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The Conjecture of Lehmer, and its refinement in 1965 by Schinzel, the Conjecture of
Schinzel-Zassenhaus, amounts to a problem of universal minoration of the Mahler mea-
sure, and of the height in higher dimension in Arithmetic Geometry. The objective of
this Survey is to review the numerous minorations obtained in these two domains, in par-
ticular Dobrowolski’s inequality, then to present the analogues of the problem of Lehmer
in different contexts with various analogues of the Mahler measure and the height.

The reformulation of the problem of Lehmer in other domains brings to light a certain
number of situations generating integer polynomials for which the Problem of Lehmer is
asked, and, if a nontrivial lower bound exists to the Mahler measure of these polynomials,
the meaning and the realization of the situation of extremality. In several cases Lehmer’s
number is found to be a nontrivial minorant and is shown to be reached.
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E-mail: jean-louis.verger-gaugry@univ-smb.fr

Manuscript File



2 Jean-Louis Verger-Gaugry

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Number theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Prime numbers, asymptotic expansions, minorations . . . . . . . . 4

2.2 Limit points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Salem numbers, interlacing, association equations, dynamics and dichotomy,
partially and totally real algebraic numbers . . . . . . . . . . . . . . . . 16

4 Small points and Lehmer problems in higher dimension . . . . . . . . . . 23

5 Analogues of the Mahler measure and Lehmer’s problem . . . . . . . . . 32

6 In other domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Coxeter polynomials, graphs, Salem trees . . . . . . . . . . . . . . 41

6.2 Growth series of groups, Coxeter groups, Coxeter systems . . . . . 42

6.3 Mapping classes: small stretch factors . . . . . . . . . . . . . . . . 46

6.4 Knots, links, Alexander polynomials, homology growth, Jones poly-
nomials, lenticularity of zeroes, lacunarity . . . . . . . . . . . . . . 51

6.5 Arithmetic Hyperbolic Geometry . . . . . . . . . . . . . . . . . . . 56

6.6 Salem numbers and Dynamics of Automorphisms of Complex Com-
pact Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Appendix - Standard notations . . . . . . . . . . . . . . . . . . . . . . . 60

1. Introduction

The question (called Problem of Lehmer) asked by Lehmer in [337] (1933) about
the existence of integer univariate polynomials of Mahler measure arbitrarily close
to one became a conjecture. Let us recall it:

Problem of Lehmer. If � is a positive quantity, to find a polynomial of the form

f(x) = xr + a1x
r−1 + . . .+ ar

where the ais are integers, such that the absolute value of the product of those roots
of f which lie outside the unit circle, lies between 1 and 1 + �... Whether or not
the problem has a solution for � < 0.176 we do not know.

This problem takes its origin in the search for large prime numbers. In [337]
Lehmer introduces an arithmetic process to obtain explicitely large prime numbers
from integer polynomials of very small Mahler measure > 1, where “very small”
Mahler measures would correspond to “very large” prime numbers. Since then,
the strategy of his method has been revisited (see §2.1). Lehmer’s Conjecture is
addressed to minimal polynomials of algebraic integers. It is stated as follows:

Conjecture 1.1 (Lehmer’s Conjecture). There exists an universal constant c > 0
such that the Mahler measure M(α) satisfies M(α) ≥ 1+c for all nonzero algebraic
numbers α, not being a root of unity.
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If α is a nonzero algebraic integer, M(α) = 1 if and only if α = 1 or is a
root of unity by Kronecker’s Theorem (1857) [312]. Lehmer’s Conjecture asserts a
discontinuity of the value of M(α), α ∈ OQ, at 1. Then solving Lehmer’s Conjec-
ture amounts to a problem of minoration of the Mahler measure M(α) when the
absolute value > 1 of α ∈ OQ tends to 1+.

Lehmer’s Conjecture has been extensively studied in Number Theory, e.g. by
Amoroso [9], [10], Bertin, Decomps-Guilloux, Grandet-Hugot, Pathiaux-Delefosse
and Schreiber [48], Blansky and Montgomery [59], Boyd [76], [77], Cantor and
Strauss [114], Dobrowolski [160], Dubickas [172], Langevin [326], Louboutin [352],
Mossinghoff, Rhin and Wu [392], Schinzel [463], Smyth [493], [494], Stewart [500],
Waldschmidt [527], [528]). It has been extended to Arithmetic Geometry by re-
placing the Mahler measure M by a suitable notion of “height”, and by reformu-
lating the minoration problem to elliptic curves, to Abelian varieties, ..., e.g. by
Amoroso and David [18], David and Hindry [137], [139], Hindry and Silverman
[261], Laurent [332], Masser [375], Silverman [482].

In his attempt to solve Lehmer’s Conjecture in 1965, Schinzel has refined the
minoration problem of the Mahler measure M(α) by replacing the condition “when
the absolute value > 1 of α ∈ OQ tends to 1+” by the condition ”when the house

α > 1 of α ∈ OQ tends to 1+”. The following Conjecture has been formulated in
[467].

Conjecture 1.2 (Schinzel - Zassenhaus’s Conjecture). Denote by mh(n) the min-
imum of the houses α of the algebraic integers α of degree n which are not a root
of unity. There exists a (universal) constant C > 0 such that

mh(n) ≥ 1 +
C

n
, n ≥ 2. (1.1)

The objective of this Survey is first to review a certain number of results in
Number Theory (§ 2 and § 3) and in higher dimension in Arithmetic Geometry
(§ 4), then to go beyond to various extensions where different reformulations of
the minoration problem of Lehmer exist (§ 5). In other domains (§ 6) the mino-
ration problem of Lehmer emphasizes the role played by algebraic integers like
Pisot numbers, Salem numbers, Perron numbers and calls for the problem of the
realization when a nontrivial minimum is reached. It occurs in some cases that
the minimum is realized by Lehmer’s number 1.17628 . . . (cf (2.7) and (2.8)).

Following the two Surveys [493], [494], by C. Smyth, this Survey tries to take
stock of the problem of minoration of the Mahler measure in all its forms. A recent
attack of the Conjecture of Lehmer and the Conjecture of Schinzel-Zassenhaus by
the dynamics of the β-shift can be found in [522]: the theories involved, belonging
to the domains of generalized Fredholm theory [34] and dynamical systems of
numeration [351], are not reported in the present Survey.

Standard notations are reported in the Appendix.
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2. Number theory

2.1. Prime numbers, asymptotic expansions, minorations. The search
for very large prime numbers has a long history. The method of linear recurrence
sequences of numbers (Δm), typically satisfying

Δm+n+1 = A1Δm+1 +A2Δm+2 + . . .+AnΔm+n, (2.1)

in which prime numbers can be found, has been investigated from several view-
points, by many authors [55], [200], [201]: in 1933 Lehmer [337] developped an
exhaustive approach from the Pierce numbers [418]

Δn = Δn(P ) =

d�

i=1

(αn
i − 1) (2.2)

of a monic integer polynomial P where αi are the roots of P . The sequence (Ai)
in (2.1) is then the coefficient vector of the integer monic polynomial which is the
least common multiple of the d+ 1 polynomials: P(0)(x) = x− 1,

P(1)(x) =

d�

i=1

(x− αi), P(2)(x) =

d−1�

i>j=1

(x− αiαj), . . . , P(d)(x) = x− α1α2 . . .αd

(Theorem 13 in [337]). Large prime numbers, possibly at a certain power, can be
found in the factorizations of |Δn| that have large absolute values (Dubickas [181],
Ji and Qin [283] in connection with Iwasawa theory). This can be done fairly
quickly if the absolute values |Δn| do not increase too rapidly (slow growth rate).
If P has no root on the unit circle, Lehmer proves

lim
n→∞

Δn+1

Δn
= M(P ). (2.3)

Einsiedler, Everest and Ward [192] revisited and extended the results of Lehmer
in terms of the dynamics of toral automorphisms ([198], Lind [343]). They con-
sidered expansive (no root on |z| = 1), ergodic (no αi is a root of unity) and
quasihyperbolic (if P is ergodic but not expansive) polynomials P and number
theoretic heuristic arguments for estimating densities of primes in (Δn). In the
quasihyperbolic case (for instance for irreducible Salem polynomials P ), more gen-
eral than the expansive case considered by Lehmer, (2.3) does not extend but the
following more robust convergence law holds [343]:

lim
n→∞

Δ1/n
n = M(P ). (2.4)

If P has a small Mahler measure, < Θ, it is reciprocal by [489] and the quotients
Δn/Δ1 are perfect squares for all n ≥ 1 odd. With Γn(P ) :=

�
Δn/Δ1 in such

cases, they obtain the existence of the limit

lim
j→∞

j

Log LogΓnj

, (2.5)
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(nj) being a sequence of integers for which Γnj is prime, as a consequence of
Merten’s Theorem. This limit, say EP , is likely to satisfy the inequality: EP ≥
2eγ/LogM(P ), where γ = 0.577 . . . is the Euler constant. Moreover, by number-
fields analogues of the heuristics for Mersenne numbers (Wagstaff, Caldwell), they
suggest that the number of prime values of Γnj

(P ) with nj ≤ x is approximately

2eγ

LogM(P )
Log x. (2.6)

This result shows the interest of having a polynomial P of small Mahler measure
to obtain a sequence (Δn) associated with P very rich in primes. These authors
consider many examples which fit coherently the heuristics. However, the discrep-
ancy function is still obscure and reflects the deep arithmetics of the factorization
of the integers |Δn| and of the quantities Γn.

More generally, than in the case of (2.1), the Conjecture of Lehmer means that
the growth rate of an integer linear recurrence sequence is uniformly bounded from
below (§ 7.6 in [201], [199]).

In view of understanding the size of the primes p ≥ 3 found in (Δn) generated
by the exhaustive method of the Pierce’s numbers, Lehmer, in [338] (1977), es-
tablished correlations between the Pierce’s numbers |Δn| and the prime factors of
the first factor of the class number of the cyclotomic fields Q(ξp) (ξp is a primitive
pth root of unity), using Kummer’s formula, the prime factors being sorted out
into arithmetic progressions: let h(p) the class number of Q(ξp) and let h+(p) be
the class number of the real subfield Q(ξp + ξ−1

p ). Kummer (1851) established
that the ratio h−(p) = h(p)/h+(p) is an integer, called relative class number or
first factor of the class number, and that p divides h(p) if and only if p divides
h−(p). The factorization and the arithmetics of the large values of h−(p) is a deep
problem [3], [230], [246], [339], related to class field theory in [371], where the
validity of Kummer’s conjectured asymptotic formula for h−(p) was reconsidered
by Granville [143] [246].

The smallest Mahler measure M(α)(> 1) known, where α is a nonzero algebraic
number which is not a root of unity, is Lehmer’s number

= 1.17628 . . . , (2.7)

the smallest Salem number discovered by Lehmer [337] in 1933 as dominant root
of Lehmer’s polynomial (2.8).

X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1. (2.8)

It is the smallest Salem number known [390] [392]. Lehmer discovered other small
Salem numbers (cf §3). Small Salem numbers were reinvestigated by Boyd in
[74], [76], [78], by Flammang, Grandcolas and Rhin [220]. The search of small
Mahler measures was reconsidered by Mossinghoff [388], [389], then, using aux-
iliary functions, by Mossinghoff, Rhin and Wu [392]. For degrees up to 180, the
list of Mossinghoff [390] (2001), with contributions of Boyd, Flammang, Grandco-
las, Lisonek, Poulet, Rhin and Sac-Epée [443], Smyth, gives primitive, irreducible,
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noncyclotomic integer polynomials of degree at most 180 and of Mahler measure
less than 1.3; this list is complete for degrees less than 40 [392], and, for Salem
numbers, contains the list of the 47 known smallest Salem numbers, all of degree
≤ 44 [220].

Lehmer’s Conjecture is true (solved) in the following particular cases.

(1) for the closed set S of Pisot numbers (Salem [451], Siegel [478], Bertin et al
[48]),

(2) for the set of algebraic numbers α for which the minimal polynomial Pα is
nonreciprocal by Smyth’s Theorem (1971) [489], [490], which asserts:

M(α) = M(Pα) ≥ Θ, (2.9)

proved to be an isolated infimum by Smyth [490] (Θ is defined in (7.2)),

(3) for every nonzero algebraic integer α ∈ L, of degree d, assuming that L is a
totally real algebraic number field, or a CM field (a totally complex quadratic
extension of a totally real number field); then Schinzel [463] obtained the
minoration

M(α) ≥
�1 +

√
5

2

�d/2
, from which : M(α) ≥ ((1 +

√
5)/2)1/2 = 1.2720 . . .

(2.10)
Improvments of this lower bound, by Bertin, Rhin, Zaimi and Garza are
given in § 3,

(4) for α an algebraic number of degree d such that there exists a prime number
p ≤ dLog d that is not ramified in the field Q(α); then Mignotte [379]
[380] showed: M(α) ≥ 1.2; by extension, Silverman [483] proved that the
Conjecture of Lehmer is true if there exist primes p1, p2, . . . , pd in Q(α)
satisfying Npi ≤

√
dLog d,

(5) for any noncyclotomic irreducible polynomial P with all odd coefficients;
Borwein, Dobrowolski and Mossinghoff [67] [235] proved (cf Theorem 2.3
and Silverman’s Theorem 2.4 for details)

M(P ) ≥ 51/4 = 1.4953 . . . , (2.11)

(6) in terms of the Weil height, Amoroso and David [15] proved that there exists
a constant c > 0 such that, for all nonzero algebraic number α, of degree d,
not being a root of unity, under the assumption that the extension Q(α)/Q
is Galois, then

h(α) ≥ c

d
. (2.12)

Some minorations are known for some classes of polynomials (Panaitopol [408]).
Bazylewicz [40] extended Smyth’s Theorem, i.e. the lower bound given by (2.9),
to polynomials over Kroneckerian fields K (i.e. for which K/Q is totally real or
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is a totally complex nonreal quadratic extension of such fields). Notari [399] and
Lloyd-Smith [350] extended such results to algebraic numbers. Lehmer’s problem
is related to the minoration problem of the discriminant (Bertrand [50]).

Perron numbers, topology and limit points of their subclasses: Mahler
measures, Salem numbers. Mahler measures {M(α) | α ∈ Q} are Perron
numbers, by the work of Adler and Marcus [2] in topological dynamics, as a
consequence of the Perron-Frobenius theory. The set P of Perron numbers is
everywhere dense in [1,+∞) and is important since it contains subcollections
which have particular topological properties for which conjectures exist. Let us
recall them.

The set P admits a nonfactorial multiplicative arithmetics [102], [344], [519],
for which the restriction of the usual addition + to a given subcollection is not
necessarily internal [180]. Salem [452] proved that S ⊂ P is closed, and that S ⊂ T .
Boyd [73] conjectured that

S ∪ T is closed (2.13)

and that the first derived set of S ∪ T (cf Appendix for a definition) satifies

S = (S ∪ T)(1) (2.14)

([74], p. 237). This second Conjecture would imply that all Salem numbers < Θ
would also be isolated Salem numbers, not only Lehmer’s number. The set of
Mahler measures {M(α) | α ∈ Q} and the semi-group {M(P ) | P (X) ∈ Z[X]}
are strict subsets of P and are distinct (Boyd [82], Dubickas [177] [178]). The
probabilistic distribution and values of Mahler measures were studied by Boyd
[81], [82], [83], Chern and Vaaler [124], Dixon and Dubickas [158], Dubickas [176],
Schinzel [465], Sinclair [487]. Boyd [83] has shown that the Perron numbers γn
which are the dominant roots of the height one (irreducible) trinomials −1−z+zn,
n ≥ 4, are not Mahler measures. The inverse problem for the Mahler measure
consists in determining whether, or not, a Perron number γ is the Mahler measure
M(P ) of an integer polynomial P , and to give formulas for the number

#{P ∈ Z[X] | M(P ) = γ} (2.15)

of such polynomials with measure γ and given degree (Boyd [81], Dixon and Du-
bickas [158], Staines [496]). Drungilas and Dubickas [170] and Dubickas [176],
[178], proved that the subset of Mahler measures is very rich: namely, for any
Perron number β, there exists an integer n ∈ N such that nβ is a Mahler measure,
and any real algebraic integer is the difference of two Mahler measures.

Minorations and extremality. Algebraic numbers close to 1 ask many questions
[161] and require new methods of investigation, as reported by Amoroso [9]. For α
an algebraic integer of degree d > 1, not a root of unity, Blansky and Montgomery
[59] showed, with multivariate Fourier series,

M(α) > 1 +
1

52

1

dLog (6d)
. (2.16)



8 Jean-Louis Verger-Gaugry

By a different approach, using an auxiliary function and a proof of transcendence
(Thue’s method), Stewart [500] obtained the same minoration but with a constant
c �= 1/52 instead of 1/52 [103], [333], [383], [527]. In 1979 a remarkable minoration
has been obtained by Dobrowolski [160] who showed

M(α) > 1 + (1− �)

�
Log Log d

Log d

�3

, d > d1(�). (2.17)

for any nonzero algebraic number α of degree d, with 1− � replaced by 1/1200 for
an effective version (then with d ≥ 2), in particular for |α| > 1 arbitrarily close to
1. The minoration (2.17) was also obtained by Mignotte in [379] [380] but with a
constant smaller than 1−�. Cantor and Strauss [114], [413], then Louboutin [352],
improved the constant 1− �: they obtained 2(1 + o(1)), resp. 9/4 (cf also Rausch
[436] and Lloyd-Smith [350]). If α is a nonzero algebraic number of degree d ≥ 2,
Voutier [526] obtained the better effective minorations:

M(α) > 1 +
1

4

�
Log Log d

Log d

�3

and M(α) > 1 +
2

(Log (3d))3
. (2.18)

For sufficiently large degree d, Waldschmidt ([528], Theorem 3.17) showed that the
constant 1−� could be replaced in (2.17) by 1/250 with a transcendence proof which
uses an interpolation determinant. It is remarkable that these minorations only
depend upon the degree of α and not of the size of the coefficients, i.e. of the (näıve)
height of their minimal polynomial. Dobrowolski’s proof is a transcendence proof
(using Siegel’s lemma, extrapolation at finite places) which has been extended to
the various Lehmer problems (§ 4).

An algebraic integer α, of degree n, is said extremal if α = mh(n). An
extremal algebraic integer is not necessarily a Perron number [52].

In 1965 Schinzel and Zassenhaus [467] formulated Conjecture 1.2 and obtained
the first result: for α �= 0 being an algebraic integer of degree n ≥ 2 which is not
a root of unity, then

α > 1 + 4−(s+2), (2.19)

where 2s is the number of nonreal conjugates of α. For a nonreciprocal algebraic
integer α of degree n, Cassels [119] obtained:

α > 1 +
c2
n
, with c2 = 0.1; (2.20)

Breusch [100] independently showed that c2 = Log (1.179 . . .) = 0.165 . . . could be
taken; Schinzel [463] showed that c2 = 0.2 could also be taken. Finally Smyth [489]
improved the minoration (2.20) with c2 = LogΘ = 0.2811 . . .. On the other hand,
Boyd [81] showed that c2 cannot exceed 3

2LogΘ = 0.4217 . . .. In 1997 Dubickas
[173] showed that c2 = ω − � with ω = 0.3096 . . . the smallest root of an equation
in the interval (LogΘ,+∞), with � > 0, n0(�) an effective constant, and for all
n > n0(�). These two bounds seem to be the best known extremities delimiting
the domain of existence of the constant c2 [164].
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The expression of the minorant in (1.1), “in 1/n”, as a function of n, is not
far from being optimal, being “in 1/n2” at worse in (2.22). Indeed, for nonzero
algebraic integers α, Kronecker’s Theorem [312] implies that α = 1 if and only if
α is a root of unity. The sufficient condition in Kronecker’s Theorem was weakened
by Blansky and Montgomery [59] who showed that α, with degα = n, is a root of
unity provided

α ≤ 1 +
1

30n2Log (6n)
. (2.21)

Dobrowolsky [159] sharpened this condition by: if

α < 1 +
Log n

6n2
, (2.22)

then α is a root of unity. Matveev [376] proved, for α, with degα = n, not being
a root of unity,

α ≥ exp
Log (n+ 1

2 )

n2
.

Rhin and Wu [445] verified Schinzel Zassenhaus’s Conjecture up to n = 28 and
improved Matveev’s minoration as:

α ≥ exp
3Log (n3 )

n2
4 ≤ n ≤ 12, (2.23)

and, for n ≥ 13,

α ≥ exp
3Log (n2 )

n2
. (2.24)

Matveev’s minoration is better than Voutier’s lower bound [526]

mh(n) ≥
�
1 +

1

4

�
Log Logn

Log n

�3
�1/n

(2.25)

for n ≤ 1434, and Rhin Wu’s minoration is better than Voutier’s bound for 13 ≤
n ≤ 6380. For reciprocal nonzero algebraic integers α, deg(α) = n ≥ 2, not being
a root of unity, Dobrowolski’s lower bound is

α > 1 + (2− �)

�
Log Logn

Log n

�3
1

n
, n ≥ n0(�), (2.26)

where the constant 2− � could be replaced by 9
2 − � (Louboutin [352]), or, better,

by 64
π2 − � (Dubickas [171]). Callahan, Newman and Sheingorn [108] introduce a

weaker version of Schinzel Zassenhaus’s Conjecture: given a number field K, they
define the Kronecker constant of K as the least ηK > 0 such that α ≥ 1+ ηK for
all α ∈ K. Under certain assumptions on K, they prove that there exists c > 0
such that ηK ≥ c/[K : Q].

