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Biregular Cremona transformations of the plane

Shamil Asgarli Kuan-Wen Lai Masahiro Nakahara Susanna Zimmermann

Abstract

We study Cremona transformations that induce bijections on the k-rational points. These
form a subgroup inside the Cremona group. When k is a finite field, we study the possible
permutations induced on P2(k), with special attention to the case of characteristic two.
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1 Introduction

We call a birational self-map of a variety a birational permutation if both it and its inverse are
defined on all rational points of the variety. In particular, such a map induces a bijection on the
set of rational points. Over a finite field, the rational points form a finite set, so such biregular
maps induce permutations in the usual sense. Fixing a variety and a finite ground field, one can
ask what kind of permutations on the rational points can be realized this way.

In this paper, we focus on the birational self-maps of a projective space Pn, i.e. the Cre-
mona transformations. They form a group Crn(k) where k is the ground field. We say that a
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INTRODUCTION

Cremona transformation is biregular if it is a birational permutation. Clearly, biregular elements
form a subgroup BCrn(k) ⊂ Crn(k). When k = Fq, the finite field of q elements, there is a group
homomorphism

σq : BCrn(Fq) // Sym(Pn(Fq))

which maps a biregular element to the induced permutation on the set of Fq-points. When the
dimension n = 2, the image of σq satisfies

• Im(σq) = Sym(P2(Fq)) if q is odd or q = 2.

• Im(σq) contains the alternating subgroup Alt(P2(Fq)) if q = 2m ≥ 4.

This result was proved by Cantat [Can09] based on a geometric construction. In this paper, we
follow the same general strategy, but provide an arithmetic approach to this result which leads to
more explicit formulas in Section 2.

When q = 2m ≥ 4, we expect that the inclusion Im(σq) ⊇ Alt(P2(Fq)) is in fact an equality;
in other words, no odd permutation can be realized from a birational permutation. We take two
approaches to examine this conjecture: (1) Study properties of the group BCr2(k) for a general
perfect field k, including a list of generators. (2) Focus on elements in BCr2(Fq) that are conjugate
to an automorphism of a rational surface. Our first main result is:

Theorem 1.1. Assume that k is perfect.

(1) Let T ⊂ Cr2(k) be the set of generators for Cr2(k) given in [Isk91]. Then T∩BCr2(k) forms
a set of generators for BCr2(k).

(2) BCr2(k) is not a finitely generated group if k admits a quadratic extension.

(3) BCr2(k) is a non-normal subgroup in Cr2(k).

(4) BCr2(k) ⊂ Cr2(k) is of infinte index.

A precise list of generators of BCr2(k) is given in Proposition 4.4. Over Fq where q = 2m ≥ 4,
all but one family of generators from the list can be shown to induce even permutations. This is
primarily due to our second main result:

Theorem 1.2. Assume that q = 2m ≥ 4. Then the elements of BCr2(Fq) belonging to the following
categories induce even permutations.

(1) Elements conjugate to automorphisms of a del Pezzo surface.

(2) Elements conjugate to a birational self-map of a conic bundle over P1 preserving the fiber
class.

(3) Elements of finite order.

Using Theorems 1.1 and Theorem 1.2, we can reduce the parity problem to a single class
of birational maps. In general, a quintic transformation means a plane Cremona transformation
defined by the linear system of quintic curves passing through six geometric points with multiplicity
two. The class of birational maps for which the parity problem is still open consists of the quintic
transformations with a point of degree six as base locus. In the following, we denote such a quintic
transformation by f66.
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INTRODUCTION

Corollary 1.3. If every quintic transformation f66 over Fq, where q = 2m ≥ 4, induces an even
permutation on P2(Fq), then Im(σq) = Alt(P2(Fq)).

During this project, Lian Duan was able to write a Magma code to enumerate all possible
quintic transformations f66 over F4 and F8, and verified that all such transformations induce even
permutations on Fq-points for q = 4 and q = 8, respectively. Combining the results of his experiment
with Corollary 1.3, we deduce the following theorem.

Theorem 1.4. Im(σq) = Alt(P2(Fq)) for q = 4 and q = 8.

The proof of Theorem 1.2 relies heavily on being able to study the parity of a birational per-
mutation under conjugation by a birational map. For the sake of consistency, we denote the group
of birational self-maps of a surface X defined over a field k as CrX(k), and denote by BCrX(k)
the subgroup of biregular elements. In this notation, BCr2(k) defined earlier is a shorthand for
BCrP2(k). In general, we expect that the parity of a birational permutation is governed by the
birational geometry of the underlying variety over Fq where q = 2m ≥ 4. In the two-dimensional
case, for example, the parity of a birational permutation is invariant under the conjugation of a
birational map. More precisely:

Theorem 1.5. Let h : X 99K Y be a birational map between smooth projective surfaces defined over
Fq where q = 2m ≥ 4. Suppose that there are αX ∈ BCrX(Fq) and αY ∈ BCrY (Fq) fitting into the
commutative diagram

X

h
��

αX // X

h
��

Y
αY // Y.

Then the actions of αX and αY on X(Fq) and Y (Fq), respectively, have the same parity.

This paper is organized as follows: In Section 2, we discuss the realizability of all permutations
on the rational points in the plane over finite fields of odd characteristics and F2. Section 3 concerns
the parity problem over a non-prime field of characteristic two, starting with the analysis of the
parities induced by linear transformations. Afterwards, we prove Theorem 1.5, and use it to reduce
the proof of Theorem 1.2 to the case of automorphisms. In Section 4, we give a list of generators
of BCr2(k) when k is a perfect field and prove Theorem 1.1 (1). We then analyze whether each
generator induces an even permutation, and deduce Corollary 1.3. Lastly, we develop some basic
properties of BCr2(k) as a subgroup of Cr2(k) to finish the proof of Theorem 1.1.
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REALIZING ARBITRARY PERMUTATIONS

2 Realizing arbitrary permutations

The purpose of this section is to provide an arithmetic approach to the theorem below. One
advantage of this approach is that it allows one to easily construct explicit examples of birational
permutations on P2 via a computer algebra system.

Theorem 2.1. Consider the canonical homomorphism

σq : BCr2(Fq)→ Sym(P2(Fq)).

Then the image of σq satisfies

• Im(σq) = Sym(P2(Fq)) if q is odd or q = 2.

• Im(σq) ⊇ Alt(P2(Fq)) if q = 2m ≥ 4.

Cantat’s proof of Theorem 2.1 in [Can09] is built upon a property about the subgroups of
Sym(Pn(Fq)) which contain PSLn+1(Fq): The elements in Sym(Pn(Fq)) which preserve the collinear-
ity, i.e., map collinear points to collinear points, are called collineations. They form a subgroup

PΓLn(Fq) ⊆ Sym(Pn(Fq))

which clearly contains PSLn+1(Fq). Recall that the alternating group

Alt(Pn(Fq)) ⊆ Sym(Pn(Fq))

is the subgroup of index two consisting of even permutations.

