written with respect to the second order deriva-
tives of µ:

c2 =

✓
cT

t
�

Ta2
P

Cp

◆�1

, (1.81)

where

Cp = �T
∂2µ

∂T2

����
P

; ap =
1
t

∂2µ

∂p∂T

����
T,p

; cT =
1
t

∂2µ

∂p2

����
T

. (1.82)

Since our LuT is based on cubic splines, it only ensures a C
1 µ, but we can not ensure the

continuity of c between to neighboring cells of the LuT. We are thus not able to perform the
projection of the rarefaction wave from the thermodynamical plane (P, T) to the (t, x) plane.

Finally, due to our complex EOS, we could only perform a weak comparison between
the approximated solution given by our code and an approximated rarefaction wave in the
thermodynamical (P, T)�plane. This comparison is weak in the sense that we would get a
“reference” rarefaction wave obtained through a numerical integration and not an analytical
one. In order to perform this weak comparison in the (t, x) plane, we should use a higher
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polynomial basis instead of the splines, so that the sound speed would be continuous and
monotonic on the whole domain.

We propose here to build a “reference” solution for a u � c rarefaction wave as de-
picted above. We consider initial data such that the left state is a pressurized liquid state
and the right state is pure vapor at saturation (see table 1.B.1). The quantities e, r and

f2 =
R P⇤

PL

dP
rc(s0, P)

are continuous and they have been plotted on figures 1.B.1, 1.B.2 and

1.B.3 with respect to the pressure. The quantity x⇤ =
x⇤ � x0

t
= u⇤

� c⇤ is plotted on figure
1.B.4, the non-monotonic behavior associated to c can be clearly seen.

Data for LuT Left state Right state
a 0 1
y 0 1
z 0 1

r kg/m3 725.86 43.90
u (m/s) 0 9.90
P (Pa) 1.50 107 8.23 106

Table 1.B.1 – Initial data for an isolated rarefaction wave at equilibrium with liquid left state and
vapor right state.
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Figure 1.B.1 – Specific internal energy e (in J.kg�1) along the discrete isentropic path Ss0 (abscis-
sas are the opposite of the pressure gap between the final pressure and the initial left
pressure equal to 150 105 Pa).

As an illustration, a “reference” solution can be built by introducing x̃ which corresponds
to a linear regression of x (cf figure 1.B.4). This new quantity x̃ is continuous and monotonic;
moreover, at each x̃, we can associate unique values for the quantities P, r, e, f2, c. In this
way, the thermodynamical path of the rarefaction wave can be projected on the (t, x) plane.
Figure 1.B.5 show thermodynamical paths in the (P, T)-plane for three different meshes at
the final step compared with the reference solution. Mesh refinement qualitatively improves
the solution, in particular for states at low pressure. Final pressure profiles seem correct (see
figure 1.B.6). Obviously, this rarefaction wave can not be used for verification purposes, the
way of projecting the rarefaction wave through x̃ is not accurate enough and just allows to
illustrate the encountered difficulties.
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Initial left pressure - final pressure (Pa)
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Figure 1.B.2 – Density r (in kg.m�3) along the discrete isentropic path (abscissas are the opposite
of the pressure gap between the final pressure and the initial left pressure equal to
150 105 Pa).
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Figure 1.B.3 – F2 =
R P⇤

PL

dP
rc(s0, P)

(in m.s�1) along the isentropic path (abscissas are the oppo-

site of the pressure gap between the final pressure and the initial left pressure equal
to 150 105 Pa).
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Figure 1.B.4 – x⇤ =
x⇤ � x0

t
= u⇤

� c⇤ along the discrete isentropic path and regularized x̃ used
in the reference solution (abscissas are the opposite of the pressure gap between the
final pressure and the initial left pressure equal to 150 105 Pa).