The sets of extremal algebraic integers are still unknown. In Boyd [79] [534]
the following conjectures on extremality are formulated:
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Conjecture 2.1 (Lind - Boyd). The smallest Perron number of degree n ≥ 2 has
minimal polynomial

Xn −X − 1 if n �≡ 3, 5 mod 6,
(Xn+2 −X4 − 1)/(X2 −X + 1) if n ≡ 3 mod 6,
(Xn+2 −X2 − 1)/(X2 −X + 1) if n ≡ 5 mod 6.

Conjecture 2.2 (Boyd). (i) If α is extremal, then it is always nonreciprocal,
(ii) if n = 3k, then the extremal α has minimal polynomial

X3k +X2k − 1, or X3k −X2k − 1, (2.27)

(iii) the extremal α of degree n has asymptotically a number of conjugates α(i)

outside the closed unit disc equal to

∼= 2

3
n, n → ∞. (2.28)

This asymptotic proportion of 2
3 n would correspond to a fairly regular angular

distribution of the complete set of conjugates in a small annulus containing the unit
circle, in the sense of the Bilu-Erdős-Turán-Amoroso-Mignotte equidistribution
theory [24], [42], [54], [195].

Structure of coefficients vectors and minorations. The nature of the coeffi-
cient vector of an integer polynomial P is linked to the Mahler measure M(P ) and
to extremal properties [367]. If some inequalities between coefficients occur, then
Brauer [98] proved that P is a Pisot polynomial; in this case Lehmer’s problem
is solved for this class {P}. Stankov [498] proved that a real algebraic integer
τ > 1 is a Salem number if and only if its minimal polynomial is reciprocal of even
degree ≥ 4 and if there is an integer n ≥ 2 such that τn has minimal polynomial
Pn(x) = a0,n+a1,nx+ . . .+ad,nx

n which is also reciprocal of degree d and satisfies
the condition

|ad−1,n| >
1

2

� d

d− 2

�
(2 +

d−2�

k=2

|ak,n|). (2.29)

Related to Kronecker’s Theorem [312] is the problem of finding necessary and
sufficient conditions on the coefficient vector of reciprocal, self-inversive, resp. self-
reciprocal polynomials to have all their roots on the unit circle (unimodularity):
Lakatos [316] proved that a polynomial P (x) =

�m
j=0 Ajx

j ∈ R[x] satisfying the
conditions Am−j = Aj for j ≤ m and

|Am| ≥
m�

j=0

|Aj −Am| (2.30)

has all zeroes on the unit circle. Schinzel [466], Kim and Park [300], Kim and Lee
[299], Lalin and Smyth [325] obtained generalizations of this result. Suzuki [505]
established correlations between this problem and the theory of canonical systems
of ordinary linear differential equations. Lakatos and Losonczi [319] [320] proved
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that, for a self-inversive polynomial Pm(z) =
�m

j=0 Akz
k ∈ C[z], m ≥ 1, the roots

of Pm are all on the unit circle if |Am| ≥ �m−1
k=1 |Ak|; moreover if this inequality

is strict then the zeroes eiϕl , l = 1, . . . ,m, are simple and can be arranged such

that, with βm = arg(Am

�
A0/Am

�1/2
) ,

2((l − 1)π − βm)

m
< ϕl <

2(lπ − βm)

m
. (2.31)

In the direction of Salem polynomials, ν-Salem polynomials and more [297] [454],
a generalization was obtained by Vieira [523]: if a sufficient condition is satisfied
then a self-inversive polynomial has a fixed number of roots on the unit circle.
Namely, let P (z) = anz

n + an−1z
n−1 + . . .+ a1z+ a0 ∈ C[z], an �= 0, be such that

P (z) = ω zn P (1/z) with |ω| = 1. If the inequality

|an−l| >
1

2

�
n

n− 2l

� n�

k=0,k �=l,k �=n−l

|ak|, l < n/2 (2.32)

is satisfied, then P (z) has exactly n − 2l roots on the unit circle and these roots
are simple; moreover, if n is even and l = n/2, then P (z) has no root on |z| = 1 if
the inequality |an/2| >

�n
k=0,k �=n/2 |ak| is satisfied.

Questions of irreducibility of P as a function of the coefficient vector were stud-
ied in [175]. Flammang [218] obtained new inequalities for the Mahler measure
M(P ) [529], and Flammang, Rhin and Sac-Epée [221] proved relations between
the integer transfinite diameter and polynomials having a small Mahler measure.
The lacunarity of P and the minoration of M(P ) are correlated: when P is a non-
cyclotomic (sparse) integer polynomial, Dobrowolski, Lawton and Schinzel [164],
then Dobrowolski [162], [163], obtained lower bounds of M(P ) as a function of the
number k of its nonzero coefficients: e.g. in [163], with a < 0.785,

M(P ) ≥ 1 +
1

exp(a3�(k−2)/4�k2Log k)
, (2.33)

and, if P is irreducible,

M(P ) ≥ 1 +
0.17

2�k/2� �k/2�! . (2.34)

Dobrowolski, then McKee and Smyth [355] obtained minorants of M(P ) for the
reciprocal polynomials P (z) = znDA(z + 1/z) where DA is the characteristic
polynomial of an integer symmetric n× n matrix A; McKee and Smyth obtained
M(P ) = 1 or M(P ) ≥ 1.176280 . . . (Lehmer’s number) solving the problem of
Lehmer for the family of such polynomials. Dobrowolski (2008) proved that many
totally real integer polynomials P cannot be represented by integer symmetric
matrices A, disproving a conjecture of Estes and Guralnick. Dubickas and Konya-
gin [183], [184], studied the number of integer polynomials as a function of their
(näıve) height and resp. their Mahler measure. The next two theorems show that
Lehmer’s Conjecture is true for the set of the algebraic integers which are the roots
of polynomials in particular families of monic integer polynomials.
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Theorem 2.3 (Borwein, Dobrowolski, Mossinghoff [67]). Let m ≥ 2, and let
f(X) ∈ Z[X] be a monic polynomial of degree D with no cyclotomic factors that
satisfies

f(X) ≡ XD +XD−1 + . . .+X2 +X + 1 mod m.

Then �

f(α)=0

h(α) ≥ D

D + 1
Cm, (2.35)

where we may take

C2 =
1

4
Log 5 and Cm = Log

√
m2 + 1

2
for m ≥ 3.

Theorem 2.4 (Silverman [486]). For all � > 0 there exists a constant C� > 0 with
the following property: let f(X) ∈ Z[X] be a monic polynomial of degree D such
that

f(X) is divisible by Xn−1 +Xn−2 + . . .+X + 1 in (Z/mZ)[X].

for some integers m ≥ 2 and n ≥ max{�D, 2}. Suppose further that no root of
f(X) is a root of unity. Then

�

f(α)=0

h(α) ≥ C� Logm. (2.36)

2.2. Limit points. The set of limit points of {M(P ) | P (X) ∈ Z[X]} is obtained
by the following useful Theorem of Boyd and Lawton [79], [80], [334], which cor-
relates Mahler measures of univariate polynomials to Mahler measures of multi-
variate polynomials:

Theorem 2.5. let P (x1, x2, . . . , xn) ∈ C[x1, . . . , xn]) and r = (r1, r2, . . . , rn),
ri ∈ N>0. Let Pr(x) := P (xr1 , xr2 , . . . , xrn). Let

q(r) := min{H(t) | t = (t1, t2, . . . , tn) ∈ Zn, t �= (0, . . . 0),

n�

j=1

tjrj = 0},

where H(t) = max{|ti| | 1 ≤ j ≤ n}. Then

lim
q(r)→∞

M(Pr) = M(P ). (2.37)

This theorem allows the search of small limit points of (univariate) Mahler’s
measures, by several methods [91]; a more recent method relies upon the (EM)
Expectation-Maximization algorithm [358] [193]. The set of limit points of the
Salem numbers was investigated either by the “Construction of Salem” [74], [75],
or sets of solutions of some equations by Boyd and Parry [92]. Everest [197], then
Condon [130], [131], established asymptotic expansions of the ratio M(Pr)/M(P ).
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For bivariate polynomials P (x, y) ∈ C[x, y] such that P and ∂P/∂y do not have
a common zero on T × C, then Condon (Theorem 1 in [131]) establishes the
expansion, for k large enough,

Log
�M(Pr)

M(P )

�
= Log

�M(P (x, xn))

M(P (x, y))

�
=

k−1�

j=2

cj
nj

+ OP,k

�
1

nk

�
, (2.38)

(n is not the degree of the univariate polynomial P (x, xn)) where the coefficients
cj are values of a quasiperiodic function of n, as finite sums of real and imaginary
parts of values of Lia polylogarithms, 2 ≤ a ≤ j, weighted by some rational func-
tions deduced from the derivatives of P , where the sums are taken over algebraic
numbers deduced from the intersection of T2 and the hypersurface of C2 defined by
P (affine zero locus). In particular, if P is an integer polynomial, the coefficients
cj are Q-linear combinations of polylogarithms evaluated at algebraic arguments.
For instance, for P (x, y) = −1+x+y, Gn(x) = −1+x+xn, the coefficient c2(n) in
the expansion of Log (M(Gn)/M(P )), though a priori quasiperiodic, is a periodic
function of n modulo 6 which can be directly computed (Theorem 1.3 in [521]),
as: for n odd:

c2(n) =

� √
3π/18 = +0.3023 . . . if n ≡ 1 or 3 (mod 6),

−
√
3π/6 = −0.9069 . . . if n ≡ 5 (mod 6),

for n even:

c2(n) =

�
−
√
3π/36 = −0.1511 . . . if n ≡ 0 or 4 (mod 6),

+
√
3π/12 = +0.4534 . . . if n ≡ 2 (mod 6).

For the height one trinomial 1+x+y, Corollary 2 in [131] gives the coefficients cj ,
j ≥ 2, as linear combinations of polylogaritms evaluated at third roots of unity,
with coefficients coming from the Stirling numbers of the first and second kind,
i.e. in 1

2πZ[
√
3]. The method of Condon also provides the other coefficients cj ,

j ≥ 3, for the trinomial −1 + x+ y in the same way.
Doche in [165] obtains an alternate method to Boyd-Lawton’s Theorem, in the

objective of obtaining estimates of the Mahler measures of bivariate polynomials:
let P (y, z) ∈ C[y, z] be a polynomial such that degz(P ) > 0, let ξn := e

2iπ
n and

assume that P (ξkn, z) �≡ 0 for all n, k. Then

M(P (y, z))1/ degz(P ) = lim
n→∞

M
� n�

k=1

P (ξkn, z)
�

(2.39)

(n is not the degree of the univariate polynomial
�n

k=1 P (ξkn, x)). Doche’s and
Condon’s methods cannot be used for the problem of Lehmer since 1 does not
belong to the first derived set of the set of Mahler measures of univariate integer
polynomials (assuming true Lehmer’s Conjecture).

Limit points of Mahler measures of univariate polynomials are algebraic num-
bers or transcendental numbers: by (2.39) and Theorem 2.5, they are Mahler
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measures of multivariate polynomials. The problem of finding a positive lower
bound of the set of such limit points of Mahler measures is intimately correlated
to the problem of Lehmer [462]. Smyth (1971)[492] found the remarkable identity:

LogM(1 + x+ y) = Λ (2.40)

with

Λ := exp
�3

√
3

4π
L(2,χ3)

�
= exp

�−1

π

� π/3

0

Log
�
2 sin

�x
2

��
dx

�
= 1.38135 . . . ,

(2.41)

L(s,χ3) :=
�

m≥1
χ3(m)
ms the Dirichlet L-series for the character χ3, with χ3 the

uniquely specified odd character of conductor 3 (χ3(m) = 0, 1 or −1 according to
whether m ≡ 0, 1 or 2 (mod 3), equivalently χ3(m) =

�
m
3

�
the Jacobi symbol).

The values of logarithmic Mahler measures of multivariate polynomials are
sums of special values of different L-functions, often conjecturally [88]; the re-
markable conjectural identities discovered by Boyd in [88] (1998), also by Smyth
[492] and Ray [437], serve as starting points for further studies, some of them being
now proved, e.g. [321], [322], [448], [461], [552].

Indeed, after the publication of [88], Deninger [149] reinterpreted the logarith-
mic Mahler measures LogM(P ) of Laurent polynomials P ∈ Z[Zn] = Z[x±

1 , . . . , x
±
n ]

as topological entropies in the theory of dynamical systems of algebraic origin,
with Zn-actions (Schmidt [469], Chap. V, Theorem 18.1; Lind, Schmidt and Ward
[348]). This new approach makes a link with higher K-theory, mixed motives
(Deninger [150]), real Deligne cohomology, the Bloch-Beilinson conjectures on spe-
cial values of L- functions, and Mahler measures. There are two cases: either P
does not vanish on Tn, in which case LogM(P ) is a Deligne period of the mixed
motive over Q which corresponds to the nonzero symbol {P, x1, . . . , xn} (Theorem
2.2 in [149]), or, if P vanishes on Tn, under some assumptions, it is a difference of
two Deligne periods of certain mixed motives, equivalently, the difference of two
symbols evaluated against topological cycles (“integral K-theory cycles”) (Theo-
rem 3.4 in [149], with a motivic reinterpretation in Theorem 4.1 in [149]).

Let Gn
m,A := Spec(A[Zn]) be the split n-torus defined over the commutative

ringA = Z,Q or R. The polynomial P �≡ 0 defines the irreducible closed subscheme
Z := Spec(Z[Zn]/(P )) ⊂ Gn

m,Z, Z �= Gn
m,Z, For any coherent sheaf F on Gn

m,A, the
group Γ(Gn

m,A,F) of global sections, equipped with the discrete topology, admits
a Pontryagin dual Γ(Gn

m,A,F)∗ which is a compact group. This compact group
endowed with the canonical Zn-action constitute an arithmetic dynamical system
for which the entropy can be defined according to [469], and correlated to the
Mahler measure (Theorem 18.1 in [469]); the application to P , A = Z and F = OZ

provides the identity with the entropy: h(OZ) = LogM(P ). The definition

LogM(P ) :=
1

(2iπ)n

�

Tn

Log |P (x1, . . . , xn)|
dx1

x1
. . .

dxn

xn
(2.42)

corresponds to the integration of a differential form in connection with the cup-
product Log |P | ∪ Log |x1| ∪ . . . ∪ Log |xn| in the real Deligne cohomology of
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Gn
m,R \ ZR. The link between the L-series L(M, s) of a motive M , and its deriva-

tives, Deligne periods, and the Beilinson conjectures, comes from the Conjecture
of Deligne-Scholl ([149] Conjecture 2.1). Further, Rodriguez-Villegas [447] stud-
ied the conditions of applicability of the conjectures of Bloch-Beilinson for having
logarithmic Mahler measures LogM(P ) expressed as L-series.

The example of LogM(P (x1, x2)) = LogM((x1 + x2)
2 + k), with k ∈ N, is

computed in Proposition 19.10 in [469]. For instance, for k = 3, we have

LogM((x1 + x2)
2 + 3) =

2

3
Log 3 +

√
3

π
L(2,χ3). (2.43)

Deninger shows (ex. [149] p. 275) the cohomological origin of each term:
√
3

π L(2,χ3)
from the first M-cohomology group H1

M(∂A,Q(2)), 2
3Log 3 from the second M-

cohomology group H2
M(Zreg,Q(2)). Bornhorn [65], and later Standfest [497], rein-

vestigated further the conjectural identities of Boyd [88] in particular the formulas
of mixed type, containing several types of L-series. The logarithmic Mahler mea-
sure LogM(P ) is then written

= ∗L�(s1,χ) + ∗L�(E, s2), (2.44)

where χ is a Dirichlet character, L(s1,χ) the corresponding Dirichlet series, L(E, s2)
the Hasse-Weil L-function of an elliptic curve E/Q deduced from P , and s1, s2 al-
gebraic numbers. Following Deninger and Rodriguez-Villegas, Lalin [321], [322],
introduces techniques for applying Goncharov’s constructions of the regulator on
polylogarithmic motivic complexes in the objective of computing Mahler measures
of multivariate Laurent polynomials. With some three-variable polynomials, whose
zero loci define singular K3 surfaces, Bertin et al [49] prove that the logarithmic
Mahler measure is of the form

∗L�(g,O) + ∗L�(χ,−1) (2.45)

where g is the weight 4 newform associated with theK3 surface and χ is a quadratic
character. Other three-variable Mahler measures are associated with special values
of modular and Dirichlet L-series [453]. Some four-variables polynomials define a
Calabi-Yau threefold and the logarithmic Mahler measure is of the form

∗L�(f,O) + ∗ζ �(−2) (2.46)

where f is a normalized newform deduced from the Dedekind eta function [410].
Multivariable Mahler measures are also related to mirror symmetry and Picard -
Fuchs equations in Zhou [551].

In comparison, the limit points of the set S of Pisot numbers were studied by
analytical methods by Amara [7]. The set of values

{LogM(P ) | P ∈ Z[Zn], n ≥ 1} (2.47)

is conjecturally (Boyd [80]) a closed subset of R for the usual topology.



16 Jean-Louis Verger-Gaugry

3. Salem numbers, interlacing, association equations,
dynamics and dichotomy, partially and totally real

algebraic numbers

The set of (positive) Salem numbers is a subcollection of Mahler measures of
algebraic integers.

A negative Salem number is by definition the opposite of a Salem number,
a negative Pisot number is by definition the opposite of a Pisot number. Neg-
ative and (positive) Salem numbers occur in number theory, e.g. for graphs or
integer symmetric matrices in [354], [355], [356], and in other domains (cf § 6.4),
like Alexander polynomials of links of the variable “−x”, e.g. in Theorem 6.11
(Hironaka [263]).

The set of Pisot numbers admits the minorant Θ by a result of Siegel [478].
The set S of Pisot numbers is closed (Salem [452]). Its successive derived sets S(i),
were extensively studied by Dufresnoy and Pisot [189], and their students (Amara
[7], . . . ), by means of compact families of meromorphic functions, following ideas
of Schur. This analytic approach is reported extensively in the book [48]. Salem
(1944) (Samet [454], [451]) proved that every Salem number is the quotient of two
Pisot numbers. Apart from this result, few relations were known between Salem
numbers and Pisot numbers. The set of Pisot numbers is better known than the
set of Salem numbers.

To study Salem numbers association equations between Pisot numbers and
Salem numbers have been introduced by Boyd ([74] Theorem 4.1), Bertin and
Pathiaux-Delefosse ([46], [47] pp 37-46, [48] chapter 6). Association equations are
generically written

(X2 + 1)PSalem = XPPisot(X) + P ∗
Pisot(X), (3.1)

to investigate the links between infinite collections of Pisot numbers and a given
Salem number, of respective minimal polynomials PPisot and PSalem.

The theory of interlacing of roots on the unit circle is somehow a powerful tool
for studying classes of polynomials having special geometry of zeroes of modulus
one [315], [317], [318], in particular Salem polynomials. In [46] ([47]) Bertin and
Boyd obtained two interlacing theorems, namely Theorem A and Theorem B,
turned out to be fruitful with their limit-interlacing versions. McKee and Smyth
in [356] obtained new interlacing theorems. Theorem 5.3 in [356] shows that all
Pisot numbers are produced by a suitable interlacing condition, supporting the
second Conjecture of Boyd, i.e. (2.14). Similarly Theorem 7.3 in [356], using Boyd’s
association Theorems, shows that all Salem numbers are produced by interlacing
and that a classification of Salem numbers can be made.

In [250] Guichard and Verger-Gaugry reconsider the interest of the interlacing
Theorems of [46], as potential tools for the study of the limit points of sequences
of algebraic integers in neighbourhoods of Salem numbers, as analogues of those of
McKee and Smyth. Focusing on Theorem A of [46] they obtain association equa-
tions between Salem polynomials (and/or cyclotomic polynomials) and expansive



A Survey on the Conjecture of Lehmer and the Conjecture of Schinzel-Zassenhaus 17

polynomials, generically

(z − 1)PSalem(z) = zPexpansive(z)− P ∗
expansive(z), (3.2)

and deduce rational n-dimensional representations of the neighbourhoods of a
Salem number of degree n, using the formalism of Stieltjès continued fractions.
These representations are tools to study the limit points of sequences of algebraic
numbers in the neighbourhood of a given Salem number, for instance by dynamical
methods.

In the same direction association equations between Salem numbers and (gen-
eralized) Garsia numbers are obtained by Hare and Panju [255] using the theory
of interlacing on the unit circle.

As counterpart, Salem numbers are linked to units: they are given by closed
formulas from Stark units in Chinburg [125] [126], exceptional units in Silverman
[484]. From [126] they are related to relative regulators of number fields [12], [13],
[129], [134], [236].

Dynamics of Salem numbers, Parry Salem numbers. Let β > 1 and assume
β �∈ N. Let Tβ : [0, 1] → [0, 1], x → {βx} the β-transformation. The greedy β-
expansion of 1 is by definition denoted by

dβ(1) = 0.t1t2t3 . . . and uniquely corresponds to 1 =
+∞�

i=1

tiβ
−i , (3.3)

where

t1 = �β�, t2 = �β{β}� = �βTβ(1)�, t3 = �β{β{β}}� = �βT 2
β (1)�, . . . (3.4)

Multiplying (3.3) by β itself gives the β-expansion of β. The sequence (ti)i≥1 is

given by the orbit of one (T j
β(1))j≥0 by

T 0
β (1) = 1, T j

β(1) = βj − t1β
j−1 − t2β

j−2 − . . .− tj ∈ Z[β] ∩ [0, 1] (3.5)

for all j ≥ 1. The digits ti belong to the finite alphabet Aβ = {0, 1, . . . , �β�}. We
say that dβ(1) is finite if it ends in infinitely many zeros.