Theorem 2.2 ([Bha81,KM74,Lis75,Pog74]). Let G ⊆ Sym(Pn(Fq)) be a subgroup. If G contains
PSLn+1(Fq), then either G ⊆ PΓLn(Fq) or G ⊇ Alt(Pn(Fq)).

Applying this result to the image subgroup σq(BCr2(Fq)), Cantat concluded that σq is surjective
by constructing an element f ∈ BCr2(Fq) such that

• f does not preserve the collinearity on P2(Fq),
• f induces an odd permutation on P2(Fq).

Our main goal in this section is to exhibit the construction of f explicitly using input from the
theory of primitive roots.

This section is organized as follows. In §2.1 we consider a certain quadric surface Q ⊂ P3;
we construct a birational map g : Q 99K Q that preserves a conic fibration Q → P1, and satisfies
certain properties. In particular, in §2.2 we explain how the map g should behave on the special
fiber of the conic fibration. In §2.3 we construct f from g by projecting from a point on Q, and
prove Theorem 2.1 for the case of odd q. The characteristic 2 case is treated in §2.4.

2.1 Birational maps preserving the conic fibrations

We first recall the examples constructed in [Can09, §3]. Consider a smooth quadric Q and a line L
in P3, both defined over Fq, such that L meets Q in a pair of conjugate points over the extension
Fq2/Fq. The projection from L then induces a rational map πL : Q 99K P1 fibered in the conics cut
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REALIZING ARBITRARY PERMUTATIONS

out by the planes containing L. Assume further that there exists P0 ∈ P1(Fq) over which the fiber
C0 := π−1

L (P0) is smooth.
The hypothesis implies that every degenerate fiber defined over Fq is a union of lines L1 6= L2

conjugate to each other over Fq2/Fq, where the node P := L1 ∩ L2 appears as the only Fq-point.
The projection from such a node then defines a birational map πP : Q 99K P2. Together with the
fiber structure, we obtain the following diagram defined over Fq:

Q

πL: conic fibration
��

∼
πP // P2

P1

(2.1)

Below are explicit examples of this which we use later:

Example 2.3. Assume that q is odd. Let [x : y : z : w] be a system of homogeneous coordinates
on P3. Choose a non-square t ∈ Fq \ F2

q . Then the data

Q :=
{
x2 − ty2 + z2 = w2

}
⊂ P3, L := {z = w = 0} ⊂ P3,

and P := [0 : 0 : 1 : 1] ∈ Q provide an example of (2.1). Here the projection map is explicitly given
by πL([x : y : z : w]) = [z : w], and the degenerate fiber through P is defined as x2− ty2 = 0 on the
plane with parametric equations

P2 ↪→ P3 : [x : y : u] 7→ [x : y : u : u].

For a smooth fiber, one can choose

C0 := π−1
L ([0 : 1]) =

{
x2 − ty2 = w2

}
⊂ Q. (2.2)

Example 2.4. When q = 2m for m ≥ 1, we need another set of data as the quadric in the previous
example is not smooth in characteristic 2. Following Cantat, we use the following quadric:

Q := {x2 + rxy + sy2 + z2 + x(z + w) + y(z + w) + zw = 0, }

where r, s ∈ Fq are chosen so that the polynomial X2 + rX + s = 0 has no roots in Fq.

Cantat’s construction of a desired f ∈ BCr2(Fq) can be roughly divided into two parts:

(1) Constructing a birational self-map g on Q which preserves the fiber structure, acts as a
prescribed odd permutation on C0(Fq), and acts as the identity on the other Fq-fibers.

(2) Descending g down to P2 as f := πP ◦g◦π−1
P , and showing that f induces an odd permutation

on the Fq-points and does not preserve collinearity.

Let us now construct the function g in (1) above in the case of odd characteristic. We keep the
notation of Example 2.3. The process starts with constructing a suitable automorphism on a single
smooth fiber over Fq. Here we choose π−1

L ([0 : 1]) ⊂ Q, or equivalently, the conic

C0 :=
{
x2 − ty2 = w2

} ∼= P1 (2.3)
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REALIZING ARBITRARY PERMUTATIONS

lying on the plane {z = 0} ⊂ P3. The automorphisms we are interested in have the form

P2 → P2 : [x : y : w] 7→ [αx+ tβy : βx+ αy : w],

where the parameters (α, β) are points on the affine conic

S◦ :=
{
α2 − tβ2 = 1

}
⊂ A2.

Note that the formula gives the identity map when (α, β) = (1, 0). In general, this induces an
automorphism g0 : C0

∼−→ C0 as one can verify that

(αx+ tβy)2 − t(βx+ αy)2 = x2 − ty2 = w2. (2.4)

In the following, we develop a method in extending such automorphisms to the whole quadric
Q as a birational map. Moreover, the extensions would fix the Fq-points not lying on C0. In §2.2,
we show the existence of automorphisms f0 which induce odd permutations on C0(Fq). Hence such
extensions induce odd permutations on Q(Fq). The method is built upon the following lemma
about interpolations. We only need the case n = 1 for our purposes; we present the proof of the
general case as it is not any harder.

Lemma 2.5. Let Fq be a finite field. Fix any P0 ∈ Pn(Fq) and P1, P2 ∈ P1(Fq) such that P1 6= P2.
There exists a rational map h : Pn 99K P1 defined over Fq such that

• h(P0) = P1,

• h(P ) = P2 for all P ∈ Pn(Fq) \ {P0}.

Proof. We use an argument inspired by partition of unity. We first show that given P0 ∈ Fn+1
q \{0},

there exists a homogeneous polynomial fP0 ∈ Fq[x0, ..., xn] such that for each P ∈ Fn+1
q \ {0},

fP0(P ) =

{
1 if P = λP0 for λ ∈ F∗q
0 otherwise

Indeed, after applying a GLn+1(Fq)-action, we may assume that P0 = (1, 0, ..., 0), in which case the
polynomial

fP0 = xq−1
0

n∏
i=1

(xq−1
0 − xq−1

i )

satisfies the desired property. Next, consider

f :=
1

q − 1

∑
P∈Fn+1

q

fP ∈ Fq[x0, ..., xn].

By construction, f(P ) = 1 for each P ∈ Fn+1
q \{0}. In order to prove the lemma, write P1 = [α : β],

P2 = [γ : δ], and lift P0 ∈ Pn(Fq) to P̃0 ∈ Fn+1
q . Consider h : Pn 99K P1 defined by,

h(P ) = [γf(P ) + (α− γ)fP̃0
(P ) : δf(P ) + (β − δ)fP̃0

(P )].