47



9e+06 1e+07 1,1e+07 1,2e+07 1,3e+07 1,4e+07 1,5e+07
Pressure (Pa)

570,5

571

571,5

572

572,5

573

T
em

p
er

at
u

re
 (

K
)

1000 cells
5000 cells
10000 cells
Reference solution1,27e+07 1,28e+07 1,29e+07

572,04

572,06

572,08

572,1

572,12

8,225e+06 8,23e+06 8,235e+06 8,24e+06

570,11

570,11

570,12

570,12

Figure 1.B.5 – Thermodynamical states at the final time in the PT-plane for several meshes com-
pared with the reference solution.
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Figure 1.B.6 – Pressure (Pa) as a function of X (m) at the final time compared with the reference
solution.
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1.C Simple model for relaxation time based on Nucleation Theory

The Classical Nucleation Theory has been developed for many years [15]. This theory as-
sumes that the bubble nucleation rate J (the number of bubbles created per unit time in unit
volume) follows an Arrhenius law:

J = J0 exp
✓
�

Ea

kBT

◆
, (1.83)

where kB = 1.38064852 10�23 JK�1 is the Boltzmann constant, T is the liquid tempera-
ture, J0 is a prefactor and Ea is an activation energy. J0 and Ea are defined in the following.

Indeed, when a bubble is created, it enables to dissipate extra energy of superheated
liquid: this energy amount decreases as R3, with R the radius of the created bubble. At
the same time, an energy amount, increasing as R2, is required to maintain the liquid-vapor
interface. Both effects balance each other for a critical radius Rc:

Rc =
2g

DP
, (1.84)

where DP = Pl � Psat and g is the liquid-vapor surface tension.
For spherical bubbles with a radius Rc, the required work for nucleation is minimal. This

minimal nucleation work is defined as the activation energy Ea which appears in (1.83). It
reads:

Ea =
16pg3

3(DP)2 . (1.85)

It means that bubbles with a radius R < Rc tend to disappear whereas bubbles with
a radius R > Rc are able to grow. Following an Arrhenius law (1.83), nucleation occurs
when the barrier energy Ea has the same order of magnitude that thermal fluctuations kBT.
However, this energy barrier Ea can be very high because it applies to pure liquid without
impurities (homogeneous nucleation), which are not the conditions that we may find in indus-
trial applications. Indeed, if impurities are present in water (which is the case for nuclear
circuits), bubbles creation is easier (heterogeneous nucleation). To take this assumption into
account, the activation energy is decreased as in [4] by multiplying Ea with j 2]0, 1[:

J = J0 exp
✓
�

jEa

kBT

◆
. (1.86)

Then, the probability P(t) that no bubble appears within a time t is:

P(t) = exp(�JVt)

where V is the volume of liquid. A common assumption [8, 43, 19] provides that nucleation

indeed occurs after the time t so that: P(t) =
1
2

. Then, a characteristic time-scale for the

delay before nucleation appearance tnuc can be defined with P(tnuc) =
1
2

, i.e.:

tnuc = t0
nuc exp

✓
jEa

kBT

◆
, (1.87)

with

t0
nuc =

ln(2)
J0V

. (1.88)
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There is no consensus in the litterature about the prefactor J0. In [20], J0 is taken al-
most constant with temperature and pressure. On the contrary, complex models have been
proposed, for instance in [51] or [11]. In our study, we chose a simple model, proposed

in [8] or [43]. J0 is taken as the product of thermal frequency
kBT

h
and

1
Vc

, where h =

6.62607015 10�34 Js is the Planck constant and Vc =
4pR3

c
3

is the volume of a critical nucleus:

J0 =
kBT

h
3

4p

1
R3

c
. (1.89)

Finally we get, with (1.84) and (1.89):

t0
nuc =

ln(2)
V

1
J0

=
ln(2)

V
h

kBT
4p

3
R3

c =
ln(2)

V
h

kBT
4p

3

✓
2g

DP

◆3
.