Definition 3.1. If dβ(1) is finite or ultimately periodic (i.e. eventually periodic),
then the real number β > 1 is said to be a Parry number. In particular, a Parry
number β is said to be simple if dβ(1) is finite.

Let P denote the set of Perron numbers. The set P of Perron numbers contains
the subset PP of all (simple and nonsimple) Parry numbers by a result of Lind [343]
(Blanchard [58], Boyle [94], Denker, Grillenberger and Sigmund [153], Frougny in
[351] chap.7). The set T ⊂ P of Salem numbers is separated into two disjoint
subsets

T =
�
T ∩ PP

�
∪

�
T \ T ∩ PP

�
(3.6)

Salem numbers which are Parry numbers are called Parry Salem numbers.
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Definition 3.2. If β is a simple Parry number, with dβ(1) = 0.t1t2 . . . tm, tm �= 0,
the polynomial

Pβ,P (X) := Xm − t1X
m−1 − t2X

m−2 − . . . tm (3.7)

is called the Parry polynomial of β. If β is a Parry number which is not simple,
with dβ(1) = 0.t1t2 . . . tm(tm+1tm+2 . . . tm+p+1)

ω and not purely periodic (m is
�= 0), then

Pβ,P (X) := Xm+p+1 − t1X
m+p − t2X

m+p−1 − . . .− tm+pX − tm+p+1

−Xm + t1X
m−1 + t2X

m−2 + . . .+ tm−1X + tm (3.8)

is the Parry polynomial of β. If β is a nonsimple Parry number such that dβ(1) =
0.(t1t2 . . . tp+1)

ω is purely periodic (i.e. m = 0), then

Pβ,P (X) := Xp+1 − t1X
p − t2X

p−1 − . . .− tpX − (1 + tp+1) (3.9)

is the Parry polynomial of β. By definition the degree dP of Pβ,P (X) is respectively
m and p + 1 in the first and third case, and m + p + 1 in the second case (m is
taken minimal).

If β is a Parry number, the Parry polynomial Pβ,P (X), belonging to the ideal
Pβ(X)Z[X], admits β as simple root and is often not irreducible. For instance
Parry polynomials have applications in the geometric and topological properties
of Thurston’s Master Teapot and the Thurston set (defined in Thurston [511]) for
superattracting unimodal continuous self-maps of intervals [99].

The small Salem numbers found by Lehmer in [337], reported below, either
given by their minimal polynomial or equivalently by their β-expansion (“dy-
namization”), are Parry Salem numbers:

deg(β) β = M(β) minimal pol. of β dβ(1)

4 1.722 . . . X4 −X3 −X2 −X + 1 0.1(100)ω

6 1.401 . . . X6 −X4 −X3 −X2 + 1 0.1(02104)ω

8 1.2806 . . . X8 −X5 −X4 −X3 + 1 0.1(05105107)ω

10 1.17628 . . . X10 +X9 −X7 −X6 −X5 0.1(0101018101210181012)ω

−X4 −X3 +X + 1

Let Θ = 1.3247 . . . be the dominant root of X3 −X − 1. If β ∈ (1,Θ] is a real
number for which the Rényi β-expansion of unity starts by dβ(1) = 0.10m1 . . .,
then the dynamical degree of β is by definition dyg(β) := m + 2. The respective
dynamical degrees dyg(β) of the last two Salem numbers β are 7 and 12, with
Parry polynomials of respective degrees 20 and 75.

The smallest Salem numbers of degree ≤ 44 are all known from the complete
list of Mahler measures ≤ 1.3 of Mossinghoff [390] of irreducible monic integer
polynomials of degree ≤ 180. Recall that, for n ≥ 5, θn denotes the real root > 0
of the polynomial −1 +X +Xn.
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dyg deg β Pβ,P dβ(1)

5 3 θ−1
5 = 1.324717 5 0.1031

6 18 1.29567 22 0.1(04109106)ω

6 10 1.293485 12 0.1(04106)ω

6 24 1.291741 24 irr. 0.1(041011106)ω

6 26 1.286730 30 0.1(041017106)ω

6 34 1.285409 38 0.1(041025106)ω

6 30 1.285235 45 0.1(041032106)ω

6 44 1.285199 66 0.1(041054106)ω

6 6 θ−1
6 = 1.285199 6 irr. 0.1041

7 26 1.285196 44 0.1(05105105105105105107)ω

7 26 1.281691 .. 0.1(0510510910510171071061061071012)ω

7 8 1.280638 20 0.1(05105107)ω

7 10 1.261230 14 0.1(05107)ω

7 24 1.260103 28 0.1(051013107)ω

7 18 1.256221 36 0.1(051021107)ω

7 7 θ−1
7 = 1.255422 7 irr. 0.1051

8 18 1.252775 120 0.1(0610610101016101210710120161010106108)ω

8 12 1.240726 48 0.1(0610111071011108)ω

8 20 1.232613 41 0.1(061024108)ω

8 8 θ−1
8 = 1.232054 8 irr. 0.1061

9 10 1.216391 18 0.1(07109)ω

9 9 θ−1
9 = 1.213149 9 irr. 0.1071

10 14 1.200026 20 0.1(081010)ω

10 10 θ−1
10 = 1.197491 10 irr. 0.1081

11 9 θ−1
11 = 1.184276 11 0.1091

12 10 1.176280 75 Lehmer’s number : 0.1(0101018101210181012)ω

12 12 θ−1
12 = 1.172950 12 irr. 0.10101

Table 1. Smallest Salem numbers β < 1.3 of degree ≤ 44, which are Parry numbers,
computed from the “list of Mossinghoff” [390]. In Column 1 is reported the dynamical
degree of β. Column 4 gives the degree dP of the Parry polynomial Pβ,P of β; Pβ,P is

reducible except if “irr.” is mentioned.

Table 1 gives the subcollection of those Salem numbers β which are Parry num-
bers within the intervals of extremities the Perron numbers θ−1

n , n = 5, 6, . . . , 12.
In each interval dyg(β) is constant while the increasing order of the βs corresponds
to a certain disparity of the degrees deg(β). The remaining Salem numbers in [390]
are very probably nonParry numbers though proofs are not available yet; they are
not included in Table 1. Apart from them, the other Salem numbers which exist
in the intervals (θ−1

n , θ−1
n−1), n ≥ 6, if any, should be of (usual) degrees deg > 180.
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For some families of algebraic integers, the “dynamization” of the minimal
polynomial is known explicitly, the digits being algebraic functions of the coef-
ficients of the minimal polynomials: e.g. for Salem numbers of degree 4 and 6
(Boyd [83] [84]), for Salem numbers of degree 8 (Hichri [257] [258] [259]), for Pisot
numbers (Boyd [87], Frougny and Solomyak [228], Bassino [37] in the cubic case,
Hare [253], Panju [409] for regular Pisot numbers). Schmidt [468], independently
Bertrand-Mathis [51], proved that Pisot numbers are Parry numbers. Many Salem
numbers are known to be Parry numbers. For Salem numbers of degree 4 it is the
case [85]. For Salem numbers of degree ≥ 6, Boyd [86] gave an heuristic argu-
ment and a probabilistic model, for the existence of nonParry Salem numbers as
a metric approach of the dichotomy of Salem numbers. This approach, coher-
ent with Thurston’s one ([511], p. 11), is in contradiction with the conjecture
of Schmidt. Hichri [257] [258] [259] further developped the heuristic approach of
Boyd for Salem numbers of degree 8. The Salem numbers of degree ≤ 8 are all
greater than 1.280638 . . . from [390].

Using the “Construction of Salem”, Hare and Tweedle [256] obtain convergent
families of Salem numbers, all Parry numbers, having as limit points the limit
points of the set S of Pisot numbers in the interval (1, 2) (characterized by Amara
[7]). These families of Parry Salem numbers do not contain Salem numbers smaller
than Lehmer’s number.

Parry numbers are studied from the negative β-shift. The negative β-shift
was introduced by Ito and Sadahiro [280] (Liao and Steiner [342], Masakova and
Pelantova [370], Nguéma Ndong [396] [397]) and the generalized β-shift by Gora
[242] [243] and Thompson [508]), in the general context of iterated interval maps
and post-critical finite (PCF) interval maps [385] [511]. Indeed, Kalle [289] showed
that nonisomorphisms exist between the β-shift and the negative β-shift, possibly
leading to new Parry numbers arising from “negative” Parry numbers (called Ito-
Sadahiro numbers in [370], Irrap numbers in [342] reading ”Parry” from the right to
the left). More generally negative Parry numbers and generalized Parry numbers
are defined as poles of the corresponding dynamical zeta functions [396] [397]
[509]. Negative Pisot and Salem numbers appear naturally in several domains: as
roots of Newman polynomials [254], in association equations with negative Salem
polynomials [250], in topology with the Alexander polynomials of pretzel links
(§ 6.4), as Coxeter polynomials for Coxeter elements (Hironaka [263]; § 6.2), in
studies of numeration with negative bases (Frougny and Lai [227]). Generalizing
Solomyak’s constructions to the generalized β-shift, Thompson [509] investigates
the fractal domains of existence of the conjugates.

Partially and totally real algebraic numbers. For totally real algebraic in-
tegers, the basic result is the minoration (3.10) given by Schinzel. Let us recall it.
Let L be a totally real algebraic number field, or a CM field (a totally complex
quadratic extension of a totally real number field). Then, for any nonzero alge-
braic integer α ∈ L, of degree d, not being a root of unity, Schinzel [463] obtained
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the minoration

M(α) ≥ θ
−d/2
2 =

�
1 +

√
5

2

�d/2

. (3.10)

More precisely, ifH(X) ∈ Z[X] is monic with degree d,H(0)= ±1 andH(−1)H(1) �=
0, and if the zeroes of H are all real, then

M(H) ≥
�1 +

√
5

2

�d/2

(3.11)

with equality if and only if H(X) is a power of X2 −X − 1. Bertin [45] improved
Schinzel’s minoration (3.11) for the algebraic integers α, of degree d, of norm N(α),
which are totally real, as

M(α) ≥ max
�
θ
−d/2
2 ,

�
N(α) θ

− d

2|N(α)|1/d
2

�
. (3.12)

The totally real algebraic numbers form a subfield, denoted by Qtr, in Q ∩ R.
Following [45], the natural extension of a Salem number is a ν-Salem number,
intermediate between Salem numbers and totally real algebraic numbers. Let us
define a ν-Salem as an algebraic integer α having ν conjugates outside {|z| ≥ 1}
and at least one conjugate α(q) satisfying |α(q)| = 1; denote by 2ν + 2k its degree.
Such an algebraic integer is totally real in the sense that its conjugates of modulus
> 1 are all real, and then

M(α) ≥ θ
− ν

2k/ν

2 . (3.13)

Further, extending Pisot numbers, lower bounds of M(α) were obtained by Zaimi
[543] [544] when α is a K-Pisot number. Rhin [442], following Zaimi (cf references
in [442]), obtained minorations of M(α) for totally positive algebraic integers α as
functions of the discriminant disc(α). Let K be an algebraic number field and α an
algebraic integer of minimal polynomial R over K; by definition [44] α is K-Pisot
number if, for any embedding σ : K → C, σ(RK) admits only one root of modulus
> 1 and no root of modulus 1. Denote by Δ the discriminant of K. Lehmer’s
problem and small discriminants were studied by Mahler (1964), Bertrand [50],
Matveev [377], Rhin [442]. For any K-Pisot number α, Zaimi [543], [544], showed

M(α) ≥
√
Δ

2
K quadratic, (3.14)

M(α) ≥ Δ1/4

√
6

K cubic and totally real. (3.15)

Other minorations of totally positive algebraic integers were obtained by Mu and
Wu [393]. Denote Ztr := Qtr ∩OQ. Because the degree d of the algebraic number
commonly appears in the exponent of the lower bounds of the Mahler measure, the
(absolute logarithmic) Weil height h is more adapted than the Mahler measure.
Schinzel’s bound, originally concerned with the algebraic integers in Ztr, reads:

α ∈ Ztr,α �= 0, �= ±1 ⇒ h(α) ≥ h
�
θ−1
2

�
=

1

2
Log (

1 +
√
5

2
) = 0.2406059 . . .
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Smyth [491], [492], proved that the set

{exp(h(α)) | α totally real algebraic integer,α �= 0, �= ±1} (3.16)

is everywhere dense in (1.31427 . . . ,∞); in other terms

lim inf
α∈Ztr

h(α) ≤ Log (1.31427 . . .) = 0.27328 . . . (3.17)

Flammang [217] completed Smyth’s results by showing

lim inf
α∈Ztr

h(α) ≥ 1

2
Log (1.720566 . . .) = 0.271327 . . . (3.18)

with exactly 6 isolated points in the interval (0, 0.271327 . . .), the smallest one be-
ing Schinzel’s bound 0.2406059 . . . In fact, passing from algebraic integers to alge-
braic numbers lead to various smaller minorants of h(α): for instance (Log 5)/12 =
0.134119 . . . by Amoroso and Dvornicich [23] for any nonzero α ∈ L which is not
a root of unity, where L/Q is an abelian extension of number fields, or, by Ishak,
Mossinghoff, Pinner and Wiles [278], for nonzero α ∈ Q(ξm), not being a root of
unity,

(i) h(α) ≥ 0.155097 . . ., for 3 not dividing m,

(ii) h(α) ≥ 0.166968 . . ., for 5 not dividing m, unless α = α±1
0 ζ, with ζ a root of

unity, whence h(α) ≥ (Log 7)/12 = 0.162159 . . ., α0 being a root of

7X12 − 13X6 + 7,

(iii) h(α) ≥ 0.162368 . . ., for 7 not dividing m.

(cf also [23], [29], [233], [234], [278], [426], for other results). For totally real
numbers α, Fili and Miner [212], using results of Favre and Rivera-Letelier [210]
on the equidistribution of points of small Weil height, obtained the limit infimum
of the height

lim inf
α∈Qtr

h(α) ≥ 140

3

�
1

8
− 1

6π

�2

= 0.120786 . . . (3.19)

Bombieri and Zannier [63] have recently introduced the concept of “Bogomolov
property”, by analogy with the “Bogomolov Conjecture”. Let us recall it. Assum-
ing a fixed choice of embedding Q → C, a field K ⊂ Q is said to possess the
Bogomolov property relative to h is and only if h(α) is zero or bounded from be-
low by a positive constant for all α ∈ K. The search of small Weil’s heights is
important [23], [25], Choi [128]. Every number field has the Bogomolov property
relative to h by Northcott’s theorem [470] [471]. Other fields are known to possess
the Bogomolov property: (i) Qtr [463], (ii) finite extensions of the maximal abelian
extensions of number fields [28] [29], (iii) totally p-adic fields [63], i.e. for algebraic
numbers all of whose conjugates lie in Qp, (iv) Q(Etors) for E/Q an elliptic curve
[251].
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For partially real algebraic integers, let us recall Garza’s lower bound. Garza
[233] established the following minoration of the Mahler measure M(α) for α an
algebraic number, different from 0 and ±1, having a certain proportion of real
Galois conjugates: if deg(α) = d ≥ 1 and 1 ≤ r ≤ d be the number of real Galois
conjugates of α, then

M(α) ≥
�
21−1/R +

√
41−1/R + 4

2

� r
2

, where R := r/d. (3.20)

An elementary proof of this minoration was given by Höhn [275]. If r = d, Garza’s
bound is Schinzel’s bound (3.11) for totally real algebraic integers [276].

Garza’s minorant satisfies limd→∞ 2−r/2
�
21−d/r+

√
41−d/r + 4

�r/2
= 1, for any

r fixed, where the limit 1 is reached “without any discontinuity”. In some sense, a
better minorant is expected since Garza’s lower bound does not take into account
the discontinuity at 1 claimed by the Conjecture of Lehmer.

4. Small points and Lehmer problems in higher dimension

The theory of heights [62], [460], [529], is a powerful tool for studying distributions
of algebraic numbers, algebraic points on algebraic varieties, and of subvarieties
in projective spaces by extension. Points having a small height, or “small points”,
resp. “small” projective varieties, together with their distribution, have a partic-
ular interest in the problem of Lehmer in higher dimension.

In the classical Lehmer problem, the “height” is the Weil height, and Lehmer’s
Conjecture is expressed by a Lehmer inequality where the minorant is “a function
of the degree”, i.e. it states that there exists a universal constant c > 0 such that

h(α) ≥ c

deg(α)
(4.1)

unless α = 0 or is a root of unity. The generalizations of Lehmer’s problem are
still formulated by a minoration as in (4.1), but in which “α” is replaced by a
rational point “P” of a (abelian) variety, or replaced by a variety “V ”, where
“h” is replaced by another height, more suitable, where the degree “deg(α)” may
be replaced by the more convenient “obstruction index” (“degree of a variety”),
where the minorant function of the “degree” may be more sophisticated than
the inverse “deg(α)−1”. These different minoration forms extend the classical
Lehmer’s inequality into a Lehmer type inequality. Generalizing Lehmer’s problem
separates into three different Lehmer problems:

(i) the classical Lehmer problem,

(ii) the relative Lehmer problem,

(ii) Lehmer’s problem for subvarieties.
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(i) The classical Lehmer problem. On Gm, Dobrowolski’s and Voutier’s mino-
rations, given by (2.17) and (2.18), with “(Log deg(α))3” at the denominator, were
up till now considered as the best general lower bounds, as functions of the degree
deg(α). Generalizations to higher dimension (below) have been largely studied:
e.g. Amoroso and David [15], [17], [18], Pontreau [424] [425], W. Schmidt [472] for
points on Gn

m, Anderson and Masser [30], David [138], Galateau and Mahé [231],
Hindry and Silverman [261], Laurent [332], Silverman [482], [483], [485], for elliptic
curves, David and Hindry [137], [139], Masser [375] for abelian varieties.

Conjecture 4.1. (Elliptic Lehmer problem) Let E/K be an elliptic curve over a
number field K. There is a positive constant C(E) > 0 such that, if P ∈ E(K)
has infinite order,

�h(P ) ≥ c(E)

[K(P ) : K]
. (4.2)

Theorem 4.2 (Laurent [332]). Let E/K be an elliptic curve with complex multi-
plication over a number field K. There is a positive constant c(E/K) such that

�h(P ) ≥ c(E/K)

D

�
Log Log 3D

Log 2D

�3

for all P ∈ E(K) \ Etors (4.3)

where D = [K(P ) : K].

Masser [372], [373], [375], and David [138], gave estimates of lower bounds

of �h(P ) for elliptic curves and abelian varieties, on families of abelian varieties
[374], for P of infinite order. Galateau and Mahé [231] solved the elliptic Lehmer
problem in the Galois case, extending Amoroso David’s Theorem ([15], and [27]
for sharper estimates):

Theorem 4.3 (Galateau - Mahé [231]). Let E/K be an elliptic curve over a
number field K. There is a positive constant C(E) > 0 such that, if P ∈ E(K)
has infinite order and the field extension K(P )/K is Galois,

�h(P ) ≥ c(E)

[K(P ) : K]
. (4.4)

Let α = (α1, . . . ,αn) ∈ Gn
m(Q) ⊂ Pn(Q). The height of α in Gn

m(Q) is defined
by h(α) = h(1 : α) the absolute logarithmic height. Let F0 ∈ Q[x1, . . . , xn] be
a nonzero polynomial vanishing at α. The obstruction index of α is by definition
deg(F0), denoted by δQ(α).

Conjecture 4.4. (Multiplicative Lehmer problem) For any integer n ≥ 1, there
exists a real number c(n) > 0 such that

h(α) ≥ c(n)

δQ(α)
(4.5)

for all α = (α1, . . . ,αn) ∈ Gn
m(Q) such that α1, . . . ,αn are multiplicatively inde-

pendent.
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Small points of subvarieties of algebraic tori were studied by Amoroso [11].

Theorem 4.5 (Amoroso - David). There exist a positive constant c(n) > 0 such
that, for all α = (α1, . . . ,αn) ∈ Gn

m(Q) such that α1, . . . ,αn are multiplicatively
independent,

h(α) ≥ c(n)

δQ(α)

�
Log (3δQ(α))

�− η(n)
(4.6)

with η(n) = (n+ 1)(n+ 1)!n − n.

As a consequence of the main Theorem in [27] Amoroso and Viada improved
the preceding Theorem and proved:

Theorem 4.6 (Amoroso - Viada). Let α1, . . . ,αn be multiplicatively independent
algebraic numbers in a number field K of degree D = [K : Q]. Then

h(α1) . . . h(αn) ≥
1

D

1

(1050n5Log (3D))n2(n+1)2
. (4.7)

The assumption of being multiplicatively independent was reconsidered in the

multiplicative group Q×
/Tor(Q×

) by Vaaler in [517].
Let A/K be an abelian variety over K a number field. Let L be a line bundle

over A. Let V be a subvariety of A defined over K. The degree degL(V ) of V
relatively to the Cartier divisor D associated with L is defined by the theory of
intersection [432]. In particular, if P ∈ A(K), and V = {P}, then degL(V ) =
[K(P ) : K].