The map h is well-defined, and has the desired interpolation property.
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We continue working with the notation retained from Example 2.3. In particular, the quadric
Q ⊂ P3 is defined by the x2 − ty2 + z2 = w2 where t ∈ Fq \ F2

q is a non-square element. Similarly,
recall the definitions of the plane conic C0 and the affine conic S◦ from the beginning of §2.1.

Proposition 2.6. For every (α0, β0) ∈ S◦(Fq), the automorphism

g0 : C0
∼−→ C0 : [x : y : w] 7→ [α0x+ tβ0y : β0x+ α0y : w].

extends to a birational self-map g : Q 99K Q which preserves the fibration πL : Q 99K P1 and satisfies

• g|C0 = g0,

• g|C = id for all Fq-fibers C 6= C0 of πL.

Proof. Let ζ be an affine coordinate on P1. We identify S◦ as an open subset of P1 via the
stereographic projection from (−1, 0) ∈ S◦:

S◦ ↪→ P1 : (α, β) 7→ ζ =
β

1 + α
.

Let ζ0 ∈ P1 denote the image of (α0, β0) ∈ S◦ under the map. Note that (1, 0) ∈ S◦ is mapped to
0 ∈ P1. Note also that we can recover α and β by

α =
1 + tζ2

1− tζ2
, β =

2ζ

1− tζ2
. (2.5)

Consider the fibration πL : Q 99K P1, and let

P0 := [0 : 1] = πL(C0) ∈ P1.

By Lemma 2.5, there exists a rational function

ζ = h(z, w) ∈ Fq(P1)

such that h(P0) = ζ0 and h(P ) = 0 for all P ∈ P1(Fq) \ {P0}. Substituting it into (2.5), we obtain
two rational functions

α(z, w) =
1 + th(z, w)2

1− th(z, w)2
, β(z, w) =

2h(z, w)

1− th(z, w)2
,

which determine a birational self-map on Q via the inhomogeneous formula:

g : Q 99K Q : [x : y : z : w] 7→ [αx+ tβy : βx+ αy : z : w].

Note that this is well-defined due to the same computation as (2.4). From the construction, we
have

• (α(P0), β(P0)) = (α0, β0),

• (α(P ), β(P )) = (1, 0) for all P ∈ P1 \ {P0},

where the first one implies that g|C0 = g0, and the second one implies that g|C = id for all Fq-fibers
C 6= C0.
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2.2 Special actions on the smooth fiber

We continue to use the notation in Example 2.3. Note that, as C0
∼= P1, it is straightforward to

find an automorphism on C0 which induces an odd permutation of the Fq-points. However, it is not
obvious that every such automorphism can be extended to Q in a way which allows one to control
the induced permutation on the other Fq-points. Here we consider automorphisms of the form

g0 : C0
∼−→ C0 : [x : y : w] 7→ [αx+ tβy : βx+ αy : γw] (2.6)

where [α : β : γ] ∈ P2 is any Fq-point on the conic

S := {α2 − tβ2 = γ2} ⊂ P2.

Note that every Fq-point on S has γ 6= 0 since t ∈ Fq is a non-square. Due to this fact, we will
assume that γ = 1 in the following for the convenience of computations.

To find such an automorphism which acts on C0(Fq) transitively, we use the fact that Fq2 ∼=
Fq ⊕

√
t−1Fq and view C0

∼= P1 as the projectivization

C0
∼= P(Fq ⊕

√
t−1Fq) ∼= P(Fq2).

Lemma 2.7. Under a suitable choice of the isomorphism C0
∼= P(Fq2), the action of g0 can be

obtained as the multiplication on Fq2 by the element

β + (α− 1)
√
t−1 ∈ Fq2 (2.7)

where α, β ∈ Fq satisfy α2 − tβ2 = 1.

Proof. It is easy to see that the statement holds when g0 is the identity, i.e. α = 1, so we assume
that α 6= 1 below.

First we identify C0 with P1 using the stereographic projection from [−1 : 0 : 1] ∈ C0. On the
affine chart w = 1, this map can be defined as

θ : C0
∼−→ P1 : (x, y) 7→ ζ =

y

1 + x

where ζ is an affine coordinate on P1. Its inverse θ−1 : P1 ∼−→ C0 is

x =
1 + tζ2

1− tζ2
, y =

2ζ

1− tζ2
.

We claim that gθ := θ ◦ g0 ◦ θ−1 : P1 ∼−→ P1 is given by the formula

gθ(ζ) =
βζ + t−1(α− 1)

(α− 1)ζ + β
. (2.8)

Indeed, as g0(x, y) = (αx+ tβy, βx+ αy) in the affine coordinates, a straightforward computation
shows that

gθ(ζ) =
βx(ζ) + αy(ζ)

1 + αx(ζ) + tβy(ζ)
=

β
(

1+tζ2

1−tζ2

)
+ α

(
2ζ

1−tζ2

)
1 + α

(
1+tζ2

1−tζ2

)
+ tβ

(
2ζ

1−tζ2

)
=

β(1 + tζ2) + α(2ζ)

(1− tζ2) + α(1 + tζ2) + tβ(2ζ)
=

tβζ2 + 2αζ + β

t(α− 1)ζ2 + 2tβζ + (α+ 1)
.

8
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Using the quadratic formula and the fact that α2 − tβ2 = 1, the numerator and the denominator
can be decomposed into linear terms:

gθ(ζ) =
tβ(ζ + α−1

tβ )(ζ + α+1
tβ )

t(α− 1)(ζ + α+1
tβ )2

=
tβ(ζ + α−1

tβ )

t(α− 1)(ζ + α+1
tβ )

which can be further simplified as

gθ(ζ) =
tβζ + (α− 1)

t(α− 1)ζ + (α2−1)
β

=
tβζ + (α− 1)

t(α− 1)ζ + tβ
=
βζ + t−1(α− 1)

(α− 1)ζ + β
,

as claimed.
In view of (2.8) and the isomorphism P1 ∼= P(Fq ⊕

√
t−1Fq), we can conclude that

gθ =

(
β t−1(α− 1)

α− 1 β

)
∈ PGL2(Fq).

It’s easy to verify that this matrix acts on Fq2 ∼= Fq⊕
√
t−1Fq as the multiplication by β+(α−1)

√
t−1,

which completes the proof.

As a consequence of the lemma, to find an automorphism as (2.6) which acts on C0(Fq) tran-
sitively, it is sufficient to find a primitive root of Fq2 of the form (2.7). To attain this, we use the
following result by S. D. Cohen:

Theorem 2.8 ([Coh83, Theorem 1.1]). Let {θ1, θ2} be a basis of Fq2 over Fq and let a1 be a non-
zero member of Fq. Then there exists a primitive root of Fq2 of the form a1θ1 + a2θ2 for some
a2 ∈ Fq.

Corollary 2.9. There exists a primitive root of Fq2 of the form

β + (α− 1)
√
t−1 ∈ F∗q2

where α, β ∈ Fq satisfy α2 − tβ2 = 1.