We chose to simplify this prefactor: indeed, a lot of terms are almost constant during our
simulations. It allows to reduce the number of paramaters for our numerical studies. We

keep only the dependance with
1

DP3 in our final simplified model:

tnuc =
⇣ a0

DP

⌘3
exp

✓
jEa

kBT

◆
, (1.90)

where Ea is defined by (1.85): Ea =
16pg3

3(DP)2 , and g is estimated with the IAPWS 94

correlation [46]:

g = B0(1 + b(1 �
T
Tc
))

✓
T
Tc

◆n

, (1.91)

where: B0 = 235.8 10�3 mN/m ; b = �0.625 ; n = 1.256 and Tc = 647.096K (water critical
temperature).

In the simplified model (1.90), only two parameters have thus to be defined: a0 in (Pa.s),
homogeneous to a dynamical viscosity, and j 2 [0, 1].
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1.D Initial data for Riemann problems test cases

1.D.1 Out of equilibrium test cases (1.4.1)

Here are the parameters used for the Stiffened Gas (SG) for the test case of section 1.4.1. The
parameters for the vapour are:

2

664

CV,v = 4.477815802223535 103 JK�1kg�1,
gv = 1.084875362318841,

Pv = 4.1904297086743001 106 Pa,
s0

v = �1.137650328291112 104 JK�1kg�1,

and for the liquid we have:
2

664

CV,l = 1.395286166711847 103 JK�1kg�1,
gl = 1.665128030303030,

Pl = 3.725876146842836 108 Pa,
s0

l = 1.0 104 JK�1kg�1.

Data for SG Left state Intermediate state
a 4.16003754536212 10�1 4.68486052082106 10�1

y 1.0 10�1 1.2 10�1

z 1.47660058572024 10�1 1.75144882351565 10�1

r (kg/m3) 393.940361842377 363.89814762278274
u (m/s) 1.0 1.0
P (Pa) 1.48 107 1.48 107

Data for SG Right state
a 4.68486052082106 10�1

y 1.2 10�1

z 1.75144882351565 10�1

r (kg/m3) 351.12092230108595
u (m/s) -33.6320500771937
P (Pa) 2.80621107450730 106

s =952.696245321188e m/s (shock speed)

Data for LuT Left state Intermediate state Right state
a 4.16 10�1 4.68 10�1 4.68 10�1

y 1.0 10�1 1.2 10�1 1.2 10�1

z 1.48 10�1 1.75 10�1 1.75 10�1

r (kg/m3) 393.94 363.90 351.12
u (m/s) 1.0 1.0 -19.15
P (Pa) 1.48 107 1.48 107 1.07 107

s =554.61 m/s (shock speed)

1.D.2 Equilibrium test case with mixtures for both initial states (1.4.2)

Data for LuT Left state Intermediate state Right state
a 4.16 10�1 6.16 10�1 8.31 10�1

y 1.0 10�1 2.0 10�1 2.84 10�1

z 1.48 10�1 2.80 10�1 4.20 10�1

r (kg/m3) 393.94 291.57 162.27
u (m/s) 1.0 1.0 -113.53
P (Pa) 1.48 107 1.48 107 1.00 107

s =554.607603536485 m/s (shock speed)
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1.D.3 Equilibrium test case with only a shock, with a liquid left initial state
(1.4.3.1)

Data for LuT Left state Right state
a 0 6.8910�1

y 0 6.73 10�2

z 0 1.40 10�1

r (kg/m3) 742.97 259.49
u (m/s) 1.0 -155.77
P (Pa) 1.48 107 5.0 106

s =85.14 m/s (shock speed)

1.D.4 Equilibrium test case with only a contact, with a liquid left initial state
(1.4.3.2)

Data for LuT Left state Right state
a 0 6.16 10�1

y 0 2.0 10�1

z 0 2.8010�1

r (kg/m3) 742.97 291.57
u (m/s) 1.0 1.0
P (Pa) 1.48 107 1.48 107
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