For any P ∈ A(K) the obstruction index δK,L(P ) of P is now extended as

:= min{degL(V )
1

codim(V ) | V/K subvariety of A, for which P ∈ V (K)}. (4.8)

Conjecture 4.7 (David - Hindry, 2000 - Abelian Lehmer problem). Let A/K be
an abelian variety over a number field K and L an ample symmetric line bundle
over A. Then there exists a real number c(A,K,L) > 0 such that the canonical

height �hL(P ) of P satisfies

�hL(P ) ≥ c(A,K,L)
δK,L(P )

(4.9)

for every point P ∈ A(K) of infinite order modulo every proper abelian subvariety
V/K of A. Moreover, if D = [K(P ) : K], for any P ∈ A(K) not being in the
torsion,

�hL(P ) ≥ c(A,K,L)
D1/g0

(4.10)

where g0 is the dimension of the smallest algebraic subgroup containing P .

For any abelian variety A defined over a number field K [260], let us denote,
for any integer n ≥ 1, Kn := K(A[n]) the extension generated by the group of the
torsion points A[n], so that Ktors = ∪n≥1K(A[n]).
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Theorem 4.8 (Ratazzi [434]). Let A/K be a CM abelian variety of dimension
g over a number field K and L an symmetric ample line bundle over A. Then
there exists a real number c(A,K,L) > 0 such that, for every point P ∈ A(K), the

canonical height �hL(P ) satisfies either

(i) �hL(P ) ≥ c(A/K,L)
δKn,L(P )

�
Log Log 3 [Kn : K] δKn,L(P )

Log 2 [Kn : K] δKn,L(P )

�η(g)

(4.11)

with η(g) = (2g + 5)(g + 2)(g + 1)!(2g.g!)g; or
(ii) the point P belongs to a proper torsion subvariety, B ⊂ AKn , defined over

Kn, having a degree bounded by

(degL B)
1/codimB ≤ 1

c(A/K,L)δKn,L(P ) (Log 2[Kn : K]δKn,L(P ))
2g+2η(g)

.

(4.12)

(ii) The relative Lehmer problem. The generalization of the classical
Lehmer problem for subfields K ⊂ Q is decomposed into two steps:

(ii-i) does there exist a real number c(K) > 0 such that h(α) ≥ c(K) for all
α ∈ Gm(K)/Gm(K)tors?

(ii-ii) if (i) is satisfied, does there exist a real number c�(K) > 0 such that, for all

α ∈ Gm(K)/Gm(K)tors, h(α) ≥ c�(K)
[K(α):K]?

If K is a number field, (ii-i) is satisfied by Northcott’s Theorem and (ii-ii) amounts
to the classical Lehmer problem. If K is an infinite extension of Q the problem
is more difficult. In (ii-i), when the field K is Qab, or the abelian closure of a
number field, it is usual to speak of the abelian Lehmer problem. The abelian
Lehmer problem was solved by Amoroso and Dvornicich [23]: they proved that, if
L/Q is an abelian extension of number fields,

h(α) ≥ Log 5

12
(4.13)

for any nonzero α ∈ L which is not a root of unity. As for (ii-ii), it is usual to
speak of relative Lehmer problem. The abelian and the relative Lehmer problems
are naturally extended in higher dimension. If G denotes either an abelian variety
A/K over a number fieldK or the n-torusGn

m, andKtors = K(Gtors), the minorant
function of the height is expected to depend upon the “nonabelian part of the
degree D”, where D = [K(P ) : K]. This “nonabelian part : Dtors = [Ktors(P ) :
Ktors] of D” is equal to [Kab(P ) : Kab], where Kab is the abelian closure of K (if
G = A, A is assumed CM).

Given an abelian extension L/K of number fields and a nonzero algebraic num-
ber α which is not a root of unity, with D := [L(α) : L], Amoroso and Zannier [28]
proved the following result, which makes use of Dobrowolski’s minoration and the
previous minoration:

h(α) ≥ c(K)

D

�
Log Log 5D

Log 2D

�13

, (4.14)
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where c(K) > 0, in the direction of the relative problem. Amoroso and Delsinne
[22] computed a lower bound, depending upon the degree and the discriminant of
the number field K, for the constant c(K). In 2010, given K/Q an extension of
algebraic number fields, of degree d, Amoroso and Zannier [29] showed

h(α) ≥ 3−d2−2d−6 (4.15)

for any nonzero algebraic number α which is not a root of unity such that K(α)/K
is abelian. As a corollary they obtained

h(α) ≥ 3−14 (4.16)

for any dihedral extension L/Q and any nonzero α ∈ L which is not a root of unity.
For cyclotomic extensions, they obtained sharper results: (i) if K is a number field
of degree d, there exists an absolute constant c2 > 0 such that, with L denoting
the number field generated by K and any given root of unity, then

h(α) ≥ c2
d

(Log Log 5d)3

(Log 2d)4
, (4.17)

for any nonzero α ∈ L which is not a root of unity; (ii) if K is a number field
of degree d, and α any nonzero algebraic number, not a root of unity, such that
αn ∈ K for some integer n under the assumption that K(α)/K is an abelian
extension, then

h(α) ≥ c3
d

(Log Log 5d)2

(Log 2d)4
, (4.18)

for some constant c3 > 0.
In higher dimension [137] [432], with G = A an abelian variety over a number

field K, the torsion obstruction index δtorsK,L(P ) of a point P is now defined by

:= min{degLtors(V )
1

codim(V ) | V/Ktors
subvariety of AKtors , for which P ∈ V (K)}.

(4.19)

Conjecture 4.9 (David). Let A/K be an abelian variety over a number field K
and L an ample symmetric line bundle over A. Then there exists a real number
c(A,K,L) > 0 such that the canonical height �hL(P ) satisfies

�hL(P ) ≥ c(A,K,L)
δtorsK,L(P )

(4.20)

for every point P ∈ A(K) of infinite order modulo every proper abelian subvariety
V/K of A.

The analogue of Amoroso and Dvornicich’s theorem [23] (abelian Lehmer prob-
lem) was obtained by Baker and Silverman for abelian varieties [32], [33], and for
elliptic curves by Baker [32], then by Silverman [485]:
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Theorem 4.10 (Baker - Silverman). Let A/K be an abelian variety over a number

field K and L an symmetric ample line bundle over A. Let �h(P ) : A(K) → R the
associated canonical height. Then there exists a real number c(A,K,L) > 0 such
that

�h(P ) ≥ c(A,K,L) for all nontorsion points P ∈ A(Kab). (4.21)

The proof relies upon Zahrin’s theorem on torsion points of abelian varieties
deduced from the proof of Faltings’s theorem [204] of the Mordell Conjecture.

Theorem 4.11 (Silverman). Let K/Q be a number field, let E/K be an elliptic

curve, and �h : E(K) → R be the canonical height on E. There is a constant
C(E/K) > 0 such that every nontorsion point P ∈ E(Kab) satisfies

�h(P ) > C(E/K). (4.22)

Small points were studied by Carrizosa [117]. Ratazzi [430] obtained the rela-
tive version of Amoroso and Zannier’s minoration [28]:

Theorem 4.12 (Ratazzi). Let E/K be an elliptic curve with complex multipli-
cation over a number field K. Then there exists a constant c(E,K) > 0 such
that

�h(P ) ≥ c(E,K)

D

�
Log Log 5D

Log 2D

�13

for all nontorsion points P ∈ E(K),

(4.23)
where D = [Kab(P ) : Kab].

In the direction of the relative problem, a better lower bound of the canonical
height of a point P in a CM abelian variety A/K in terms of the degree of the field
generated by P over K(Ators) was obtained by Carrizosa [116]. For tori Delsinne
[148] obtained the following (the obstruction index ωK(α) is defined below):

Theorem 4.13 (Delsinne). Let n ≥ 1 be an integer. There exist constants c1(n),
κ1(n), µ(n), η1(n) > 0 such that, for any α ∈ Gn

m(Q) satisfying

h(α) ≤
�
c1(n)ωQab(α)

�
Log (3ωQab(α))

�κ1(n)
�−1

, (4.24)

there exists a torsion subvariety B containing α, the degree of B being bounded by

(degB)1/codimB ≤ c1(n)ωQab(α)η1(n)
�
Log (3ωQab(α))

�µ(n)
; (4.25)

the constants are effective and one can take the following values:

c1(n) = exp
�
64nn!(2(n+ 1)2(n+ 1)!)2n

�
, (4.26)

κ1(n) = 3(2(n+ 1)2(n+ 1)!)n, µ(n) = 8n!(2(n+ 1)2(n+ 1)!)n, (4.27)

η1(n) = (n− 1)!

�
n−3�

i=0

1

i!
+ 1

�
(4.28)
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(iii) Lehmer’s problem for subvarieties. The extension from points to
subvarieties has been formulated for nontorsion subvarieties V of the multiplicative
group Gn

m or of an abelian variety A/K over a number field K by David and
Philippon [141], [142], and Ratazzi [431], [432]. The natural extension of the
minoration problem for the height consists in obtaining the best minoration of the
height �hL(V ), resp. of the essential minimum, as a function of the degree of V or
of the obstruction index of V . The obstruction index δK,L(V ) of V , resp. ωK(V ),
extends the obstruction index δK,L(P ) of a point P [142]. As for the definition of
the height of V relatively to an symmetric ample line bundle L, two approaches
were followed [432]: one by Philippon [417], another one by Bost, Gillet and Soulé
[71], using theorems of Soulé [495] and Zhang [547]. In the second construction
Zhang [547] showed how to consider the canonical height (or Néron-Tate height,

or normalized height) �hL(V ) as a limit of Arakelov heights.

Define the canonical height (say) �h on Gn
m(Q) by �h(α1, . . . ,αn) = h(α1)+ . . .+

h(αn). For θ > 0, let V be a subvariety of Gn
m defined over Q. For θ > 0, let:

Vθ := {P ∈ V (Q) |≤ θ}, (4.29)

and the essential minimum

�µess(V ) := inf{θ > 0 | Vθ is Zariski dense in V }. (4.30)

The generalized Bogomolov conjecture for subvarieties of tori asserts that �µess(V ) =
0 is and only if V is a torsion subvariety. In the case where V is a point, V = {P},
�µess(V ) = �h(P ). Zhang [546], [547], [548], showed that the minoration problem of
�µess(V ) is essentially the same problem as finding lower bounds for the canonical

height �h(V ) of V , in the sense of Arakelov theory. Indeed, from his Theorem of
the Successive Minima, Zhang proved:

�µess(V ) ≤
�h(V )

deg(V )
≤ (dim(V ) + 1) �µess(V ) (4.31)

for V any subvariety of Gn
m over Q. Zhang obtained similar results for subvarieties

of abelian varieties. The canonical height �h(V ) of V is related to the problem of
minoration of multivariate Mahler measures by the following: for V being a hyper-
surface defined by a polynomial F (x1, . . . , xn) ∈ Z[x1, . . . , xn] (having relatively
prime integer coefficients), then

�h(V ) =

� 1

0

. . .

� 1

0

Log |F (e2πit1 , . . . , e2πitn)|dt1 . . . dtn (4.32)

is the logarithmic Mahler measure LogM(F ) of F . Let K be a field of characteristic
zero, and let V be a subvariety of Gn

m defined over Q. Define the index of obstruc-
tion ωK(V ) to be the minimum degree of a nonzero polynomial F ∈ K[x1, . . . , xn]
vanishing identically on V . Equivalently, it is the minimum degree of a hypersur-
face defined over K and containing V . The higher-dimensional Lehmer Conjecture
takes the following form (i.e. the two following conjectures):
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Conjecture 4.14 (Amoroso - David, 1999). Let V be a subvariety of Gn
m, and

assume that V is not contained in any torsion subvariety (i.e., a translate of a
proper subgroup by a torsion point). Then there exists a constant C(n) > 0 such
that

�µess(V ) ≥ C(n)

ωQ(V )
. (4.33)

A 0-dimensional subvariety V = (α1, . . . ,αn) of Gn
m is contained in a torsion

subvariety if and only if α1, . . . ,αn are multiplicatively dependent.
In a similar way, for θ > 0, V a subvariety of an abelian variety A defined

over a number field K, and L a symmetric ample line bundle on A, we define:
V (θ,L) := {x ∈ V (K) | �hL(K) ≤ θ}. The essential minimum of V is

�µess
L (V ) := {θ > 0 | V (θ,L) = V } (4.34)

where V (θ,L) is the adherence of Zariski of V (θ,L) in A.

Conjecture 4.15 (David - Philippon, 1996). Let A be an abelian variety defined
over a number field K, and L a symmetric ample line bundle on A. Let V/K be a
proper subvariety of A, K-irreducible and such that VK is not the union of torsion
subvarieties, then

�hL(V )

degL(V )
≥ c(A/K,L)

(degL(V ))1/(s−dim(V ))
(4.35)

for some constant c(A/K,L) > 0 depending on A/K and L, where s is the dimen-
sion of the smallest algebraic subgroup containing V .

Generalizing (4.6) the higher dimensional Dobrowolski bound takes the follow-
ing form, proved in [15] for dim(V ) = 0, in [16] for codim(V ) = 1 and in [17] for
varieties of arbitrary dimension.

Theorem 4.16 (Amoroso - David). Let V be a subvariety of Gn
m defined over Q

of codimension k. Let us assume that V is not contained in any union of proper
torsion varieties. Then, there exist two constants c(n) and κ(n) = (k + 1)(k +
1)!k − k such that

�µess(V ) ≥ C(n)

ωQ(V )

1

(Log 3ωQ(V ))κ(k)
. (4.36)

Amoroso and Viada [26] introduced relevant invariants of a proper projective
subvariety V ⊂ Pn: e.g. δ(V ) defined as the minimal degree δ such that V is, as
a set, the intersection of hypersurfaces of degree ≤ δ.

Theorem 4.17 (Amoroso - Viada [27]). Let V ⊂ Gn
m be a Q-irreducible variety

of dimension d. Then, for any α ∈ V ∗(Q),

h(α) ≥ 1

δ(V )

1

(935n5Log (n2δ(V ))(d+1)(n+1)2
. (4.37)

Following the main Theorem1.3 in [27] the essential minimum admits the fol-
lowing lower bound:
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Theorem 4.18 (Amoroso - Viada). Let V ⊂ Gn
m be a Q-irreducible variety of

dimension k which is not contained in any union of proper torsion varieties. Then,

�µess(V ) ≥ 1

ωQ(V )

1

(935n5Log (n2ωQ(V ))k(k+1)(n+1)
. (4.38)

Theorem 4.19 (Ratazzi [432]). Let A be a CM abelian variety defined over a
number field K, and L a symmetric ample line bundle on A. Let V/K be a
proper subvariety of A, K-irreducible and such that VK is not the union of torsion
subvarieties. Then

�hL(V )

degL(V )
≥ �µess

L (V ) ≥ c(A/K,L)
(degL(V ))1/(n−dim(V )

1

(Log (2 degL(V ))κ(n)
(4.39)

with κ(n) = (2n(n+ 1)!)n+2, for some constant c(A/K,L) > 0 depending only on
A/K and L.

Ratazzi in [432] obtained more precise minorations of �hL(V ) in the case where
V is an hypersurface. In [431] Ratazzi proves that the optimal lower bound given
by David and Philippon [141] in Conjecture 4.15 is a consequence of a Conjecture
of David and Hindry on the abelian Lehmer problem.

On the way of proving the relative abelian Lehmer Conjecture, Carrizosa [116]
[118] obtained a lower bound of the canonical height of a point P in a CM abelian
variety A/K defined over a number field K in terms of the degree of the field
generated by P over K(Ators). As Corollary of Theorem 4.13, with the same
constants, Delsinne obtained the relative result:

Theorem 4.20 (Delsinne). Let V be a subvariety of Gn
m which is not contained

in any proper algebraic subgroup of Gn
m. Then

�µess(V ) ≥
�
c3(n)ωQab(V )(Log (3ωQab(V )))κ1(n)

�−1

(4.40)

with c3(n) = c1(n)(dim(V ) + 1).

Concomitantly to the Lehmer problems, the geometry of the distribution of
the small points, their Galois orbits, the limit equidistribution of conjugates on
some subvarieties, the theorems of finiteness, were investigated, e.g. in Amoroso
and David [19] [20] Bilu [54], Bombieri [61], Burgos Gil, Philippon, Rivera-Letelier
and Sombra [106], Chambert-Loir [120], D’Andrea, Galligo, Narváez-Clauss and
Sombra [135] [136], Favre and Rivera-Letelier [210], Habegger [251], Hughes and
Nikeghbali [277], Litcanu [349], Petsche [415] [416], Pritsker [429], Ratazzi and
Ullmo [435], Rémond [439], Rumely [450], Szpiro, Ullmo and Zhang [506], Zhang
[547], [548].

The proof of Dobrowolski in [160] has been revisited and generalized, e.g. by
Amoroso and David [14], Carrizosa [118], Laurent [332], Meyer [378], Ratazzi [433].
It is a keystone to the above-mentionned minoration problems.
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5. Analogues of the Mahler measure and Lehmer’s problem

Several generalizations and analogues of the Mahler measure were introduced, for
which the analogue of the problem of Lehmer holds, or not.

The Zhang-Zagier height H(α) of an algebraic number α is defined as
H(α) = M(α)M(1 − α). After Zhang [546] and Zagier [540] [541], if α is an
algebraic number different from the roots of (z2 − z)(z2 − z + 1), then

H(α) ≥

�
1 +

√
5

2
= 1.2720196 . . . (5.1)

Doche [165], [166], using (2.39), obtains the following better minorant: if α is an
algebraic number different from the roots of (z2 − z)(z2 − z +1)Φ10(z)Φ10(1− z),
then

H(α) ≥ 1.2817770214 =: η, (5.2)

and the smallest limit point of {H(α) | α ∈ Q} lies in [1.2817770214, 1.289735].
Dresden [169] introduced a generalization of the Zhang-Zagier height:

given G a subgroup of PSL(2,Q), the G-orbit height of α ∈ P1(Q) is

hG(α) :=
�

g∈G

h(gα). (5.3)

For G the cyclic group generated by
�

1 0
0 1

�
,

�
0 1
−1 1

�
,

�
1 −1
1 0

�

Dresden finds, for α �= 0, �= 1 not being a primitive sixth root of unity,

h(α) + h(
1

1− α
) + h(

1

α
) ≥ 0.42179 . . . (5.4)

with equality for α any root of (X2−X+1)3−X2(X−1)2; otherwise, hG(α) = 0.
The G-invariant Lehmer problem is stated as follows in van Ittersum ([281] p.

146): given G a finite subgroup of PSL(2,Q), does there exist a positive constant
D = DG > 0 such that

hG(α) = 0 or hG(α) ≥ D, for all α ∈ P1(Q)? (5.5)

If G is trivial this constant D does not exist [540]. Denote by OrbG the set of

all orbits of the action of G on �C = C ∪ {∞} and OrbG,unit := {Y ∈ OrbG |
for all α ∈ Y,α = 0 or |α| = 1}. Dresden’s result [169] was generalized in [281]:
van Ittersum [281] proved the G-invariant Lehmer problem under the assumption
on G that OrbG,unit is finite.

The (logarithmic) metric Mahler measure �m : G → [0,∞) was introduced
by Dubickas and Smyth in [187], [188], where

G := Q×
/Tor(Q×

) (5.6)
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is theQ-vector space of algebraic numbers modulo torsion, written multiplicatively.
For α ∈ G it is defined by

�m(α) := inf
� N�

n=1

LogM(αn) | N ∈ N, αn ∈ Q×
, α =

N�

n=1

αn

�
(5.7)

where the infimum is taken over all possible ways of writing any representative α
of α as a product of other algebraic numbers. The construction may be applied
to any height function [188] and is extremal in the sense that any other function
g : G → [0,∞) satisfying

(i) g(α) ≤ �m(α) for any α ∈ G,
(ii) g(αβ−1) ≤ g(α) + g(β) for any α,β ∈ G (triangle inequality),

is smaller than �m.
The structure of the completion of G, as a Banach space over the field R of real

numbers, endowed with the norm deduced from the Weil height has been studied
by Allcock and Vaaler [6]. Indeed, by construction, the Weil height satisfies: for

any α ∈ Q×
and any root of unity ζ, h(α) = h(ζα), so that h extends to h : G → ∞

with the properties:

(i) h(α) = 0 if and only if α is the identity element 1 in G,
(ii) h(α) = h(α−1) for all α ∈ G,
(iii) h(αβ) ≤ h(α) + h(β) for all α,β ∈ G.
These conditions imply that the map (α,β) → h(αβ−1) is a metric on the quotient

group G, on which the Q-action is defined by (r/s,α) → αr/s by the roots of the

polynomials zs − (ζα)r = 0 for any α ∈ Q×
and any root ζ of unity. With the

usual absolute value | · | on Q, h(αr/s) = | rs |h(α), and h is a norm on the Q-vector
space G.

Let Y denote the totally disconnected, locally compact, Hausdorff space of all
places y of Q. Let B be the Borel σ-algebra of Y . For any number field k ⊂ Q
such that k/Q is Galois and any place v of k, denote Y (k, v) := {y ∈ Y | y|v} so
that

Y =
�

allplaces v of k

Y (k, v) (disjoint union). (5.8)

Let λ be the unique regular measure on B, positive on open sets, finite on compact
sets, which satisfies:

(i) λ(Y (k, v)) =
[kv : Qv]

[k : Q]
for any Galois k/Q, any place v of k, (5.9)

(ii) λ(τE) = λ(E) for all τ ∈ Aut(Q/k) and E ∈ B. Allcock and Vaaler [6] proved
that the (not surjective) map

f : G → L1(Y,B,λ), α → fα given by fα(y) := Log �α�y (5.10)
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is a linear isometry of norm 2h, i.e.

fαβ(y) = fα(y) + fβ(y), fαr/s(y) = (r/s)fα(y),

�

Y

|fα(y)|dλ(y) = 2h(α),

with the property: �

Y

fα(y)dλ(y) = 0.