Proof. By applying Theorem 2.8 to the basis
{

1,
√
t−1
}

, we find c ∈ Fq such that

ξ := c− t

2

√
t−1 ∈ Fq2

is a primitive root of Fq2 . We claim that ξ−1 can be expressed as the required form. If we write

ξ−1 = β + (α− 1)
√
t−1, then

ξ =
β

β2 − t−1(α− 1)2
− α− 1

β2 − t−1(α− 1)2

√
t−1.

Equating the coefficients of
√
t−1 in the two expressions for ξ:

t

2
=

α− 1

β2 − t−1(α− 1)2

which implies that
(α− 1)2 − tβ2 = −2(α− 1) ⇒ α2 − tβ2 = 1,

as required.
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2.3 The induced actions on the projective plane

We are ready to establish Theorem 2.1 when q is odd. Note that Proposition 2.6 and Corollary 2.9
imply the existence of a birational self-map g : Q 99K Q acting transitively on the Fq-points of a
smooth fiber C0, and leaves all the other Fq-fibers fixed. The maps we constructed have the form:

g : Q 99K Q : [x : y : z : w] 7→ [αx+ tβy : βx+ αy : γz : γw]

where α, β, γ are homogeneous in z, w and satisfy α2 − tβ2 = γ2.
Recall that Q and L are defined as

Q :=
{
x2 − ty2 + z2 = w2

}
⊂ P3, L := {z = w = 0} ⊂ P3,

and we have picked P = [0 : 0 : 1 : 1] ∈ Q as the node of one of the degenerate fibers in the fibration
πL : Q 99K P1. Moreover, the conic π−1

L ([0 : 1]) = {z = 0}∩Q is smooth by hypothesis. We identify
H := {z = 0} with P2 via the identification [x : y : u] 7→ [x : y : 0 : u]. Projection from P onto
H = P2 defines a birational map

πP : Q 99K P2 : [x : y : z : w] 7→ [x : y : w − z].

The inverse is given by:

π−1
P : P2 99K Q

[x : y : u] 7→ [2ux : 2uy : x2 − ty2 − u2 : x2 − ty2 + u2].

After composing the three maps, we get

f := πP ◦ g ◦ π−1
P : P2 99K P2

Proposition 2.10. The induced map f : P2 99K P2 satisfies the following conditions:

(1) f ∈ BCr2(Fq)

(2) f fixes all the Fq-points away from the conic C0.

(3) f transivitely permutes C0(Fq) as a (q + 1)-cycle.

(4) There exists a triple of collinear points P1, P2, P3 ∈ P2(Fq) such that f(P1), f(P2), f(P3) are
not collinear.

In particular, the induced permutation P2(Fq)
f→ P2(Fq) does not preserve collineation, and more-

over, induces a (q + 1)-cycle, and hence has odd sign as q is odd.

Proof. (1). We have the following commutative diagram:

BlPQ

π̃P|| ��

g̃
// BlPQ

��

π̃P

""

P2

f1
44

π−1
P

// Q g
// Q πP

// P2
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Note that the above diagram factorizes f = πP ◦ g ◦ π−1
P as f = π̃P ◦ g̃ ◦ f1. The two lines passing

through P in Q become disjoint (−1)-curves on BlPQ. The morphism π̃P is then the blow down
of these two lines. Hence π̃P and f1 are both defined at all the Fq-points. It suffices to show that
g̃ induces a bijection on the Fq-points of BlPQ. Indeed, this follows from the fact that g induces a
bijection on Q(Fq) and fixes the blown up point P . It follows that f is defined on all Fq-points of
P2. By symmetry, the same argument applies to f−1, and hence f ∈ BCr2(Fq).

(2). Let A ∈ P2(Fq) \C0(Fq). In particular, A /∈ L as L∩C0 consists of two Fq2-points that are

Galois conjugates. Then π−1
P (A) ∈ Q such that A /∈ π−1

L ([0 : 1]) = C0, and so g(π−1
P (A)) = π−1

P (A).
It follows that f(A) = πP ◦ g ◦ π−1

P (A) = A.
(3). Let A ∈ C0(Fq). Then π−1

P (A) = A because the line joining A and P meets the quadric at
A ∈ Q. Since g permutes the points of C0(Fq) as a (q+ 1)-cycle, so does the map f = πP ◦ g ◦ π−1

P .
(4). Take an Fq-point P which lies on C, and consider the tangent line L = TPC ⊆ P2. Then

L∩C = {P}. The map acts as identity on all the Fq-points of L except for P , and sends P to another
point on C which does not lie on L. Consequently, the map does not preserve collinearity.

By combining Theorem 2.2 and Proposition 2.10, we obtain Theorem 2.1 when q is odd.

2.4 The construction in characteristic two

The goal of this section is to prove Theorem 2.1 in the case q = 2, and show that the image of σq
contains Alt(P2(Fq)) for q = 2m where m ≥ 2. The strategy is the same as the case when q is odd.

We first explain the construction over F2. Consider the quadric surface given by

Q :=
{
x2 + xy + y2 + z2 + x(z + w) + y(z + w) + zw = 0

}
⊂ P3,

As before, let L := {z = w = 0} ⊂ P3. We consider the projection P3 99K P1, given by [x, y, z, w] 7→
[z, w]. Restricting the map to Q, we get a conic bundle πL : Q→ P1. We analyze the conics on the
three F2-fibers:

C0 := π−1
L ([0, 1]) = {[x, y, u] : x2 + xy + y2 + xu+ yu = 0}

C1 := π−1
L ([1, 0]) = {[x, y, u] : x2 + xy + y2 + z2 + xz + yz = 0}

C2 := π−1
L ([1, 1]) = {[x, y, u] : x2 + xy + y2 = 0]}

One can check that C0 is smooth, while C1 and C2 are both union of two F4-lines meeting at a
single F2-point. In fact,

C0(F2) = {[0, 0, 1], [1, 0, 1], [0, 1, 1]}
C1(F2) = {[1, 1, 1]}
C2(F2) = {[0, 0, 1]}

Consider the map g : P3 → P3, given by [x : y : z : w] 7→ [y : x : z : w]. By the symmetry of
the defining equation, the quadric Q is preserved under g. It is also evident that g acts as a single
transposition on C0(F2), and trivially on both C1(F2) and C2(F2). Using the same argument given
in Proposition 2.10, we see that the induced map f = πP ◦ g ◦ π−1

P is an element of BCr2(F2).
Furthermore, the induced permutation f : P2(F2) → P2(F2) is odd, as it transitively permutes
the three points of C0(Fq). It also does not preserve collineation for the same reason explained in
Proposition 2.10 (4). By Theorem 2.2, σ2(BCr2(F2)) = Sym(P2(F2)).