Denote by F := f(G) the image of G in L1(Y,B,λ) and

χ := {F ∈ L1(Y,B,λ) |
�

Y

F (y)dλ(y) = 0}

the co-dimension one linear subspace of L1(Y,B,λ). They proved that F is dense
in χ ([6] Theorem 1), i.e. that χ is the completion of (G, h), up to isometry. They
also proved that, for any real 1 < p < ∞, F is dense in Lp(Y,B,λ) ([6] Theorem
2), and F is dense in the Banach space C0(Y ) of continuous real valued functions
on Y which vanish at infinity, equipped with the sup-norm ([6] Theorem 3).

Fili and Miner [213] proved that the space F admits linear operators canonically
associated to the Mahler measure and to the Lp norms on Y . They introduced
norms, called Mahler p-norms, from orthogonal decompositions of F , and, in
this context, obtained extended formulations, called Lp Lehmer Conjectures, of
the Lehmer Conjecture and the Conjecture of Schinzel-Zassenhaus. Namely, let K
be the set of finite extensions of Q and

KG := {K ∈ K | σ(K) = K for all σ ∈ Gal(Q/Q)}.

For each K ∈ K, denote by VK := {fα | α ∈ K×/Tor(K×)} the Q-vector subspace
of F constituted by the nonzero elements of K modulo torsion, and, for n ≥
0, V (n) :=

�
K∈K,[K:Q]≤n VK . Denote by �f, g� =

�
Y

f(y)g(y)dλ(y) the inner
product on F .

Theorem 5.1 (Fili - Miner). (i) There exist projection operators TK : F → F for
each K ∈ KG such that TK(F) ⊂ VK , TK(F)⊥TL(F) for all K,L ∈ KG, K �= L,
with respect to the inner product on F , and

F =
�

K∈KG

TK(F), (5.11)

(ii) for all n ≥ 1, there exist projections T (n) : F → F such that T (n)(F) ⊂ V (n),
T (m)(F)⊥T (n)(F) for all m �= n, and

F =
�

K∈KG

T (n)(F), (5.12)

(iii) for every K ∈ KG and n ≥ 0, the projections TK and T (n) commute.
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Now, for any α ∈ Q×
and any real number 1 ≤ p ≤ ∞, let hp(α) := �fα�p

(recalling that h1(α) = 2h(α)).

Conjecture 5.2 (Fili - Miner (Lp Lehmer Conjectures)). For any real number
1 ≤ p ≤ ∞, there exists a real constant cp > 0 such that

(∗p) mp(α) := degQ(α)hp(α) ≥ cp for all α ∈ Q \ Tor(Q). (5.13)

For p = 1 Conjecture 5.2 is exactly the classical Lehmer Conjecture. Moreover,
Fili and Miner ([213], Proposition 4.1) proved that, for p = ∞, Conjecture 5.2 is
exactly the classical Conjecture of Schinzel-Zassenhaus.

The operator M : F → F , f → �∞
n=1 nT

(n)f is well-defined, unbounded,
invertible, and is always a finite sum. The norm f → �Mf�p is called the Mahler

p-norm on F . For any f ∈ F , let d(f) := min{degQ(α) | α ∈ Q×
, fα = f} be

the smallest degree possible in the class of f . For any f ∈ F , the minimal field,
denoted by Kf , is defined to be the minimal element of the set {K ∈ K | f ∈ VK}.
Let δ(f) = [Kf : Q]. The PK operators on F are defined from the TK operators
as: PK :=

�
F∈KG,F⊂K TF . An element f ∈ F is said to be Lehmer irreducible

(or representable) if δ(f) = d(f). The set of Lehmer irreducible elements of F is
denoted by L. An element f ∈ F is said to be projection irreducible if PH(f) = 0
for all propers subfields H of Kf . The set of projection irreducible elements of
F is denoted by P. Let U = {f ∈ F | suppY (f) ⊂ Y (Q,∞)} be the subset of
algebraic units.

Theorem 5.3 (Fili - Miner). For every real number 1 ≤ p ≤ ∞, the Lp Lehmer
Conjecture (∗p) holds if and only the following minoration on the Mahler p-norms
holds

(∗∗p) �
∞�

n=1

nT (n)fα�p ≥ cp for all fα ∈ L ∩ P ∩ U , fα �= 0. (5.14)

Further, for 1 ≤ p ≤ q ≤ ∞, if (∗∗p) holds, then (∗∗q) also holds.

An element fβ ∈ F is said to be a Pisot number, resp. a Salem number, if it

has a representative β ∈ Q×
which is a Pisot number, resp. a Salem number. Fili

and Miner ([213], Prop. 4.2 and Prop. 4.3) proved that every Pisot number and
every Salem number is Lehmer irreducible, moreover that every Salem number is
also projection irreducible. A surd is an element f ∈ F such that δ(f) = 1, i.e.
for which Kf = Q and �Mf�p = �f�p = hp(f); a surd is projection irreducible.

The t-metric Mahler measure, was introduced by Samuels [282], [456], [458].
For t ≥ 1, the t-metric Mahler measure is defined by

Mt(α) := inf
�� N�

n=1

(LogM(αn))
t
�1/t

| N ∈ N, αn ∈ Q×
, α =

N�

n=1

αn

�
(5.15)

and, by extension, for t = ∞, by

M∞(α) := inf
�

max
1≤n≤N

�
LogM(αn)

�
| N ∈ N, αn ∈ Q×

, α =

N�

n=1

αn

�
. (5.16)
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For t = 1, M1 is the metric Mahler measure introduced in [187]. These func-
tions satisfy an analogue of the triangle inequality [282], and the map (α,β) →
Mt(αβ

−1) defines a metric on G := Q×
/Tor(Q×

) which induces the discrete topol-
ogy if and only if Lehmer’s Conjecture is true. For t ∈ [1,∞] and α ∈ Q we say
that the infimum in Mt(α) is attained by α1, . . . ,αn if the equality case holds: i.e.,

• for 1 ≤ t < ∞, if Mt(α) =
��N

n=1(LogM(αn))
t
�1/t

and,

• for t = ∞, if M∞(α) = max1≤n≤N{LogM(αn)}.
For α ∈ Q, denote by Kα the Galois closure of Q(α)/Q, and let

Rad(Kα) := {β ∈ Q | βm ∈ Kα for some m ∈ N}.

Following a conjecture of Dubickas and Smyth [187], Samuels [456] [457] proved
that the infimum of Mt(α) is attained in Rad(Kα). Whether this infimum is at-
tained in proper subsets of Q leads to many open questions ([282], Question 1.5),
though Jankauskas and Samuels proved some results for certain cases of decompo-
sitions of rational numbers in prime numbers ([282], Theorem 1.3, Theorem 1.4).
In particular for α ∈ Q, they proved that the infimum of Mt(α) may be attained
using only rational points.

The p-metric, resp. the t-metric, constructions of Fili and Miner [212] and Jan-
kauskas and Samuels [282] are of different nature, though they are esentially the
same for p = 1. Fili and Miner [212] studied the minimality of the Mahler measure
by several norms, related to the metric Mahler measure introduced in [187], using
results of de la Masa and Friedman [369] on heights of algebraic numbers modulo
multiplicative group actions. Fili and Miner [212] introduced an infinite collection
(ht)t of vector space norms on G, called Lt Weil heights, t ∈ [1,∞], which satisfy
extremality properties, and minimal logarithmic Lt Mahler measures (mt)t from
(ht)t. By definition, for K a number field, ΣK its set of places and ||.||ν the absolute
value on K extending the usual p-adic absolute value on Q if ν is finite or the usual
archimedean absolute value if ν is infinite, for 1 ≤ t < ∞ real,

ht(α) :=
� �

ν∈ΣK

[Kν : Qν ]

[K : Q]
. |Log ||α||ν |t

�1/t

, α ∈ K× (5.17)

for which 2h = h1 [6], and

h∞(α) := sup
ν∈ΣK

|Log ||α||ν | , α ∈ K×. (5.18)

They reformulated Lehmer’s Conjecture in this context (with 1 ≤ t < ∞). Be-
cause h∞ serves as a generalization of the (logarithmic) house of an algebraic
integer, they also reformulated the Conjecture of Schinzel and Zassenhaus. In
[282] Jankauskas and Samuels investigate the t-metric Mahler measures of surds
and rational numbers.

The ultrametric Mahler measure was introduced by Fili and Samuels [216],
[457], to give a projective height of G, which satisfies the strong triangle inequality.
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The ultrametric Mahler measure induces the discrete topology on G if and only if
Lehmer’s Conjecture is true.

Two p-adic Mahler measures are introduced by Besser and Deninger in
[53] in view of developping natural analogues of the classical logarithmic Mahler
measures of Laurent polynomials, following Deninger [149]. The p-adic analogue of
Deligne cohomology is now Besser’s modified syntomic cohomology, but with the
same symbols in the algebraic K-theory groups. For one p-adic Mahler measure
the authors show that there is no analogue of Lehmer’s problem.

Generalized Mahler measures, higher Mahler measures and multiple k-higher
Mahler measures were introduced by Gon and Oyanagi [240], resp. Kurokawa,
Laĺın and Ochiai [313] and reveal deep connections between zeta functions, poly-
logarithms, multiple L- functions (Sasaki [459]) and multiple sine functions. For
any n ≥ 1, given P1, . . . , Ps ∈ C[x1, . . . , xn] (not necessarily distinct) nonzero poly-
nomials, the generalized Mahler measure is defined by mmax(P1, . . . , Ps) :=

1

(2πi)n

�

Tn

max{Log |P1(x1, . . . , xn)|, . . . ,Log |Ps(x1, . . . , xn)|}
dx1

x1
. . .

dxn

xn
,

(5.19)
the multiple Mahler measure by m(P1, . . . , Ps) :=

1

(2πi)n

�

Tn

Log |P1(x1, . . . , xn)| . . .Log |Ps(x1, . . . , xn)|
dx1

x1
. . .

dxn

xn
, (5.20)

the k-higher Mahler measure of P by mk(P ) := m(P, . . . , P ) =

1

(2πi)n

�

Tn

Log k|P1(x1, . . . , xn)|
dx1

x1
. . .

dxn

xn
, (5.21)

The k-higher Mahler measures are deeply related to the zeta Mahler measures, and
their derivatives, introduced by Akatsuka [5]. The problem of Lehmer for k-higher
Mahler measures is considered by Laĺın and Sinha in [324]. Asymptotic formulas
of mk(P ), with k, are given in [57] and [324], for some families of polynomials
P . Analogues of Boyd-Lawton’s Theorem are studied in Issa and Laĺın [279]. By
analogy with Deninger’s approach, the motivic reinterpretation of the values of
k-higher Mahler measures in terms of Deligne cohomology is given by Laĺın in
[323].

The logarithmic Mahler measure mG over a compact abelian group
G is introduced by Lind [346]. The group is equipped with the normalized Haar

measure µ. By Pontryagin’s duality the dual group �G (characters) is discrete and

the class of functions f to be considered is Z[ �G]. For f ∈ Z[ �G]

mG(f) =

�

G

Log |f |dµ (5.22)

generalizes

m(f) =

� 1

0

Log |f(e2iπt)|dt for f ∈ Z[x±1]. (5.23)
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The Lehmer constant of G is then defined by

λ(G) := inf{mG(f) | f ∈ Z[ �G],mG(f) > 0}. (5.24)

The author considers several groups G (connected, finite) and the problem of
Lehmer in each case. The classical Lehmer’s problem asks whether λ(T) = 0,
where T = R/Z. Let n ≥ 2, denote by ρ(n) the smallest prime number that does
not divide n. Lind proves that λ(G) = λ(T) for any nontrivial connected compact

abelian group, and λ(Z/nZ) ≤ Log ρ(n)
n for n ≥ 2. This Lehmer’s constant has been

named Lind-Lehmer’s constant more recently. It is known in some cases [422].
Kaiblinger [288] obtained results on λ(G) for finite cyclic groups G of cardinality
not divisible by 420; Pigno and Pinner [419] solved the case |G| = 420. De Silva
and Pinner [154], [155], made progress on noncyclic finite abelian groups G = Zn

p ,
then Pigno, Pinner and Vipismakul [525], [420], on general p-groups Gp = Zpl1 ×
. . .× Zpln and G = Zm ×Gp for m not divisible by p.

An areal analogue of Mahler’s measure is reported by Pritsker [427], linked to
Hardy and Bergman normed spaces of functions on the unit disk.

Lehmer’s problems in positive characteristic and Drinfeld modules:
let k = Fq(T ) be the fraction field of the ring Fq[T ] of polynomials with coefficients
in the finite field Fq (p is a prime number and q a power of p). Let k∞ = Fq((1/T ))
be the completion of k for the 1/T -adic valuation v. The valuation, still denoted by
v, is extended to the algebraic closure k of k, resp. k∞ of k∞. The degree deg(x)
of x ∈ k∞ is equal to the integer-valued −v(x), with the convention deg(0) = −∞.
Let t denote a formal variable. By definition a t-module of dimension N and rank
d on k is given by the additive group (Ga)

N and an injective ring homomorphism
Φ : Fq[T ] → End(Ga)

N which satisfies:

Φ(t) = a0F
0 + . . .+ adF

d, (5.25)

where F is the Frobenius endomorphism on (Ga)
N and a0, a1, . . . , ad are N × N

matrices with coefficients in k. In [151] Denis constructed a canonical height �h =
�hΦ on t-modules for which ad is invertible, from the Weil height. Denis formulated
Lehmer’s problem for t-modules as follows, in two steps: (i) for α ∈ (k)n, defined
over a field of degree ≤ δ, not in the torsion of the t-module, does there exist
c(δ) = ca0,...,ad,N,d,q,F (δ) > 0 such that �h(α) ≥ c(δ)?; (ii) if (i) is satisfied, on a
Drinfeld module of rank d, does there exist c > 0 such that, for any α not belonging
to the torsion,

�h(α) ≥ c

δ
? (5.26)

The second problem is the extension of the classical Lehmer problem [407]. Denis
partially solved Lehmer’s problem ([151] Theorem 2) in the case of Carlitz modules,
i.e. with N = 1 and d = 1 for which Φ(T )(x) = Tx+xq. He obtained the following
minoration which is an analogue of Laurent’s Theorem 4.2 for CM elliptic curves
(elliptic Lehmer problem) and Dobrowolski’s inequality (2.17):
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Theorem 5.4 (Denis). There exists a real number η > 0 such that, for any α
belonging to the regular separable closure of k, not to the torsion, of degree ≤ δ,
the minoration holds:

�h(α) ≥ η
1

δ

�
Log Log δ

Log δ

�3

(5.27)

(the real number η is effective and computable from q).

Grandet-Hugot in [244] studied analogues of Pisot and Salem numbers in fields
of formal series: x ∈ k∞ is a Salem number if it is algebraic on k, deg(x) > 0, and
all its conjugates satisfy: deg(xi) ≤ 0. In this context Denis ([152] Theorem 1)
proved the fact that there is no Salem number too close to 1, namely:

Theorem 5.5 (Denis). Let α ∈ k∞ having at least one conjugate in k∞. If α
does not belong to the torsion, is of degree D on k, then

�h(α) ≥ 1

q D
(5.28)

Extending the previous results, Denis ([152] Theorem 3) solved Lehmer’s prob-
lem for the following infinite family of t-modules:

Theorem 5.6 (Denis). Let Φ(t) = a0F
0+a1F + . . . ad−1F

d−1+F d be a t-module
of dimension 1 such that ai ∈ k∞ ∩ k, 0 ≤ i ≤ d− 1, is integral over Fq[T ]. Then
there exists a real number cΦ > 0 depending only upon Φ, such that, if α is an
algebraic element of k∞, not in the torsion, of degree D on k, then

�hΦ(α) ≥ cΦ
D

(5.29)

The abelian Lehmer problem for Drinfeld modules was solved by David and
Pacheco [140] using Denis’s construction of the canonical height (with A = Fq[T ]):

Theorem 5.7 (David - Pacheco). Let K/k be a finite extension, K an algebraic
closure of K, and Kab the largest abelian extension of K in K. Let φ : A → K{τ}
be a Drinfeld module of rank ≥ 1. Then there exists c = c(φ,K) > 0 which depends
only upon φ and K such that, for any α ∈ Kab, not being in the torsion,

�hΦ(α) ≥ c. (5.30)

In [238] Ghioca investigates statements, for Drinfeld modules of generic charac-
teristic, which would imply that the classical Lehmer problem for Drinfeld modules
is true. In [237] Ghioca obtained several Lehmer type inequalities for the height
of nontorsion points of Drinfeld modules. Using them, as consequence of Theorem
5.8 below, Ghioca proved several Mordell-Weil type structure theorems for Drin-
feld modules over certain infinitely generated fields (the definitions of the terms
can be found in [237]):

Theorem 5.8 (Ghioca). Let K/Fq be a field extension, and φ : A → K{τ} be
a Drinfeld module. Let L/K be a finite field extension. Let t be a non-constant
element of A and assume that φt =

�r
i=0 aiτ

i is monic. Let U be a good set of
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valuations on L and let C(U) be the field of constants with respect to U . Let S be
the finite set of valuations v ∈ U such that φ has bad reduction at v. The degree
of the valuation v is denoted by d(v). Let x ∈ L.

a) If S is empty, then either x ∈ C(U) or there exists v ∈ U such that

�hU,v(x) ≥ d(v), (5.31)

b) If S is not empty, then either x ∈ φtors, or there exists v ∈ U such that

�hU,v(x) >
d(v)

q2r+r2Nφ|S| ≥
d(v)

qr
�
2+(r2+r)|S|

� . (5.32)

Moreover, if S is not empty and x ∈ φtors, then there exists a polynomial b(t) ∈
Fq(t) of degree at most rNφ|S| such that φb(t)(x) = 0.

LetK be a finitely generated field extension of Fq, andKalg an algebraic closure
of K. Ghioca [238] developped global heights associated to a Drinfeld module

φ : A → K{τ} and, for each divisor v, local heights �hv : Kalg → R+ associated
to φ. For Drinfeld modules of finite characteristic Ghioca [238] obtained Lehmer
type inequalities with the local heights, extending the classical Lehmer problem:

Theorem 5.9 (Ghioca). For φ : A → K{τ} a Drinfeld module of finite charac-
teristic, there exist two positive constants C and r depending only on φ such that
if x ∈ Kalg and v is a place of K(x) for which �hv(x) > 0, then

�hv(x) ≥
C

dr
(5.33)

where d = [K(x) : K].

Bauchère [38] generalized David Pacheco’s Theorem 5.7 to Drinfeld modules
having complex multiplications, proving the abelian Lehmer problem in this con-
text:

Theorem 5.10 (Bauchère). Let φ be a A-Drinfeld module defined over k having
complex multiplications. Let K/k be a finite field extension, L/K a Galois exten-
sion (finite or infinite) with Galois group G =Gal(L/K). Let H be a subgroup
of the center of G and E ⊂ L the subfield fixed by H. Let d0 be an integer. We
assume that there exists a finite place v of K such that [Ew : Kv] ≤ d0 for every
place w of E, v|w. Then there exists a constant c0 = c0(φ) > 0 such that, for any
α ∈ L, not belonging to the torsion for φ,

�hφ(α) ≥
1

qc0 d(v) d2
0 [K:k]

. (5.34)

Theorem 5.10 is the analogue of a result obtained by Amoroso, David and
Zannier [21] for the multiplicative group. Theorem 5.10 is particularly interesting
when L/K is infinite. Bauchère [38] deduced special minorations of the heights
�hφ(α) in two Corollaries, for L = Kab, and in the case where the subgroup H is
trivial.
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6. In other domains

The conjectural discontinuity of the Mahler measure M(α),α ∈ Q, at 1 has conse-
quences in different domains of mathematics. It is linked to the notions of “smallest
complexity”, “smallest growth rate”, “smallest geometrical dilatation”, “smallest
geodesics”, “smallest Salem number” or “smallest topological entropy” (Hironaka
[266]). We will keep an interdisciplinary viewpoint as in the recent survey [494] by
C. Smyth and refer the reader to [236], [494]; we only mention below a few more
or less new results. The smallest Mahler measures, or smallest Salem numbers,
correspond to peculiar geometrical constructions in their respective domains.

6.1. Coxeter polynomials, graphs, Salem trees. Let Γ = (Γ0,Γ1) be a sim-
ple graph with set of enumerated vertices Γ0 = {v1, . . . , vn}, Γ1 being the set of
edges where (vi, vj) ∈ Γ1 if there is an edge connecting the vertices vi and vj . The
adjacency matrix of Γ is AdΓ := [aij ] ∈ Mn(Z) where aij = 1, if (vi, vj) ∈ Γ1 and
aij = 0 otherwise. Assume that Γ is a tree. Denote by WΓ the Weyl group of Γ,
generated by the reflections σ1,σ2, . . . ,σn and ΦΓ := σ1 · σ2 · . . . · σn ∈ WΓ the
Coxeter transformation of Γ. The Coxeter polynomial of Γ is the characteristic
polynomial of the Coxeter transformation ΦΓ : Rn → Rn:

coxΓ(x) := det(x · Idn − ΦΓ) ∈ Z[x]. (6.1)

Coxeter (1934) showed remarkable properties of the roots of the Coxeter poly-
nomials. Coxeter polynomials were extensively studied for Γ any simply laced
Dynkin diagram An,Dn and En. For Γ = En, Gross, Hironaka and McMullen
[248] have obtained the factorization of Coxeter polynomials coxΓ(x) as products
of cyclotomic polynomials and irreducible Salem polynomials. In particular,

coxE10(x) := x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1 (6.2)

is Lehmer’s polynomial. A tree T is said to be cyclotomic, resp. a Salem tree, if
coxT (x) is a product of cyclotomic polynomials, resp. the product of cyclotomic
polynomials by an irreducible Salem polynomial. Such objects generalize En as far
as their Coxeter polynomials remains of the same form. Evripidou [203], following
Lakatos [314], [315], [317], [318] and [248], obtained structure theorems and formu-
lations for the Coxeter polynomials of families of Salem trees, for the spectral radii
of the respective Coxeter transformations. Lehmer’s problem asks whether there
exists a Salem tree of minimal Salem number; what would be its decomposition?

The Mahler measure M(G) of a finite graph G, with n vertices, is introduced
in McKee and Smyth [354]. If DG(z) is the characteristic polynomial of G, then
the reciprocal integer polynomial associated with G is znDG(z+1/z). The Mahler
measure of this later polynomial is the Mahler measure M(G) of G; explicitely,

M(G) =
�

DG(χ)=0,|χ|>2

1

2
(|χ|+

�
χ2 − 4). (6.3)
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Cooley, McKee and Smyth [132] [354] [355] [356] studied Lehmer’s problem from
various constructions of finite graphs. They prove ([132] Theorem 1 and Figures 1
to 3) that every connected non-bipartite graph that has Mahler measure smaller
than the golden mean 1.618 . . . is one of the following type: (i) an odd cycle,
(ii) a kite graph, (iii) a balloon graph, or (iv) one of the eight sporadic examples
Spa, . . . , Sph.

6.2. Growth series of groups, Coxeter groups, Coxeter systems. Let G
be an infinite group. Assume that G admits a finite generating set S. Define
the length of an element g in G = (G,S) to be the least nonnegative integer n
such that g can be expressed as a product of n elements from S ∪ S−1. For every
nonnegative integer n let NS(n) be the number of elements in G with length n.
Following Milnor [384] the growth series of the group (G,S) is by definition

f(x) =

∞�

n=1

NS(n)x
n, for which NS(n) ≤ (2|S|)n. (6.4)

The asymptotic growth rate of G = (G,S), finite and ≥ 1, is by definition

lim sup
n→∞

(NS(n))
1/n, (6.5)

its inverse, positive, being the radius of convergence of f(x). A Coxeter group G,
with S being a finite generating set for G, is a group where every element of S has
order two and all the other defining relators for G are of the form (g h)m(g,h) = 1G
where m(g, h) = m(h, g) and m(g, h) ≥ 2. Steinberg [499] and Bourbaki [72]
showed that the growth series of a Coxeter group is a rational function. Salem
numbers, Pisot numbers and Perron numbers occur as roots of the polynomials
at the denominator (here the definition of a Salem number is often extended to
quadratic Pisot numbers, conveniently and abusively).

Let us consider a hyperbolic cocompact Coxeter group G with generating set
of reflections S acting in low dimensions n ≥ 2.

Case n = 2: for the Coxeter reflection groups Gp1,...,pd
, with pi any positive

integer, of presentation Gp1,...,pd
:= (g1, . . . , gd | (gi)2 = 1, (gigi+1)

pi = 1), the
denominator Δp1,...,pd

(x) of the growth series f(x) of Gp1,...,pd
is explicitely given

by the following theorem [109].

Theorem 6.1 (Cannon - Wagreich [110], Floyd - Plotnick [223], Parry [411]).

Δp1,...,pd
(x) = [p1][p2] . . . [pd](x− d+ 1) +

d�

i=1

[p1] . . . �[pi] . . . [pd]. (6.6)

The polynomial Δp1,...,pd
(x) is either a product of cyclotomic polynomials or a

product of cyclotomic polynomials times an irreducible Salem polynomial. The
Salem polynomial occurs if and only if Gp1,...,pd

is hyperbolic, that is,

1

p1
+ . . .+

1

pd
< d− 2. (6.7)
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Then hyperbolic Coxeter reflection groups have Salem numbers as asymptotic
growth rates. Such Salem numbers form a subclass of the set of Salem numbers.
Lehmer’s polynomial is Δ2,3,7(x), denominator of the growth series of the (2,3,7)-
hyperbolic triangle group (Takeuchi [507]). The Construction of Salem [452], [74],
for establishing the existence of sequences of Salem numbers converging to a given
Pisot number, on the left and on the right, admits an analogue in terms of geo-
metric convergence for the fundamental domains of cocompact planar hyperbolic
Coxeter groups. Using the Construction of Salem Parry [411] gives a new proof
of Theorem 6.1. Bartholdi and Ceccherini-Silberstein [36] studied the Salem num-
bers which arise from some hyperbolic graphs. Hironaka [236] solves the problem
of Lehmer for the subclass of Salem numbers occuring as such asymptotic growth
rates:

Theorem 6.2 (Hironaka [263]). Lehmer’s number is the smallest Salem number
occuring as dominant roots of Δp1,...,pd

polynomials for any (p1, . . . , pd), pi being
positive integers.

Case n = 3: Parry [411] extends its 2-dimensional approach to every hyper-
bolic cocompact reflection Coxeter group on H3 generated by reflections whose
fundamental domain is a bounded polyhedron (not just tetrahedron). Parry’s ap-
proach is based on the properties of anti-reciprocal rational functions with Salem
numbers. Kolpakov [307] provides a generalization to the three-dimensional case,
by establishing a metric convergence of fundamental domains for cocompact hy-
perbolic Coxeter groups with finite-volume limiting polyhedron; for instance, the
compact polyhedra P(n) ⊂ H3 of type < 2, 2, n, 2, 2 > converging, as n → ∞, to
a polyhedron P∞ with a single four-valent ideal vertex. In this context, Kolpakov
investigates the growth series of Coxeter groups acting on Hn, n ≥ 3 and their
limit properties.

Kellerhals and Kolpakov [294] (2014) prove that the simplex group (3, 5, 3)
has the smallest growth rate among all cocompact hyperbolic Coxeter groups on
H3, and that it is, as such, unique. The growth rate is the Salem number τ � =
1.35098 . . . of minimal polynomial

X10 −X9 −X6 +X5 −X4 −X + 1. (6.8)

Their approach provides a different proof for the analog situation in H2 where
Hironaka [263] identified Lehmer’s number as the minimal growth rate among
all cocompact planar hyperbolic Coxeter groups and showed that it is (uniquely)
achieved by the Coxeter triangle group (3, 7).

After Meyerhoff who proved that among all cusped hyperbolic 3- orbifolds the
quotient of H3 by the tetrahedral Coxeter group (3, 3, 6) has minimal volume,
Kellerhals [293] (2013) proves that the group (3, 3, 6) has smallest growth rate
among all non- cocompact cofinite hyperbolic Coxeter groups, and that it is as
such unique. This result extends to three dimensions some work of Floyd [222] who
showed that the Coxeter triangle group (3,∞) has minimal growth rate among all
non-cocompact cofinite planar hyperbolic Coxeter groups. In contrast to Floyd’s
result, the growth rate of the tetrahedral group (3, 3, 6) is not a Pisot number. The
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following Theorem completes the picture of growth rate minimality for cofinite
hyperbolic Coxeter groups in three dimensions.

Theorem 6.3 (Kellerhals). Among all hyperbolic Coxeter groups with non-compact
fundamental polyhedron of finite volume in H3, the tetrahedral group (3, 3, 6) has
minimal growth rate, and as such the group is unique.

In [309] Komori and Umemoto, for three-dimensional non-compact hyperbolic
Coxeter groups of finite covolume, show that the growth rate of a three-dimensional
generalized simplex reflection group is a Perron number. In [310] Komori and
Yukita show that the growth rates of ideal Coxeter groups in hyperbolic 3-space
are also Perron numbers. A Coxeter polytope P is called ideal if all vertices of
P are located on the ideal boundary of hyperbolic space. In [295] Kellerhals and
Nonaka prove that the growth rates of three-dimensional Coxeter groups (Γ, S)
given by ideal Coxeter polyhedra of finite volume are Perron numbers, indepen-
dently. In [538] Yukita studies the arithmetic properties of the growth rates of
cofinite 3-dimensional hyperbolic Coxeter groups whose dihedral angles are of the
form π/m for m = 2, 3, 4, 5, 6 to show that the growth rates are Perron numbers.
Yukita in [539] goes further by showing that the growth rates of non-compact
3-dimensional hyperbolic polyhedra with some dihedral angles π/m for m ≥ 7
are Perron numbers. As a consequence he deduces that the growth rates of 3-
dimensional hyperbolic Coxeter groups are Perron numbers.

Case n ≥ 4: the growth rates of cocompact hyperbolic Coxeter groups are
not Salem numbers anymore. Kellerhals and Perren [296], §3 Example 2, show
this fact with the example of the compact right-angled 120-cell in H4. In general
Kellerhals and Perren conjecture that the growth rates of cocompact hyperbolic
Coxeter groups are Perron numbers.

Lehmer’s problem asks about the geometry of the poles of the growth rates
of hyperbolic Coxeter groups acting on Hn, and structure theorems about such
groups having denominators of growth series of minimal Mahler measure.

Conjecture 6.4 (Kellerhals - Perren). Let G be a Coxeter group acting cocom-
pactly on Hn with natural generating set S and growth series fS(x). Then,

(a) for n even, fS(x) has precisely n
2 poles 0 < x1 < . . . < xn

2
< 1 in the open

unit interval (0, 1) ;
(b) for n odd, fS(x) has precisely the pole 1 and n−1

2 poles 0 < x1 < . . . <
xn−1

2
< 1 in the interval (0, 1).

In both cases, the poles are simple, and the non-real poles of fS(x) are contained
in the annulus of radii xm and x−1

m for some m ∈ {1, . . . , �n
2 �}.

Theorem 6.5 (Kellerhals - Perren). Let G be a Lannér group, an Esselmann
group or a Kaplinskaya group, respectively, acting with natural generating set S
on H4. Then,

(1) the growth series fS(x) of G is a quotient of relatively prime, monic and
reciprocal polynomials of equal degree over the integers,

(2) the growth series fS(x) of G possesses four distinct positive real poles ap-
pearing in pairs (x1, x

−1
1 ) and (x2, x

−1
2 ) with x1 < x2 < 1 < x−1

2 < x−1
1 ;
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these poles are simple,

(3) the growth rate τ = x−1
1 is a Perron number,

(4) the non-real poles of fS(x) are contained in an annulus of radii x2 , x−1
2

around the unit circle,

(5) the growth series fS(x) of the Kaplinskaya group G66 with graph K66 has four
distinct negative and four distinct positive simple real poles; for G �= G66,
fS(x) has no negative pole.

In [310] Komori and Yukita prove that the growth rate τ of an ideal Coxeter
polytope with n facets in Hn satisfies n − 3 ≤ τ ≤ n − 1. The smallest growth
rates occur only if n ≤ 4. They prove that the minimum of the growth rates is
0.492432−1 ≈ 2.03074, which is uniquely realized by the ideal Coxeter simplex with
p = q = s = 2. In [515] Umemoto shows that infinitely many 2-Salem numbers can
be realized as the growth rates of cocompact Coxeter groups in H4; the Coxeter
polytopes are here constructed by successive gluing of Coxeter polytopes, which
are called Coxeter dominoes [516]. The algebraic integers having a fixed number of
conjugates outside the closed unit disk were studied by Bertin [45], Kerada [297],
Samet [454], Zaimi [543], [544], in particular 2-Salem numbers in [297] to which
Umemoto refers. In [545] Zehrt and Zehrt-Liebendörfer construct infinitely many
growth series of cocompact hyperbolic Coxeter groups in H4, whose denomina-
tor polynomials have the same distribution of roots as 2-Salem polynomials; their
Coxeter polytopes are the Coxeter garlands built by the compact truncated Cox-
eter simplex described by the Coxeter graph on the left side of Figure 1 in [545].
Lehmer’s problem asks about the minimality of the houses of the 2-Salem numbers
involved in these constructions. Yukita, in [537], proves that the growth rates of
infinite series of ideal and non-simple hyperbolic Coxeter 4-polytopes are Perron
numbers, providing the first example of such a non-compact infinite polytopal
series.

In [308] Kolpakov and Talambutsa prove that for any infinite right-angled
Coxeter or Artin group, its spherical and geodesic growth rates (with respect to
the standard generating set) take values in the set of Perron numbers. Outside
the class of right-angled Coxeter groups the geodesic growth rate may not be a
Perron number. The automatic growth rate, studied by Glover and Scott [239]
[347], associated with a non-standard generating set, is not necessarily a Perron
number in the right-angled case.

A Coxeter system (W,S) is a Coxeter group W with a finite generating set
S; the permuted products sσ(1)sσ(2) . . . sσ(n), σ ∈ Sn, are the Coxeter elements
of (W,S). The element w ∈ W is said to be essential if it is not conjugate into
any subgroup WI ⊂ W generated by a proper subset I ⊂ S. The Coxeter group
(W,S) acts naturally by reflections on V ≡ RS . Let λ(w) be the spectral radius
of w|V . When λ(w) > 1 it is also an eigenvalue of w. MacMullen [363] proves the
three following results.

Theorem 6.6 (MacMullen). Let (W,S) be a Coxeter system and let w ∈ W be
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essential. Then
λ(w) ≥ inf

Sn

λ(sσ(1)sσ(2) . . . sσ(n)). (6.9)

Let α(W,S) be the dominant eigenvalue of the adjacency matrix (Aij) of
(W,S), defined by Aij = 2 cos(π/mij) for i �= j and Aii = 0. Let β(W,S) be
the largest root of the equation β + β−1 + 2 = α(W,S)2 provided α(W,S) ≥ 2.
If α(W,S) < 2 then we put: β(W,S) = 1. Then λ(w) = β(W,S) for all bicolored
Coxeter element.

Theorem 6.7 (McMullen). For any Coxeter system (W,S), we have

inf
Sn

λ(sσ(1)sσ(2) . . . sσ(n)) ≥ β(W,S). (6.10)

Theorem 6.8 (McMullen). There are 38 minimal hyperbolic Coxeter systems
(W,S), and among these the infimum inf β(W,S) is Lehmer’s number.

Lehmer’s problem is solved in this context. The quantity β(W,S) can be
viewed as a measure (not in logarithmic terms) of the complexity of a Coxeter
system. Denote by Ya,b,c the Coxeter system whose diagram is a tree with 3
branches of lenghts a, b and c, joined by a single node. MacMullen [363] shows
that the smallest Salem numbers of respective degrees 6, 8 and 10 coincide with
λ(w) for the Coxeter elements of Y3,3,4, Y2,4,5 and Y2,3,7 respectively; in particular
Lehmer’s number is λ(w) for the Coxeter elements of Y2,3,7. MacMullen shows
that the set of irreducible Coxeter systems with β(W,S) < Θ consists exactly of
Y2,4,5 and Y2,3,n, n ≥ 7. He shows that the infimum of β(W,S) over all high-rank
Coxeter systems coincides with Θ. There are 6 Salem numbers < 1.3 that arise as
eigenvalues in Coxeter groups, five of them arising from the Coxeter elements of
Y2,3,n, 7 ≤ n ≤ 11.

6.3. Mapping classes: small stretch factors. We refer to Birman [56], Farb
and Margalit [208] and Hironaka [268]. If S is a surface the mapping class group
of S, denoted by Mod(S), is the group of isotopy classes of orientation-preserving
diffeomorphisms of S (that restrict to the identity on ∂S if ∂S �= ∅). An ir-
reducible mapping class is an isotopy class of homeomorphisms f of a compact
oriented surface S to itself so that no power preserves a nontrivial subsurface.
The classification of Nielsen-Thuston states that a mapping class [f ] ∈ Mod(S) is
either periodic, reducible or pseudo-Anosov [208], [209]. In the periodic case, the
situation is “analogous to roots of unity” in Lehmer’s problem. The minoration
problem of the Mahler measure finds its analogue in the minoration of the dilata-
tion factors of the pseudo-Anosovs. We refer to a mapping class [f ] by one of its
representive f .

Let Sg be a closed, orientable surface of genus g ≥ 2 and Mod(Sg) its mapping
class group. For any Pseudo-Anosov element f ∈Mod(Sg), and any integer 0 ≤
k ≤ 2g, let

(i) κ(f) be the dimension of the subspace of H1(Sg,R) fixed by f (for which
0 ≤ κ(f) ≤ 2g),
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(ii) h(f) = Log (λ(f)) be the entropy of f , as logarithm of the stretch factor
λ(f) > 1 (or dilatation; the dilatation measures the dynamical complexity),

(iii)
L(k, g) := min{h(f) | f : Sg → Sg and κ(f) ≥ k}. (6.11)

Thurston [209], [510], noticed that the set of stretch factors for pseudo-Anosov
elements of Mod(Sg) is closed and discrete in R, and proved that any dilatation
factor λ(f) > 1 is a Perron number, with λ(f) + λ(f)−1 an algebraic integer of
degree ≤ 4g − 3. The Perron number λ(f) is the growth rate of lengths of curves
under iteration (of any representant) of f , in any metric on Sg. These stretch
factors appear as the length spectrum of the moduli space of genus g Riemann
surface.

Penner [414] proved that the asymptotic behaviour L(0, g) � 1/g holds. With
k = 2g, Farb, Leininger and Margalit [206] proved L(2g, g) � 1. For the other
values of k, since L(0, g) ≤ L(k, g) ≤ L(2g, g), the following inequalities hold, from
[1] [304] [263] [414],

Log 2

6

�
1

2g − 2

�
≤ L(k, g) ≤ Log (62). (6.12)

For k = 0 and g = 1, L(0, 1) = Log
�
3+

√
5

2

�
for T2. For k = 0 and g = 2, Cho and

Ham [127], [329], [550], proved L(0, 2) ≈ 0.5435 . . ., as logarithm of the largest root
of the Salem polynomial X4 −X3 −X2 −X + 1; these authors showed that this
minimum dilatation is given by Zhirov in [550], and realized by Pseudo-Anosov
5-braids in [252]. In [4] Agol, Leininger and Margalit improved the upper bound
to: (2g − 2)L(0, g) < Log (θ−4

2 ) for all g ≥ 2, where θ−1
2 is the golden mean, and

proved the main theorem:

L(k, g) � k + 1

g
, g ≥ 2, 0 ≤ k ≤ 2g. (6.13)

Arnoux-Yoccoz’s Theorem [31] states that, for g ≥ 2, for any C ≥ 1, there are
only finitely many conjugacy classes in Mod(Sg) of pseudo-Anosov mapping classes
with stretch factors at most C.

Minimal dilatation problem: what are the values of L(k, g), except L(0, g)
for g = 1, 2 already determined? i.e. what are the minima δg := exp(L(0, g)),
g ≥ 3?

Lower bounds of the entropy are difficult to establish: e.g. Penner [414], Tsai
[513] on punctured surfaces, Boissy and Lanneau [60] on translation surfaces that
belong to a hyperelliptic component, Hironaka and Kin [273]. Then Kin [301],
[304], [302], formulated several questions and conjectures on the minimal dilata-
tion problem and its realizations. Bauer [39] studied upper bounds of the least
dilatations, and Minakawa [386] gave examples of pseudo-Anosovs with small di-
latations. Farb, Leininger and Margalit [207] obtained a universal finiteness theo-
rem for the set of all small dilatation pseudo-Anosov homeomorphisms φ : S → S,



48 Jean-Louis Verger-Gaugry

ranging over all surfaces S. The following questions were posed by in [361] and
[205].

Asymptotic behaviour:

(i) Does limg→∞ g L(0, g) exist? What is its value?

(ii) Is the sequence {δg}g≥2 (strictly) monotone decreasing?

Kin, Kojima and Takasawa [302], for monodromies of fibrations on manifolds
obtained from the magic 3-manifold N by Dehn filling three cusps with some

restriction, proved limg→∞ g L(0, g) = Log
�
3+

√
5

2

�
; they also formulated limit

conjectures for the asymptotic behaviour relative to compact surfaces of genus g
with n boundary components.

A pseudo-Anosov mapping class [f ] is said to be orientable if the invariant
(un)-stable foliation of a pseudo-Anosov homeomorphism f ∈ [f ] is orientable. Let
λH(f) be the spectral radius of the action of f on H1(Sg,R). It is the homological
stretch factor of f . The inequality

λH(f) ≤ λ(f) (6.14)

holds and equality occurs iff the invariant foliations for f are orientable. Stretch
factors obey some constraints [476]:

(i) deg(λ(f)) ≥ 2,

(ii) deg(λ(f)) ≤ 6g − 6,

(iii) if deg(λ(f)) > 3g − 3, then deg(λ(f)) is even.

Shin [476] formulates the following questions.

Algebraicity of the stretch factors.

(i) Which real numbers can be the stretch factors, the homological stretch fac-
tors?

(ii) What degrees of stretch factors can occur on Sg?

Let us define a mapping class fg,k by

fg,k = (Tcg )
k
�
Tdg . . . Tc2Td2Tc1Td1

�
∈ Mod(Sg), (6.15)

where ci and di are simple closed curves on Sg as in Figure 1 in [476], and Tc the
Dehn twist about c.