11
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For q = 2n, we use the quadric Q given in Example 2.4:

Q := {x2 + rxy + sy2 + z2 + x(z + w) + y(z + w) + zw = 0}

where r, s ∈ Fq are chosen so that the polynomial X2 +rX+s = 0 has no roots in the field Fq. The
map g : P3 → P3, given by [x : y : z : w] 7→ [y : x : z : w] preserves the quadric. It can be checked
that the fiber C0 := π−1

L ([0 : 1]) is a smooth conic. Using the same argument in Proposition 2.10,
we see that the induced map f = πP ◦ g ◦ π−1

P is an element of BCr2(Fq). Moreover, the induced
permutation f : P2(Fq) → P2(Fq) does not preserve collineation by the same argument given in
Proposition 2.10 (4) that involves looking at the tangent line: f fixes all the Fq-points on the
tangent line TPC except for P , while P is sent by f to another Fq-point away from TPC. By
Theorem 2.2, we deduce that σq(BCr2(Fq)) ⊇ Alt(P2(Fq)).

3 The parity problem in characteristic two

We assume that k = Fq where q = 2m ≥ 4 throughout this section. Our goal is to prove Theorem 1.2,
which states that an element of BCr2(Fq) induces an even permutation if it belongs to one of the
following categories.

(1) Elements conjugate to automorphisms of a del Pezzo surface.

(2) Elements conjugate to a birational self-map of a conic bundle over P1 preserving the fiber
class.

(3) Elements of finite order.

In §3.1, we prove some preliminary results, including showing that any linear transformation on
Pn induces an even permutation on the Fq-points for any n. We also show that this is false for F2.
We then prove Theorem 1.5 in §3.2 that implies the parity of a birational permutation is invariant
under conjugation. This reduces the proof of first two items of Theorem 1.2 to just proving that
any automorphism on either a conic bundle over P1 or a rational del Pezzo surface induces an even
permutation on its k-points. We treat the case of conic bundles in §3.3 and of del Pezzo surfaces
in §3.4. In §3.2.2, we show that the third item of Theorem 1.2 follows from the first two. We give
the proof of Theorem 1.2 in §3.5.

3.1 Parities induced by linear transformations

In this section, we study the parities induced by linear automorphisms. Since the proof is easily
adapted to Pn for any n > 0, including the plane, we work with projective spaces of arbitrary
dimension. The results of this section also allows us to study the parity problem without choosing
specific coordinates for Pn.

3.1.1 Automorphisms of projective spaces

According to Waterhouse [Wat89], the group GLn+1(Fq) is generated by two elements An and Bn
for all q and n ≥ 1, which clearly descend to generators for PGLn+1(Fq). Therefore, to prove that
PGLn+1(Fq) ⊆ Alt(Pn(Fq)), it is sufficient to verify that An and Bn induce even permutations.

12
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The general formulas for An and Bn depend on whether n = 1 or n ≥ 2. Let us denote by In+1

the identity matrix of size n + 1, and Ei,j the square matrix of size n + 1 with 1 at the (i, j)-th
entry and zeros elsewhere. In the case n ≥ 2, we can choose a generator α for the multiplicative
group F∗q , and let

An = In+1 + (α− 1)E2,2 + En+1,1,

Bn = E1,2 + E2,3 + · · ·+ En+1,1.

For example, when n = 2 we get

A2 =

1 0 0
0 α 0
1 0 1

 , B2 =

0 1 0
0 0 1
1 0 0

 .

In the case q > 2 and n = 1, we choose a generator β for the multiplicative group F∗q2 , and
define

α := βq+1, s := Tr(β) = β + βq, r := −Norm(β) = −βq+1,

then we let

A1 =

(
0 r
1 s

)
, B1 =

(
α 0
0 1

)
.

We emphasize that the case q = 2, n = 1 is not covered by the formulas above. In this last case,

GL2(F2) is generated by

(
0 1
1 1

)
and

(
1 1
0 1

)
which act respectively as a 3-cycle and a 2-cycle on

P1(F2).

Lemma 3.1. Both A1 and B1 induce even permutations on P1(Fq) where q = 2m ≥ 4.

Proof. The element α is a generator of F∗q ∼= Z/(q − 1)Z, so B1 fixes [1 : 0] and [0 : 1] and acts as
an (q − 1)-cycle on

P1(Fq) \ {[1 : 0] ∪ [0 : 1]} ∼= F∗q ,

which is even for all q = 2m ≥ 2. On the other hand, A1 can be decomposed into(
0 r
1 s

)
=

(
r 0
0 1

)(
1 0
s 1

)(
0 1
1 0

)
=: A11A12A13.

Among the factors:

• A11 has the same parity as B1 since r = −α = α.

• A12 fixes [0 : 1] and acts on P1(Fq)\{[0 : 1]} ∼= Fq as a translation by s, which is a composition
of q/2 transpositions (because char(k) = 2) and thus even for q = 2m ≥ 4.

• A13 is an involution fixing [1 : 1], so it is a composition of q/2 transpositions which is even
for q = 2m ≥ 4.

As a result, A1 acts as a compositions of three permutations which are all even, so A1 is even.

Lemma 3.2. Assume that n ≥ 2 and q = 2m ≥ 2. Then An induces an even permutation on
Pn(Fq).

13
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Proof. One can directly verify that An = TnMn where

Tn :=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
1 0 · · · 1

 , Mn :=


1 0 · · · 0
0 α · · · 0
...

...
. . .

...
0 0 · · · 1

 .

It is sufficient to prove that both Tn and Mn induce even permutations. Note that Mn has order
q − 1 which is odd, so its action is even. Hence only Tn needs to be analyzed.

First, by writing Tn = In+1 + En+1,1, we have

T 2
n = In+1 + 2En+1,1 + E2

n+1,1 = In+1,

so Tn is an involution. Thus its action on Pn(Fq) is a product of disjoint transpositions. Second,
Tn acts on the homogeneous coordinates as

[x0 : x1 : ... : xn] 7→ [x0 : ... : xn−1 : x0 + xn],

so the fixed locus is exactly the hyperplane {x0 = 0}. Therefore, the number of transpositions in
Tn is

1

2

(
|Pn(Fq)| − |Pn−1(Fq)|

)
=

1

2

(
qn+1 − 1

q − 1
− qn − 1

q − 1

)
=

1

2

(
qn+1 − qn

q − 1

)
=
qn

2
,

which is even for n ≥ 2 and q = 2m ≥ 2.

Lemma 3.3. Assume that n ≥ 2 and q = 2m ≥ 4. Then Bn induces an even permutation on
Pn(Fq).

Proof. We choose a generator b ∈ Gal(Fqn+1/Fq) ∼= Z/(n+ 1)Z and an element θ ∈ Fqn+1 such that

{θi := bi(θ) : i = 0, . . . , n} ⊂ Fqn+1

form a normal basis over Fq. This identifies the underlying affine space (Fq)n+1 of Pn as

Fqθ0 ⊕ Fqθ1 ⊕ · · · ⊕ Fqθn ∼= Fqn+1

where a point (x0, . . . , xn) ∈ (Fq)n+1 corresponds to x0θ0 + · · ·+ xnθn ∈ Fqn+1 . Since b(θi) = θi+1

for i = 0, . . . , n− 1 and b(θn) = θ0, we have

b(x0θ0 + x1θ1 + · · ·+ xnθn) = xnθ0 + x0θ1 + · · ·+ xn−1θn,

which identifies the action of Bn on (Fq)n+1 from the left as the action of b−1 on Fqn+1 .
Suppose that n+ 1 = u2` where u is odd. Then the parity of bu is the same as the parity of b,

and there is a filtration of Fqn+1 invariant under the action of bu:

Fqu ⊂ · · · ⊂ Fqu2r ⊂ · · · ⊂ F
qu2`

= Fqn+1 .

For each 1 ≤ r ≤ `, there are qu2r − qu2r−1
elements in Fqu2r \ Fqu2r−1 , and the bu-orbit of each

element has size [Fqu2r : Fqu ] = 2r. Therefore, the number of 2r-cycles in the cycle decomposition
of bu equals

1

2r
|Fqu2r \ Fqu2r−1 | =

1

2r
(qu2r − qu2r−1

).
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Upon passing to the quotient space Pn(Fq) = P(Fqn+1), which we consider as the set of Fq-lines in
(Fq)n+1 through the origin, the number of 2r-cycles for the action of bu becomes

1

2r

(
qu2r − qu2r−1

q − 1

)
=
qu2r−1

2r

(
qu2r−1 − 1

q − 1

)
.

When q = 2m, m ≥ 2, we have mu2r−1 − r > 0 for u ≥ 1 and 1 ≤ r ≤ `, so the number

qu2r−1

2r
=

2mu2r−1

2r
= 2mu2r−1−r

is even. As the fraction qu2
r−1−1
q−1 is clearly an integer, we conclude that the number of 2r-cycles in

bu when acting on Pn(Fq) is even for all r = 1, . . . , `, thus the action is even itself.

Remark 3.4. Suppose the ground field is F2. Then the proof of Lemma 3.3 indicates that the
action of Bn on Pn(F2) is even if n = 2` − 1 for some m ≥ 1 and odd otherwise. In the previous
case, the action consists of exactly one 2-cycle and an even number of 2r-cycles for every 2 ≤ r ≤ `.

Proposition 3.5. Over k = Fq, q = 2m ≥ 4, and for any n ≥ 1, the action of PGLn+1(k) on
Pn(k) induces even permutations.

Proof. This follows from Lemma 3.1, 3.2, and 3.3.

The parity of a permutation is invariant upon raising to an odd power, so we usually assume
the order of a permutation to be a power of two when studying the parity. For a permutation
induced by a linear transformation, the following lemma indicates that we can say more about the
cycle type if its order is a power of two, which is a consequence of Proposition 3.5.

Corollary 3.6. Assume that k = Fq where q = 2m ≥ 4 and n ≥ 1. Suppose σ ∈ PGLn+1(k)
induces a permutation of order 2r. Let ci be the number of 2i-cycles in its cycle decomposition,
where i = 0, . . . , r. Then c0 is odd and the sum c1 + · · ·+ cr is even. In the case n = 1, there are
only two possibilities:

(1) c0 = q + 1 and ci = 0 for all 1 ≤ i ≤ r, i.e. σ is the identity.

(2) c0 = 1 and ci = 0 for all but one 1 ≤ i ≤ r. The unique nonzero cj where 1 ≤ j ≤ r equals
q/2j > 1.

Proof. Because a 2i-cycle is odd for i ≥ 1, c1 + · · ·+ cr must be even due to the fact that σ is even
by Proposition 3.5. Then the equations

|Pn(k)| = qn + · · ·+ q + 1 = c0 + 2c1 + · · ·+ 2rcr

imply that c0 is odd.
Assume that n = 1 and that σ is not the identity. Then the fact that c0 is odd implies that

c0 = 1. Let 1 ≤ j ≤ r be the smallest integer such that cj 6= 0. Then σ2j becomes the identity
since it fixes 1 + 2jcj ≥ 3 points. It follows that every nontrivial cycle in σ has the same size 2j .
Note that 2j = q implies that σ is a q-cycle thus is odd, which is impossible by Proposition 3.5.
Therefore, we have 2j < q and the equality

|P1(k)| = q + 1 = 1 + 2jcj

implies that cj = q/2j > 1.
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3.1.2 Projective bundles over finite sets

Let B be a finite set. We define a Pn-bundle over B to be a set of projective n-spaces indexed by
B:

P =
∐
i∈B

Pi, Pi ∼= Pn

together with the natural map
h : P // B : Pi

� // i.

Since P is a disjoint union of projective spaces, we can consider the set P(k) of k-points in P in
the usual way. We are interested in elements σ ∈ Sym(P(k)) of the form:

(1) For every i ∈ B, σ(Pi(k)) = Pj(k) for some j ∈ B; in other words, the conjugation σB :=
hσh−1 is well-defined as an element of Sym(B).

(2) Each bijection σ : Pi(k)→ Pj(k) is induced by a projective transformation over k.

Note that such elements form a subgroup of Sym(P(k)).

Lemma 3.7. Assume that k = Fq where q = 2m ≥ 4. Let σ ∈ Sym(P(k)) be an element satisfying
(1) and (2). Then σ and σB := hσh−1 ∈ Sym(B) have the same parity.

Proof. The parity of a permutation is invariant upon raising it to an odd power, so we can assume
that both σ and σB consist of disjoint cycles of sizes powers of 2. Suppose that

O := {p1, ..., pr} ⊂ B, r = 2` ≥ 1,

is one of the orbits of σB. Then the set of k-points in h−1(O) ⊂ P is invariant under σ. This reduces
the proof to the case O = B. Note that the case r = 1 follows immediately from Proposition 3.5.
Hence we further assume that r ≥ 2, in which case σB is odd, and so our goal is to prove that σ is
also odd.

Fix an element p ∈ O. The assumption O = B implies σrB = id, so σr acts on the k-points of
h−1(p) ∼= Pn. Denote this action as σrp. Observe that, in the cycle decompositions, a u-cycle in σrp
contributes a (ur)-cycle in σ, and every cycle in σ is obtained this way. Assume that σrp consists
of ci many 2i-cycles where i ≥ 0. Then σ consists of ci many (2ir)-cycles for i ≥ 0, which are all
odd since 2ir ≥ 2 by the hypothesis that r ≥ 2. By Corollary 3.6 applied to σrp, the sum

∑
i≥0 ci,

which also equals the number of cycles in σ, is an odd integer. Therefore, σ is odd.