Theorem 6.9 (Shin). For each g ≥ 2, k ≥ 3, fg,k is a pseudo-Anosov mapping
class which satisfies: (i) λ(fg,k) = λH(fg,k), (ii) fg,k is a Salem number, (iii)
limg→∞ fg,k = k − 1, where the minimal polynomial of λ(fg,k) is the irreducible
Salem polynomial

t2g − (k − 2)
�2g−1�

j=1

tj
�
+ 1, of degree 2g. (6.16)
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Shin [476] deduces that, for each 1 ≤ h ≤ g/2, there exists a pseudo-Anosov

mapping class �fh ∈ Mod(Sg) such that deg(�fh) = 2h, with λ(�fh) a Salem number.
He conjectures that, on Sg, there exists a pseudo-Anosov mapping class with a
stretch factor of degree d for any even 1 ≤ d ≤ 6g−6. He proves that the conjecture
is true for g = 2 to 5. Shin and Strenner [477] prove that the Perron numbers which
are the stretch factors of pseudo-Anosov mapping classes arising from Penner’s
construction [414] have conjugates which do not belong to the unit circle. In §3
in [477] they ask several questions about the geometry of the Galois conjugates
of stretch factors, around the unit circle, obtained by several constructions: by
Hironaka [267], by Dunfeld and Tiozzo, by Lanneau and Thiffeault [329], [330], by
Shin [476]. For Sg,n being an orientable surface with genus g and n marked points,
Tsai [513] proves that the infimum of stretch factors is of the order of (Log n)/n
for g ≥ 2 whereas it is of the order of 1/n for g = 0 and g = 1; Tsai asks the
question about the asymptotic behaviour of this infimum of dilatation factors in the
(g, n)-plane. For some subcollections of mapping classes, by generalizing Penner’s
construction and by comparing the smallness of dilatation factors with trivial
homological dilatation, Hironaka [270] concludes to the existence of subfamilies of
pseudoanosovs which have asymptotically small dilatation factors.

In the context of Zn-actions on compact abelian groups (Proposition 17.2 and
Theorem 18.1 in Schmidt [469]) the topological entropy is equal to the logarithm
of the Mahler measure. If we assume that the stretch factors are Mahler measures
M(α) of algebraic numbers α (which are Perron numbers by Adler and Marcus
[2]), then we arrive at a contradiction since Penner [414] showed that L(0, g) � 1

g
for surfaces of genus g. Indeed, it suffices to increase the genus g to find pseudo-
Anosov elements of Mod(Sg) with dilatation factors arbitrarily close to 1, while
Theorem ?? states that a discontinuity should exist. As a consequence of [414],
[513] and of Theorem ?? (ex-Lehmer Conjecture) we deduce the following claims:

(1) Assertion 1: The stretch factors of the pseudo-Anosov elements of Mod(Sg)
are Perron numbers which are not Mahler measures of algebraic numbers as
soon as g is large enough.

(2) Assertion 2: The stretch factors of the pseudo-Anosov elements of Mod(Sg,n),
where Sg,n is an orientable surface with fixed genus g and n marked points,
are Perron numbers which are not Mahler measures of algebraic numbers as
soon as n is large enough.

Let S be a connected finite type oriented surface. Leininger [340] considers
subgroups of Mod(S) generated by two positive multi-twists; a multi-twist is a
product of positive Dehn twists about disjoint essential simple closed curves. Given
A and B two isotopy classes of essential 1-manifolds on S, we denote by TA, resp.
TB , the positive multi-twist which is the product of positive Dehn twists about
the components of A, resp. of B.

Theorem 6.10 (Leininger). Any pseudo-Anosov element f ∈ �TA, TB� has a
stretch factor which satisfies:

λ(f) ≥ λL (Lehmer’s number). (6.17)
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The realization occurs when S has genus 5 (with at most one marked point),
A = ALehmer, B = BLehmer given by Figure 1 in [340] up to homeomorphism, and
f conjugate to (TATB)

±1. Leininger’s Theorem 6.10 is strikingly reminiscent of
McMullen’s Theorem 6.8. The following questions are formulated in §9.1 in [340]:

• Q1: Which Salem numbers occur as dilatation factors of pseudo-Anosov
automorphisms?

• Q2: Is there some topological condition on a pseudo-Anosov which guaran-
tees that its dilatation factor is a Salem number?

• Q3 (Lehmer’s problem for dilatation factors): Is there an � > 1 such that
if f is a pseudo-Anosov automorphism in a finite co-area Teichmüller disk
stabilizer, then λ(f) ≥ �?

Since dilatations factors of pseudo-Anosovs are Perron numbers and not nec-
essarily Mahler measures of algebraic numbers (cf Assertions 1 and 2 above),
Leininger’s Theorem 6.10 and McMullen’s Theorem 6.8 are addressed to the set of
Salem numbers and suggest that Lehmer’s number is actually the smallest Salem
number in this set; meaning first that Lehmer’s Conjecture is true for Salem num-
bers.

Let

fk,l(t) := t2k − tk+l − tk − tk−l + 1, (6.18)

resp. fx,y,z(t) := tx+y−z − tx − ty − tx−z − ty−z + 1, (6.19)

and denote λ(k,l) > 1, resp. λ(x,y,z) > 1, its dominant root.
Related to the minimization problem is the one for orientable pseudo-Anosovs.

The minimal dilatation factor for orientable pseudo-Anosov elements of Mod(Sg)
is denoted by δ+g . The minimal dilatation problem for δ+g is open in general. For

g = 2, Zhirov [550] obtains δ+2 = δ2. For g = 1, δ+1 = δ1 holds. From [267], [329],
δg < δ+g for g = 4, 6, 8. Hironaka [267] obtains:

(i) δg ≤ λ(g+1,3) if g ≡ 0, 1, 3, 4 (mod 6) and g ≥ 3,

(ii) δg ≤ λ(g+1,1) if g ≡ 2, 5 (mod 6) and g ≥ 5,

(iii) lim supg→∞ gLog δg ≤ Log
�

3+
√
5

2

�
.

Kin and Takasawa [306] complement and improve these inequalities. They show:

(i) δg ≤ λ(g+2,1) if g ≡ 0, 1, 5, 6 (mod 10) and g ≥ 5,

(ii) δg ≤ λ(g+2,2) if g ≡ 7, 9 (mod 10) and g ≥ 7;

for g ≡ 2, 4 (mod 10), under the assumption g+2 �≡ 0 (mod 4641), then they prove:

(i) δg ≤ λ(g+2,3) if gcd(g + 2, 3) = 1,

(ii) δg ≤ λ(g+2,7) if 3|(g + 2) and gcd(g + 2, 7) = 1,

(iii) δg ≤ λ(g+2,13) if 21|(g + 2) and gcd(g + 2, 13) = 1,

(iv) δg ≤ λ(g+2,17) if 273|(g + 2) and gcd(g + 2, 17) = 1.
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For g = 8 and 13 they obtain the sharper upper bounds: δ8 ≤ λ(18,17,7) < λ(9,1)

and δ13 ≤ λ(27,21,8) < λ(14,3). For orientable pseudo-Anosovs, Lannneau and

Thiffeault [329] obtain δ+3 = λ(3,1), δ
+
4 = λ(4,1), and the following lower bounds

for g = 6 to 8: (i) δ+6 ≥ λ(6,1), (ii) δ+7 ≥ λ(9,2) and δ+8 ≥ λ(8,1). Hironaka [267]
gives the upper bounds:

(i) δ+g ≤ λ(g+1,3) if g ≡ 1, 3 (mod 6),

(ii) δ+g ≤ λ(g,1) if g ≡ 2, 4 (mod 6),

(iii) δ+g ≤ λ(g+1,1) if g ≡ 5 (mod 6).

Hironaka obtains the asymptotics:

lim sup
g→∞,g �≡0(mod6)

g Log δ+g ≤ Log
�3 +

√
5

2

�
(6.20)

and, from [329], the equality: δ+8 = λ(8,1). Kin and Takasawa [306] give the better
upper bounds:

(i) δ+g ≤ λ(g+2,2) if g ≡ 7, 9 (mod 10) and g ≥ 7,

(ii) δ+g ≤ λ(g+2,4) if g ≡ 1, 5 (mod 10) and g ≥ 5.

Moreover they prove: δ+7 = λ(9,2) (Aaber and Dunfeld [1] obtain it independently)

and δ5 < δ+5 .
The realization of the minimal dilatations is a basic question, with the unique-

ness problem, considered by many authors: associated with least volume [1], [302],
braids [127], [252], [273], [304], [305], [330], monodromies [206], [302], [306], Cox-
eter graphs and Coxeter elements [340], [267], [476], quotient families of mapping
classes [272], self-intersecting curves [168], homology of mapping tori [4]. There
exists several constructions of small dilatation families, e.g. by Hironaka [269],
[271], McMullen [361], Dehornoy [146], with Lorenz knots.

6.4. Knots, links, Alexander polynomials, homology growth, Jones poly-
nomials, lenticularity of zeroes, lacunarity. Constructions of Alexander
polynomials of knots and links are given in [292], [394], [449], [473], [514]. Sil-
ver and Williams in [480] (reported in [494] § 4.2 for an overview) investigate the
Mahler measures of various Alexander polynomials of oriented links with d compo-
nents in a homology 3-sphere; they obtain theorems on limits of Mahler measures
and Mahler measures of derivatives of d-variate Mahler measures by performing
1/q surgery (q ∈ N) on the dth component, allowing q → ∞. In particular they
consider the topological realizability of the small Mahler measures and limit Mahler
measures on various examples.

For Pretzel links Hironaka ([263], [264], [266], [236] p. 308) solves the mini-
mization problem for the subclass of Salem numbers defined in Theorem 6.1 by

Theorem 6.11 (Hironaka [263]). Let p1, . . . , pd positive integers. Then the Alexan-
der polynomial of the (p1, . . . , pd,−1, . . . ,−1)-pretzel link (Coxeter link), where the
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number of −1’s is d − 2, with respect to a suitable orientation of its components,
is

Δp1,...,pd
(−x). (6.21)

Lehmer’s polynomial of the variable “−x” is the Alexander polynomial of
the (−2, 3, 7)-pretzel knot and the (−2, 3, 7)-pretzel knot is equivalent to the
(2, 3, 7,−1)- pretzel knot. Theorem 6.2 follows from Theorem 6.11. The Mahler
measure of the (2, 3, 7,−1)- pretzel knot is the minimum of the set of Mahler
measures of Alexander polynomials of (suitably oriented) (p1, . . . , pd,−1, . . . ,−1)-
pretzel links, over all d in 2N+ 1.

It is natural to find counterparts of Lehmer’s problem in Topology where several
polynomial invariants [224], [225], [287], [493] § 14.6, were associated to knots, links
and braids, for which the notions of convergence and “limit” can be defined (as in
[121], [145], [265], [479]) in addition to Alexander polynomials. Indeed a Theorem
of Seifert [473] asserts that (i) any monic reciprocal integer polynomial P (x), (ii)
which satisfies |P (1)| = 1, is the Alexander polynomial of (at least) one knot,
and conversely; Burde [105] extended it to fibered knots (cf Hironaka [265]). A
Theorem of Kanenobu [290] asserts that any reciprocal monic integer polynomial
P (x) is, up to multiples of x− 1, the Alexander polynomial of a fibered link. Let
us recall that infinitely many knots may possess the same polynomial invariants
(Morton [387], Kanenobu [291]).

Periodic homology and exponential growth. The r-fold cyclic coveringXr(K)
of a knotK ⊂ S3 admits topological invariants, i.e. homology groupsH1(Xr(K),Z),
which are also invariants of the knotK. ToK is associated a sequence of Alexander
polynomials (Δi), i ≥ 1, in a single variable, such that Δi+1|Δi. Likewise, to an
oriented link with d components is associated a sequence of Alexander polynomials
in d variables. In both cases, the first Alexander polynomial of the sequence is usu-
ally called the Alexander polynomial of the knot K, resp. of the link. For a knot
K Gordon [245] proved that the first Alexander invariant λ1(t) = Δ1(t)/Δ2(t)
satisfies the following equivalence :

λ1(t)|(tn − 1) ⇐⇒ H1(Xr(K),Z) ∼= H1(Xr+n(K),Z) for all r. (6.22)

The equivalence (6.22) is an analogue of Kronecker’s Theorem. Gordon used the
Pierce numbers of the Alexander polynomial of K, for which a linear recurrence is
expected as in [337], [192]. Gordon obtained periods which are not prime powers
and how to find all of them for knots of a given genus.

Theorem 6.12 (Gordon). There exists a knot K of genus g for which H1(Xr(K),Z)
has proper period n if and only if n = 1, or n = lcm{mi | i = 1, 2, . . . , r},
where the mi’s are all distinct, each has at least two distinct prime factors, and�r

i=1 Φ(mi) ≤ 2g.

Departing from “Kronecker’s Theorem” Gordon conjectured that when some
zero of Δ1(t) is not a root of unity, then the order of H1(Xr(K),Z) grows expo-
nentially with r. This conjecture was proved by Riley [446], with p-adic meth-
ods, and González-Acuña and Short [241]. Both used the Gel’fond-Baker the-
ory of linear forms in the logarithms of algebraic numbers. Silver and Williams
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[479] extended the conjecture of Gordon and its proof for knots, where the “fi-
nite order of H1(Xr(K),Z)” is replaced by the “order of the torsion subgroup of
H1(Xr(K),Z)”, and for links in S3. They identified the torsion subgroups with
the connected components of periodic points in a dynamical system of algebraic
origin [469], connected the limit with the logarithmic Mahler measure (for any
finite-index subgroup Λ ⊂ Zd, the number of such connected components is de-
noted by bΛ and �Λ� := {|v| | v ∈ Λ \ {0}} is the norm of the smallest nonzero
vector of Λ; cf [479] for the definitions):

Theorem 6.13 (Silver-Williams [479]). Let l = l1 ∪ . . .∪ ld be an oriented link of
d components having nonzero Alexander polynomial Δ, in d variables. Then

lim sup
�Λ�→∞

1

|Zd/Λ|Log bΛ = LogM(Δ) (6.23)

where “lim sup” is replaced by “lim” if d = 1.

Let M be a finitely generated module over Z[Zn] and �M its (compact) Pon-
tryagin dual. For any subgroup Λ ⊂ Zn of finite index, let bΛ be the number
of connected components of the set of elements of �M fixed by actions of the el-
ements of Λ. Le ([335], Theorem 1) proved a conjecture of K. Schmidt [468] on
the growth of the number bΛ; as a consequence Le generalized ([335], Theorem 2)
Silver Williams’s Theorem 6.13 on the growth of the homology torsion of finite
abelian covering of link complements, with the logarithmic Mahler measure of the
first nonzero Alexander polynomial of the link. In each case, since the growth
is expressed by the logarithmic Mahler measure of the (first nonzero) Alexander
polynomial, Lehmer’s problem amounts to establishing a universal minorant > 0
of the exponential base. For non-split links in S3, that is in the nonabelian covering
case, Le [335] generalized Theorem 6.13 using the L2-torsion, i.e. the hyperbolic
volume in the rhs part of (6.23) instead of the logarithmic Mahler measure of
the 0th Alexander polynomial; in such a case the minimality of Mahler measures
would find its origin in the minimality of hyperbolic volumes [336].

The growth of the homology torsion depends upon the (nonzero) logarithmic
Mahler measure of the Alexander polynomial(s) of a knot or a link. Hence the
geometry of zeroes of Alexander polynomials is important for the minoration of
the homology growth [236]. At this step, let us briefly mention the importance
of other studies on the roots of Alexander polynomials: (i) monodromies and dy-
namics of surface homeomorphisms [274], [449], (ii) knot groups: factorization and
divisibility [394], (iii) knot groups: orderability (Perron Rolfsen), (iv) statistical
models (Lin Wang).

Applying solenoidal dynamical systems theory to knot theory enabled Noguchi
[398] to prove that the dominant coefficient an of the Alexander polynomialΔK(t) =�n

i=0 ait
i, a0an �= 0, of a knot K, αi being the zeroes (counted with multiplicities)

of ΔK(t), satisfies (| · |p is the p-adic norm normalized by |p|p = 1/p on Qp):

Log |an| =
�

p<∞

�

|αi|p>1

Log |αi|p (6.24)
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He proved that the distribution of zeroes measures a “distance” of the Alexander
module from being finitely generated as a Z-module, and that the growth of order
of the first homology of the r-fold cyclic coveringXr(K) branched overK is related
to the zeroes by

lim
r→∞,|H1(·)|�=0

Log |H1(Xr(K);Z)|
r

=
�

p≤∞

�

|αi|p>1

Log |αi|p. (6.25)

Therefore the leading coefficient ofΔK(t) is closely related to the homology growth
and the p-adic norms of the zeroes αi.

A link, or a knot, is said to be alternating if it admits a diagram where (along
every component) the strands are passed under-over. In 2002 Hoste (Hirasawa
and Murasugi [262] ) stated the following conjecture: let K be an alternating knot
and ΔK(t) its Alexander polynomial. If α is a zero of ΔK(t), then �e(α) > −1.

Hoste’s Conjecture is proved in some cases: cf [274], [353], [502], [503]. The
problem of the geometry and the boundedness of zeroes of the (knot and link)
Alexander polynomials is difficult and related to two other conjectures on the
coefficients of these polynomials, namely the Fox’s trapezoidal Conjecture and the
Log-concavity Conjecture [311], [502], [503].

In his studies of Lorenz knots [144], [145], [146], Dehornoy obtained the fol-
lowing much more precise statement on the geometry of the zero locus (g is the
smallest genus of a surface spanning the knot; the braid index b is the smallest
number of strands of a braid whose closure is the knot):

Theorem 6.14 (Dehornoy [145]). Let K be a Lorenz knot. Let g denote its genus
and b its braid index. Then the zeroes of the Alexander polynomial of K lie in the
annulus

{z ∈ C | (2g)−4/(b−1) ≤ |z| ≤ (2g)4/(b−1)}. (6.26)

The Alexander polynomial of a Lorenz knot reflects an intermediate step be-
tween signatures and genus [145]. A certain proportion of zeroes lie on the unit
circle and are controlled by the ω-signatures (Gambaudo and Ghys, cited in [145]).
The other zeroes lie within a certain distance from the unit circle and are con-
trolled by the house of the Alexander polynomial, which is the modulus of the
largest zero. The problem of the minimality of the house of this Alexander poly-
nomial is reminiscent of the Schinzel-Zassenhaus Conjecture if it were expressed
as a function of its degree. For Lorenz knots this house is interpreted as follows: it
is the growth rate of the associated homological monodromy (for details, cf [145] §
2). Figure 3.3 in [145] shows two examples of Lorenz knots, with respective braid
index and genus (b, g) = (40, 100) and = (100, 625); interestingly, the distribu-
tion of zeroes within the annulus (6.26) appears angularly fairly regular (in the
sense of Bilu’s Theorem [54]) but exhibit lenticuli of zeroes in the angular sector
arg(z) ∈ [π−π/2,π+π/2]. Such lenticuli do exist for integer polynomials of small
Mahler measure, of the variable “−x”, and are shown to be at the origin of the
minoration of the Mahler measure in the problem of Lehmer in the present note.
Though Dehornoy did not publish (yet) further on the Mahler measures of the
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Alexander polynomials of Lorenz knots, in particular in the way (b, g) tends to
infinity, it is very probable that such polynomials are good candidates for giving
small Mahler measures together with a topological interpretation of the houses.
The above examples suggest that the Alexander polynomials of Lorenz knots are
not Salem polynomials, though no proof seems to exist.

Before Le [335], [336], Boyd and Rodriguez-Villegas [89] [90] [93] studied the
connections between the Mahler measure of the A-polynomial of a knot and the
hyperbolic volume of its complement. A-polynomials were introduced in hyper-
bolic geometry by Cooper et al [133] (are not Alexander polynomials, though “A”
is used in homage to Alexander). The irreducible factors of A-polynomials have
(logarithmic) Mahler measures which are shown to be finite sums of Bloch-Wigner
dilogarithms [232], [542], of algebraic numbers. The values of such dilogarithms
are related to Chinburg’s Conjecture. Several examples are taken by the authors
to investigate Chinburg’s Conjecture and its generalization refered to as Boyd’s
question (cf also Ray [437]). Chinburg’s Conjecture [90] is stated as follows: for
each negative discriminant −f there exists a polynomial P = Pf ∈ Z[x, y] and a
nonzero rational number rf such that

LogM(P ) = rf
f
√
f

4π
L(2,χf ). (6.27)

Boyd’s question is stated as follows: for every number field F having a number
of complex embeddings equal to 1 (i.e. r2 = 1), does there exist a polynomial
P = PF ∈ Z[x, y] and a rational number rF such that LogM(P ) = rFZF ?, where
ζF is the Dedeking zeta function of F and

ZF =
3 |disc(F )|3/2 ζF (2)

22n−3 π2n−1
; (6.28)

the starting point being (Smyth [492]): for f = 3, LogM(1+x+y) = 3
√
3

4π L(2,χ3).

Jones polynomials of knots and links, lacunarity in coefficient vectors.
Let L be a hyperbolic link and, for m ≥ 1, denote by Lm the link obtained from L
by adding m full twists on n strands [449], [121]. By Thurston’s hyperbolic Dehn
surgery, the volume Vol(S3 \ Lm) converges to Vol(S3 \ (L ∪ U)), as m tends to
infinity, where U is an unknot encircling n strands of L such that Lm is obtained
from L by a −1/m surgery on U . More generally, let m = (1,m1, . . . ,ms), for
s ≥ 1, and Lm := Lm1,...,ms

the multi-twisted link obtained from a link diagram
L by a −1/mi surgery on an unknot Ui, for i = 1, . . . , s. In the following theorem
convergence of Mahler measures has to be taken in the sense of the Boyd Lawton’s
Theorem 2.5.