3.2 Birational invariance of the parity

In this section, we investigate how the conjugation via a birational map affects the parity of a
birational permutation. The main result is Theorem 1.5 given in the introduction, whose proof will
be given in §3.2.1. As an application, we illustrate in §3.2.2 how the theorem simplifies the parity
problem for elements of finite order in BCr2(k). Recall that for the sake of consistency, given a
variety X defined over k, we denote its group of birational self-maps as CrX(k) and the subgroup
of biregular elements as BCrX(k).
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Example 3.8. It is easy to construct a counterexample to Theorem 1.5 in the cases that q is odd
and q = 2. Consider an element g ∈ PGL3(Fq) of the form

g =

a b 0
c d 0
0 0 1

 .

Note that g fixes p = [0 : 0 : 1]. Let X be the blowup of P2 at p. Then g lifts to an automorphism

on X which acts on the exceptional P1 as

(
a b
c d

)
, and the parity is altered via the lifting if this

matrix acts as an odd permutation on P1(Fq). For example, one can choose

(
1 0
0 α

)
if q is odd,

where α is a generator for the multiplicative group F∗q , and

(
1 1
0 1

)
if q = 2.

In view of Theorem 1.5, one may wonder if there exists a birational odd permutation on a
surface over Fq where q = 2m ≥ 4. Below we exhibit an example of an odd permutation over F4

induced from an automorphism.

Example 3.9. Write F4 = F2(ξ), where ξ2 + ξ + 1 = 0, and let ξ denote the Galois conjugate of
ξ. Consider the elliptic curve in Weierstrass equation

E : y2 + xy = x3 + 1.

Then j(E) = 1 and Aut(E) ∼= Z/2Z is generated by σE : (x, y) 7→ (x, y+x) [Sil09, Propositions A.1.1
& A.1.2]. A straightforward computation shows that E(F2) = {(1, 0), (0, 1), (1, 1), p∞} where p∞
is the point at infinity, and there are additional four points (ξ, 0), (ξ, 0), (ξ, ξ), (ξ, ξ) over F4. The
involution σE fixes (0, 1), p∞ and exchanges points in the pairs

{(1, 0), (1, 1)}, {(ξ, 0), (ξ, ξ)}, {(ξ, 0), (ξ, ξ)}.

In particular, σE acts as a product of three transpositions on E(F4) hence is an odd permutation.
DefineX := P1×E and consider it as a P1-bundle over E. Then σE can be extended as σX ∈ Aut(X)
where

σX : X → X : (p, q) 7→ (p, σE(q))

whose action on X(F4) is odd by Lemma 3.7. In fact, it is not hard to see that the permutation
consists of 5 disjoint permutations of the same type as σE .

3.2.1 Proof of Theorem 1.5

Remark 3.10. Let Y be a smooth projective surfaces over a perfect field k, σY ∈ BCrY (k) and
h : X → Y the blow-up of a finite set of k-rational points B and E = h−1(B) the union of its
exceptional divisors. Suppose that σX := h−1σY h ∈ BCrX(k). Then σX does not contract any
curve in E as they are all rational, and hence σX(E) = h−1σY h(E) = h−1(σY (B)) is a curve. It
follows that σY (B) ⊂ B. Since σY induces a bijection on Y (k), we have σY (B) = B and hence
σX(E) = E.
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Lemma 3.11. Let Y be a smooth projective surface over k = F2m, m > 1. Let σY ∈ BCrY (k) and
h : X → Y the blow-up of a set B ⊂ Y of closed points. If σX := h−1σY h ∈ BCrX(k), then σY and
σX have the same parity.

Proof. First, if B(k) = ∅, then h|X(k) : X(k) → Y (k) is a bijecton and σX and σY have the same
cycle type. Otherwise, define U := X \ E and V := Y \ B where E is the exceptional locus lying
over B. Then h can be divided into two parts h|E : E → B and h|U : U → V such that for any
b ∈ B(k) and v ∈ V (k),

σY |B(b) = h|E ◦ σX |E ◦ (h|E)−1(b) and σY |V (v) = h|U ◦ σX |U ◦ (h|U )−1(v),

by Remark 3.10. Because h|U is an isomorphism, the second relation implies that σX |U and σY |V
have the same cycle type on U(k) and V (k) respectively. Note that the exceptional divisor E ⊂ X
is a P1-bundle over B over the algebraic closure k̄ of k. Restricting h to E(k) induces the relations
among finite sets

E(k) ∼= P1(k)×B(k)
h|E(k)

// B(k),

as well as the relation between permutations

σY |B(k) = h|E(k) ◦ σX |E(k) ◦ (h|E(k))
−1.

Then σY |B(k) and σX |E(k) share the same parity by Lemma 3.7 (here we use k = Fq, q = 2m ≥ 4),
hence the conclusion follows.

Lemma 3.12. Let Y be a smooth projective surface over k = F2m, m > 1 and h : X → Y a
birational morphism. Let σY ∈ BCrY (k). If σX := h−1σY h ∈ BCrX(k), then σY and σX have the
same parity.

Proof. If h is the blow-up of a set of closed points in Y , the claim is Lemma 3.11. In the general
case, we can decompose h into a sequence of blowups at closed points [Man86, Lemma 18.1.3]

h : X = Yr
εr // Yr−1

εr−1
// · · · ε2 // Y1

ε1 // Y. (3.1)

This sequence can be arranged in the way that the points in Yi blown up by εi+1 lie in the exceptional
locus of εi. Indeed, if there exists a point x ∈ Yi blown up by εi+1 but not in the exceptional locus
of εi, we can form new maps

Y ′i+1

ε′i+1
//

∼
��

Y ′i
ε′i //

Blx
��

Yi−1

Yi+1
εi+1

// Yi
εi // Yi−1

(3.2)

where ε′i is εi followed by the blowup at x, and ε′i+1 blows up the same points as εi+1 except for x.
Then Y ′i+1 and Yi+1 are canonically isomorphic and we can replace εiεi+1 by ε′iε

′
i+1. Repeating this

process from i = r − 1 to i = 1 gives us the desired sequence.
Let σ0 := σY and define inductively that

σi := ε−1
i σi−1εi ∈ CrYi(k), i = 1, . . . , r. (3.3)
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Note that σr = σX . Let us prove that every σi ∈ BCrYi(k) by induction. The case i = 0 follows
from the definition. Suppose that σi−1 ∈ BCrYi−1(k) and, to the contrary, that σi /∈ BCrYi(k). Let
p ∈ Yi(k) be a base-point of σi. Consider the two points

q := εi(p) ∈ Yi−1(k), q′ := σi−1(q) ∈ Yi−1(k).

There are three conditions to analyze:

(1) q′ is not blown up by εi. This implies that σi is well-defined at p by (3.3), which contradicts
our assumption.