Theorem 6.15 (Champanerkar - Kofman). (i) The Mahler measure M(VLm(t))
of the Jones polynomial of Lm converges to the Mahler measure of a 2-variable
polynomial, as m tends to infinity;

(ii) the Mahler measure M(VLm
(t)) of the Jones polynomial of Lm converges

to the Mahler measure of a (s+ 1)-variable polynomial, as m tends to infinity.
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In [121] Theorem 2.4, Champanerkar and Kofman [121] extended Theorem 6.15
to the convergence of the Mahler measures of colored Jones polynomials JN (Lm, t)
and JN (Lm, t) for fixed N , as m, resp. m, tends to infinity; here coloring means by
the N -dimensional irreducible representation of SL2(C) with the normalization of
J2(Lm, t) as J2(Lm, t) = (t1/2 + t−1/2)VLm

(t), resp. for m. They proved that the
limit limm→∞ M(JN (Lm, t)), resp. for m, is the Mahler measure of a multivariate
polynomial. What smallness of limit Mahler measures can be reached by this
construction, and what are the corresponding geometrical realizations?

In [121] (Theorem 2.5 and Corollary 3.2) Champanerkar and Kofman obtain
the following theorem, reminiscent, in the attack of the Conjecture of Lehmer
by the dynamical zeta function of the β- shift ([522]), of the moderate lacunar-
ity of the Parry Upper function occuring at small Mahler measure and the limit
equidistribution of conjugates on the unit circle, which occur concomitantly:

Theorem 6.16 (Champanerkar - Kofman). Let N ≥ 1 be a fixed integer. With
the above notations,

(i) let {γi,m} be the set of distinct roots of the Jones polynomial JN (Lm, t).
Then lim infκ→∞ #{γi,m | m ≤ κ} = ∞, and for any � > 0, there exists an integer
q� such that the number of such roots satisfies

#{γi,m | ||γi,m|− 1| ≥ �} < q�, (6.29)

(ii) for m sufficiently large, the coefficient vector of the Jones polynomial
JN (Lm, t) has nonzero fixed blocks of integer digits separated by gaps (blocks of
zeroes) whose length increases as m tends to infinity.

In addition to the relative limitation of the multiplicities of the roots, Theorem
6.16 means that, in the annulus 1 − � < |z| − 1 < 1 + �, the clustering of the
roots occurs, up to q� of them (densification), and is associated with a moderate
lacunarity (“gappiness” in the sense of [518]) of the Jones polynomials which
increases with m. This Theorem has been extended to other Jones polynomials
by these authors [121] and followed previous experimental observations. From
Theorem 6.15 and Theorem 6.16 it is likely that such Jones polynomials lead to
very small multivariate Mahler measures, at least are good candidates.

Other families of Jones polynomials, their zeroes and their limit distributions,
were investigated, for which interesting limit Mahler measures may be expected:
e.g. Chang and Shrock [122], Wu and Wang [533], Jin and Zhang [284], [285], [286],
related to models in statistical physics. The moderate lacunarities occurring in
the coefficient vectors of Jones polynomials were studied by Franks and Williams
[224] in the context of polynomial invariants associated with braids, knot and links
which generalize Alexander polynomials and Jones polynomials [224], [225], [287],
[394].

6.5. Arithmetic Hyperbolic Geometry. Leininger’s constructions in [340]
give the dilatation factors of pseudo-Anosovs as spectral radii of hyperbolic el-
ements in some Fuchsian groups. The minimality of the Salem numbers as di-
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latation factors is defined in a more general context (Neuman and Reid [395],
Maclachlan and Reid [359], Ghate and Hironaka [236] p. 303).

Theorem 6.17 (Neuman - Reid). The Salem numbers are precisely the spectral
radii of hyperbolic elements of arithmetic Fuchsian groups derived from quaternion
algebras.

Arithmetic hyperbolic groups are arithmetic groups of isometries of hyper-
bolic n-space Hn. Vinberg and Shvartsman [524] p. 217 have defined the large
subclass of the arithmetic hyperbolic groups of the simplest type, in terms of
an admissible quadratic form over a totally real number field K. This subclass
includes all arithmetic hyperbolic groups in even dimensions, infinitely many wide-
commensurability classes of hyperbolic groups in all dimensions [357], and all non-
cocompact arithmetic hyperbolic groups in all dimensions. Isometries of Hn are
either elliptic, parabolic or hyperbolic. An isometry γ ∈ Hn is hyperbolic if and
only if there is a unique geodesic L in Hn, called the axis of γ, along which γ acts
as a translation by a positive distance l(γ) called the translation length of γ.

The following theorems generalize previous results of Neumann and Reid [395]
in dimension 2 and 3 and show the important role played by the smallest Salem
numbers:

Theorem 6.18 (Emery- Ratcliffe - Tschantz [194]). Let Γ be an arithmetic group
of isometries of Hn, n ≥ 2, of the simplest type defined over a totally real algebraic
number K. Let Γ(2) be the subgroup of Γ of finite index generated by the squares
of the elements of Γ. Let γ be a hyperbolic element of Γ, and let λ = el(γ). If n
is even or γ ∈ Γ(2), then λ is a Salem number such that K ⊂ Q(λ + λ−1) and
degK(λ) ≤ n+ 1.

Conversely, if λ ∈ T , K is a subfield of Q(λ+λ−1) and n such that degK(λ) ≤
n+ 1, then there exists an arithmetic group Γ of isometries of Hn of the simplest
type defined over K and a hyperbolic element γ ∈ Γ such that λ = el(γ).

Theorem 6.19 (Emery - Ratcliffe - Tschantz [194]). Let Γ be an arithmetic group
of isometries of Hn, n ≥ 2 odd, of the simplest type defined over a totally real
algebraic number K. Let Γ(2) be the subgroup of Γ of finite index generated by the
squares of the elements of Γ. Let γ be a hyperbolic element of Γ, and let λ = el(γ).
Then λ is a Salem number which is square-rootable over K.

Conversely, if λ ∈ T , K is a subfield of Q(λ + λ−1) and n an odd positive
integer such that degK(λ) ≤ n + 1, and λ is square-rootable over K, then there
exists an arithmetic group Γ of isometries of Hn of the simplest type defined over
K and a hyperbolic element γ ∈ Γ such that

√
λ = el(γ).

6.6. Salem numbers and Dynamics of Automorphisms of Complex Com-
pact Surfaces. Let X be a compact Kähler variety and f an automorphism of
X. The automorphism f induces an invertible linear map f∗ on H∗(X,C), resp.
H∗(X,R), H∗(X,Z), which preserves the Hodge decomposition, the intersection
form, the Kähler cone. Iterating f provides a dynamical system to which real
algebraic integers ≥ 1 are associated. The greatest eigenvalue of the action of f on
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H∗(X,C) is usually called the maximal dynamical degree of f . This terminology
is the same as the one used for the β-shift in the present note, but the notions are
different. The maximal dynamical degree of f is denoted by λ(f); it is related to
the topological entropy htop(f) of f by Log λ(f) = htop(f) by a Theorem of Gro-
mov and Yomdin [247][535]. Saying that an automorphism is of positive entropy is
equivalent to saying that its maximal dynamical degree is > 1. In particular if X
is a surface the characteristic polynomial of f∗ on H2(X,Z) is a (not necessarily
irreducible) Salem polynomial (McMullen [362]); the maximal dynamical degree
λ(f) of f is the spectral radius of f∗ on H1,1(X) and is a Salem number. Salem
numbers are deeply linked to the geometry of the surface. Among all complex
compact surfaces [35], Cantat [111] [112] showed that, if X is a complex compact
surface for which there exists an automorphism of X having a positive entropy,
then there exists a birational morphism from X to a torus, a K3 surface, a surface
of Enriques, or the projective plane. Therefore it suffices to consider complex tori
(Oguiso and Truong [405], Reschke [440] 2017), Enriques surfaces (Oguiso [401],
[403]), and K3 surfaces (Gross and McMullen [249], McMullen [362], Oguiso [402],
Shimada [475]) if X is not rational.

The restriction to compact Kähler surfaces is justified by the fact that the
topological entropy of all automorphisms vanishes on compact complex surfaces
which are not Kähler (Cantat [112]). The existence of an automorphism of positive
entropy is a deep question [95], [96], [113], [196], [362], [404], [406].

On each type of surface, what are the Salem numbers which appear? In this
context the problem of Lehmer can be formulated by asking what are the minimal
Salem numbers which occur, per type of surface, and the corresponding geometrical
realizations.

In [360] McMullen gives a general construction of K3 surface automorphisms
f from unramified Salem numbers, such that, for every such automorphism f , the
topological entropy Log λ(f) is positive, together with a criterion for the resulting
automorphism to have a Siegel disk (domains on which f acts by an irrational
rotation). The Salem polynomials involved, of the respective dynamical degrees
λ(f), have degree 22, trace -1 and are associated to an even unimodular lattice of
signature (3, 19) on which f acts as an isometry, by the Theorem of Torelli. The
surface is non-projective to carry a Siegel disk.

McMullen [364] (Theorem A.1) proved that Lehmer’s number (denoted by λ10)
is the smallest Salem number that can appear as dynamical degree of an automor-
phism of a complex compact surface:

h(f) ≥ Log λ10 = 0.162357 . . . . (6.30)

He gave a geometrical realization of Lehmer’s number in [364] on a rational surface
(cf also Bedford and Kim [41]), in [365] on a nonprojective K3 surface, in [366]
on a projective K3 surface. On the contrary Oguiso [402] proved that Lehmer’s
number cannot be realized on an Enriques surface. In [366] McMullen proved that
the value Log λd arises as the entropy of an automorphism of a complex projective
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K3 surface if

d = 2, 4, 6, 8, 10 or 18, but not if d = 14, 16 or d ≥ 20. (6.31)

Brandhorst and González-Alonso [97] completed the above “realizability” list with
the value d = 12 (Theorem 1.2 in [366]).

For projective surfaces, the degree of the Salem number is bounded by the
rank of the Néron-Severi group; for K3 surfaces in characteristic zero it is at most
20, due to Hodge theory. In positive characteristic the rank 22 is possible (case
of supersingular K3 surfaces) [96] [536]. Therefore all such Salem numbers, when
less than 1.3, are listed in Mossinghoff’s list in [390], the list being complete up to
degree 44.

Reschke [440], [441], gave a necessary and sufficient condition for a Salem
number to be realized as dynamical degree of an automorphism of a complex torus,
with degrees 2, 4 or 6; moreover he investigated the relations between the values of
the Salem numbers and the corresponding geometry and projectiveness of the tori.
Zhao [549] extended the method of Reschke for tori endowed with real structures,
showing that it suffices to consider real abelian surfaces. Zhao classified such real
abelian surfaces into 8 types according to the number of connected components
and the simplicity of the underlying complex abelian surface. For each type the
set of Salem numbers which can be realized by real automorphisms is determined.
Zhao [549] proved that Lehmer’s number cannot be realized by a real K3 surface.

Dolgachev [167] investigated automorphisms on Enriques surfaces of dynamical
degrees> 1 which are small Salem numbers, of small degree 2 to 10 (Salem numbers
of degree 2 are quadratic Pisot numbers). The method does not allow to conclude
on the minimality of the Salem numbers. The author uses the lower semi-continuity
properties of the dynamical degree of an automorphism g of an algebraic surface
S when (S, g) varies in an algebraic family.

In positive characteristic Brandhorst and González-Alonso [97] proved that
the values Log λd arise as the entropy of an automorphism of a supersingular
K3 surface over a field of characteristic p = 5 if and only if d ≤ 22 is even
and d �= 18, giving in their Appendix B the list of Salem numbers λd of degree
d and respective minimal polynomials. They develop a strategy to characterize
the minimal Salem polynomials, in particular their cyclotomic factors, for various
realizations in supersingular K3 surfaces having Artin invariants σ ranging from
1 to 7, in characteristic 5. Yu [536] studied the maximal degrees of the Salem
numbers arising from automorphisms of K3 surfaces, defined over an algebraically
closed field of characteristic p, in terms of the elliptic fibrations having infinite
automorphism groups, and Artin invariants.

Oguiso and Truong [405] Dinh, Nguyen and Truong [156], [157], investigated
the structure of compact Kähler manifolds, in dimension ≥ 3, from the point of
view of establishing relations between non-trivial invariant meromorphic fibrations,
pseudo-automorphisms f and the dynamical degrees λk(f). Lehmer’s problem can
be formulated by asking when the first dynamical degree λ1(f) is a Salem number,
what minimal value for λ1(f) can be reached and what are the possible geometrical
realizations for the minimal ones.
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7. Appendix - Standard notations

The notations used by several authors in the above sections can be found directly
in the corresponding articles and books which are quoted in the text. We just
report the standard notations in the following. obtained

Let P (X) ∈ Z[X], m = deg(P ) ≥ 1. The reciprocal polynomial of P (X) is
P ∗(X) = XmP ( 1

X ). The polynomial P is reciprocal if P ∗(X) = P (X). When
it is monic, the polynomial P is said unramified if |P (1)| = |P (−1)| = 1. If
P (X) = a0

�m
j=1(X − αj) = a0X

m + a1X
m−1 + . . .+ am, with ai ∈ C, a0am �= 0,

and roots αj , the Mahler measure of P is

M(P ) := |a0|
m�

j=1

max{1, |αj |}. (7.1)

The absolute Mahler measure of P is M(P )1/ deg(P ), denoted by M(P ). The
Mahler measure of an algebraic number α is the Mahler of its minimal polynomial
Pα: M(α) := M(Pα). For any algebraic number α the house α of α is the
maximum modulus of its conjugates, including α itself; by Jensen’s formula the
Weil height h(α) of α is LogM(α)/ deg(α). By its very definition, M(PQ) =
M(P )M(Q) (multiplicativity).

A Perron number is either 1 or a real algebraic integer θ > 1 such that the
Galois conjugates θ(i), i �= 0, of θ(0) := θ satisfy: |θ(i)| < θ. Denote by P the set of
Perron numbers. A Pisot number is a Perron number > 1 for which |θ(i)| < 1 for
all i �= 0. The smallest Pisot number is denoted by

Θ = 1.3247 . . . , dominant root of X3 −X − 1. (7.2)

A Salem number is an algebraic integer β > 1 such that its Galois conjugates β(i)

satisfy: |β(i)| ≤ 1 for all i = 1, 2, . . . ,m − 1, with m = deg(β) ≥ 1, β(0) = β and
at least one conjugate β(i), i �= 0, on the unit circle. All the Galois conjugates of a
Salem number β lie on the unit circle, by pairs of complex conjugates, except 1/β
which lies in the open interval (0, 1). Salem numbers are of even degree m ≥ 4.
The set of Pisot numbers, resp. Salem numbers, is denoted by S, resp. by T. If
τ ∈ S or T, then M(τ) = τ . A j-Salem number [297] [454], j ≥ 1, is an algebraic
integer α such that |α| > 1 and α has j − 1 conjugate roots α(q) different from α,
satisfying |α(q)| > 1, while the other conjugate roots ω satisfy |ω| ≤ 1 and at least
one of them is on the unit circle. We call the minimal polynomial of a j-Salem
number a j-Salem polynomial. Salem numbers are 1-Salem numbers. A Salem
number is said unramified if its minimal polynomial is unramified. We say that
two Salem numbers λ and µ are commensurable if there exists positive integers k
and l such that λk = µl. Commensurability is an equivalence relation on T . Let
λ ∈ T , K a subfield of Q(λ+λ−1), and Pλ,K the minimal polynomial of λ over K;
we say that λ is square-rootable over K if there exists a totally positive element
α ∈ K and a monic reciprocal polynomial q(x), whose even degree coefficients are
in K and odd degree coefficients are in

√
αK such that q(x)q(−x) = Pλ,K(x2). A
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Garsia number is an algebraic integer of norm ±2 such that all of the roots of its
minimal polynomial are strictly greater than 1 in absolute value [255].

The set of algebraic numbers, resp. algebraic integers, in C, is denoted by Q,
resp. OQ. The nth cyclotomic polynomial is denoted by Φn(z). For any postive

integer n, let [n] := 1+x+x2+ . . .+xn−1. The (näıve) height of a polynomial P is
the maximum of the absolute value of the coefficients of P . Let A be a countable
subset of the line; the first derived set A(1) of A is the set of the limit points of
nonstationary infinite sequences of elements of A; the k-th derived set A(k) of A is
the first derived set of A(k−1), k ≥ 2.

For x > 0, �x�, {x} and �x� denotes respectively the integer part, resp. the
fractional part, resp. the smallest integer greater than or equal to x. For β > 1 any
real number, the map Tβ : [0, 1] → [0, 1], x → {βx} denotes the β-transformation.

With T 0
β := Tβ , its iterates are denoted by T

(j)
β := Tβ(T

j−1
β ) for j ≥ 1. A real

number β > 1 is a Parry number if the sequence (T
(j)
β (1))j≥1 is eventually periodic;

a Parry number is called simple if in particular T
(q)
β (1) = 0 for some integer q ≥ 1.

The set of Parry numbers is denoted by PP . The terminology chosen by Parry
in [412] has changed: β-numbers are now called Parry numbers, in honor of W.
Parry.

The Mahler measure of a nonzero polynomial P (x1, . . . , xn) ∈ C[x1, . . . , xn] is
defined by

M(P ) := exp

�
1

(2iπ)n

�

Tn

Log |P (x1, . . . , xn)|
dx1

x1
. . .

dxn

xn

�
,

where Tn = {(z1, . . . , zn) ∈ Cn | |z1| = . . . = |zn| = 1} is the unit torus in
dimension n. If n = 1, by Jensen’s formula, it is given by (7.1). A function
f : R → R is said quasiperiodic if it is the sum of finitely many periodic con-
tinuous functions. The function, defined for k ≥ 2, Lik(z) =

�∞
n=1

zn

nk , |z| ≤ 1,

is the kth-polylogarithm function [232], [341], [542]. For x > 0, Log+x denotes
max{0,Log x}. Let F be an infinite subset of the set of nonzero algebraic numbers
which are not a root of unity; we say that the Conjecture of Lehmer is true for F
if there exists a constant cF > 0 such that M(α) ≥ 1 + cF for all α ∈ F .

Garsia number is by definition...
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Some Singular K3- surfaces, Women in Numbers 2: Research Directions in Number
Theory 149–169, Contemp. Math. 606, Centre Rech. Math. Proc., Amer. Math.
Soc., Providence, RI (2013).

[50] D. Bertrand, Problème de Lehmer et Petits Discriminants, Arithmétix 6 (1982),
14–15.

[51] A. Bertrand-Mathis, Nombres de Perron et Questions de Rationalité, Astérisque
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804.

[251] P. Habegger, Small Height and Infinite Non-Abelian Extensions, Duke Math. J.
162 (2013), 2027–2076.

[252] J.-Y. Ham and W.T. Song, The Minimum Dilatation of Pseudo-Anosov 5-Braids,
Exp. Math. 16 (2007), 167–179.

[253] K. Hare, Beta-expansions of Pisot and Salem Numbers, Computer Algebra 2006,
World Sci. Publ., Hackensack, NJ, (2007), 67–84.

[254] K. Hare and M. Mossinghoff, Negative Pisot and Salem Numbers as Roots of New-
man Polynomials, Rocky Mountain J. Math. 44 (2014), 113–138.

[255] K. Hare and M. Panju, Some Comments on Garsia Numbers, Math. Comp. 82
(282) (2013), 1197–1221.

[256] K. Hare and D. Tweedle, Beta-expansions for Infinite Families of Pisot and Salem
Numbers, J. Number Theory 128 (2008), 2756–2765.

[257] H. Hichri, On the beta-expansion of Salem Numbers of Degree 8, LMS J. Comput.
Math. 17 (2014), 289–301.

[258] H. Hichri, Beta expansion for Some Particular Sequences of Salem Numbers, Int.
J. Number Theory 10 (2014), 2135–2149.

[259] H. Hichri, Beta Expansion of Salem Numbers Approaching Pisot Numbers with
the Finiteness Property, Acta Arith. 168 (2015), 107–119.

[260] M. Hindry, The Analog of Lehmer Problem on Abelian Varieties with Complex
Multiplication, preprint.

[261] M. Hindry and J. Silverman, On Lehmer’s Conjecture for Elliptic Curves, in
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[380] M. Mignotte, Sur les Nombres Algébriques de Petite Mesure, Mathematics, pp 65–
80, CTHS: Bull. Sec. Sci., III, Bib. Nat., Paris (1981).
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Complexes, Acta Arith. 182 (2018), 347–396.

[533] F.Y. Wu and J. Wang, Zeroes of the Jones Polynomial, Physica A 296 (2001),
483–494.

[534] Q. Wu, The Smallest Perron Numbers, Math. Comp. 79 (2010), 2387–2394.

[535] Y. Yomdin, Volume Growth and Entropy, Israel J. Math. 57 (1987), 285-300.

[536] X. Yu, Elliptic Fibrations on K3 Surfaces and Salem Numbers of Maximal Degree,
preprint (2016).

[537] T. Yukita, Construction of Infinite Series of Non-Simple Ideal Hyperbolic Coxeter
4-Polytopes and Their Growth Rates, preprint (2018).

[538] T. Yukita, On the Growth Rates of Cofinite 3-Dimensional Hyperbolic Coxeter
Groups Whose Dihedral Angles are of the Form π/m for m = 2, 3, 4, 5, 6, RIMS
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