(2) q′ is blown up by εi while q is not. Let Eq′ ⊂ Yi denote the exceptional divisor over q′.
In this case, p does not lie in the exceptional locus of εi, so it is mapped bijectively to a
point p̃ ∈ X(k) via the inverses of the blowups in (3.1). The relation (3.3) implies that σ−1

X

contracts the proper transform of Eq′ to p̃, so p̃ is a base-point of σX , which contradicts the
fact that σX is biregular.

(3) q′ and q are both blown up by εi. Let Eq ⊂ Yi and Eq′ ⊂ Yi denote the exceptional divisors
over q and q′, respectively. In this case, we have the commutative diagram

Eq
� � // Yi

εi //

σi

��

Yi−1

σi−1

��

Eq′ // Yi
εi // Yi−1.

The composition σi−1εi : Yi 99K Yi−1 pulls q′ back as the divisor Eq while q′ is blown up by εi
as Eq′ . By the universal property of blowing up, σi−1εi factors through εi uniquely as

Eq
� � //

σ′i|Eq ∼
��

Yi
εi //

∃ σ′i
��

Yi−1

σi−1

��

Eq′ // Yi
εi // Yi−1.

Note that σ′i is well-defined on Eq and σ′i = ε−1
i σi−1εi = σi. Hence σi is well-defined on Eq

and in particular at p, a contradiction.

Since we get contradictions in all possible conditions, we conclude that σi ∈ BCrYi(k), hence the
claim is fulfilled by induction. As a result, the permutations induced by σi, i = 0, . . . , r, which
include σX and σY , have the same parity by Lemma 3.11.

Proof of Theorem 1.5. We are now ready to prove Theorem 1.5 in the general case. We can elimi-
nate the base locus of h by a sequence of blowups at closed points [Kol07, Corollary 1.76]

Xr

h̃
,,

εr // Xr−1
εr−1

// · · · ε2 // X1
ε1 // X0 = X

h
��

Y
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Let Ei ⊂ Xi denote the exceptional locus of εi, and let

Ci−1 := εi(Ei) ⊂ Xi−1, i = 1, . . . , r

denote the center. Through the same process as (3.2), one can arrange the blowups above so that
Ci ⊂ Ei for i = 1, . . . , r − 1. Let σ0 := σX and define inductively that

σi := ε−1
i σi−1εi ∈ CrXi(k), i = 1, . . . , r. (3.4)

We claim that, for each i, there exists a birational morphism

ηi : Zi → Xi such that τi := η−1
i σiηi ∈ BCrZi(k). (3.5)

We prove the claim by induction starting from i = 1. Consider the action of σX on X(k) and
let O ⊂ X(k) be one of its orbits. Then there are two situations:

(a) If O ∩ C0 = ∅, then σ1 is well-defined on (ε−1
1 (O))(k) ⊂ X1(k).

(b) Assume that O ∩C0 6= ∅. Note that, if O ⊂ C0, then one can argue that σ1 is well-defined on
(ε−1

1 (O))(k) ⊂ X1(k) in a similar way as (3) in Lemma 3.12. In general, there exists q ∈ O\C0

such that σ0(q) ∈ C0, and

O \ C0 = {q, σ−1
0 (q), . . . , σ−`0 (q)},

for some ` ≥ 0. In this case, σ1 is undefined at the p := ε−1
1 (q) due to (3.4). Blowing p up will

resolve this indeterminacy for a similar reason as (3) in Lemma 3.12, but this will produce a
new base-point for σ1 at p′ := ε−1

1 (σ−1
0 (q)). By repeating the same process until all points in

ε−1
1 (O \ C0) are blown up, the base-points coming from O will be resolved.

Let O1, . . . , On ⊆ X(k) be the orbits of σ1 which meet C0 nontrivially. Define

B1 :=
n⋃
j=1

ε−1
1 (Oj \ C0) ⊆ X1(k) \ E1,

and consider the blowup
η1 : Z1 := BlB1X1

// X1.

Then τ1 := η−1
1 σ1η1 ∈ BCrZ1(k) according to (b).

Assume that there is a desired blowup (3.5) for some 1 ≤ i ≤ r − 1. The fiber product
X ′i+1 := Xi+1 ×Xi Zi fits into the commutative diagram

X ′i+1

π1
��

π2 // Zi

ηi

��

· · · // Xi+1
εi+1
// Xi

εi // · · ·

where π1 and π2 are the projections to the first and the second components, respectively. Due to
the fact that Bi ⊂ Xi(k) \ Ei and Ci ⊂ Ei, we have Bi ∩ Ci = ∅, so that X ′i+1 is constructed by
blowing up Xi at Bi and Ci where the order does not matter. In particular, π2 is the blowup

π2 : X ′i+1
∼= Blη−1

i (Ci)
Zi // Zi.
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By hypothesis, we have τi := η−1
i σiηi ∈ BCrZi(k), and it can be lifted to X ′i+1 as

σ′i+1 := π−1
2 τiπ2 ∈ CrX′i+1

(k).

Note that, by tracking the commutative diagram above, we have

σ′i+1 = π−1
2 τiπ2 = π−1

2 η−1
i σiηiπ2 = π−1

1 ε−1
i+1σiεi+1π1 = π−1

1 σi+1π1. (3.6)

Let O1, . . . , On ⊆ Zi(k) be the orbits of the action of τi on Zi(k) such that Oj ∩ η−1
i (Ci) 6= ∅ for all

j. Define

B′i+1 :=
n⋃
j=1

π−1
2 (Oj \ η−1

i (Ci)) ⊆ X ′i+1(k).

Consider the blowup
η′i+1 : Zi+1 := BlB′i+1

X ′i+1
// X ′i+1.

Then τi+1 := η′−1
i+1σ

′
i+1η

′
i+1 ∈ BCrZi+1(k) by the same reasoning as the i = 1 case. Define

ηi+1 := π1η
′
i+1 : Zi+1

// Xi+1.

Using (3.6), we obtain

τi+1 = η′−1
i+1σ

′
i+1η

′
i+1 = η′−1

i+1π
−1
1 σi+1π1η

′
i+1 = η−1

i+1σi+1ηi+1.

Hence statement (3.5) is fulfilled for i+ 1.
By induction, (3.5) holds for i = 1, . . . , r. In particular, there exists a birational morphism

ηr : Zr → Xr such that τr := η−1
r σrηr ∈ BCrZr(k).

As a result, we obtain the commutative diagram

Zr
f

~~

g

  

X
h // Y

where f = ε1 · · · εrηr and g = h̃ηr are birational morphisms. Moreover,

σZ := f−1σXf = (ε1 · · · εrηr)−1σ0(ε1 · · · εrηr)
= η−1

r ε−1
r · · · ε−1

1 σ0ε1 · · · εrηr = η−1
r σrηr = τr,

which belongs to BCrZr(k). Using the relations h = gf−1 and σY = hσXh
−1, we derive that

σZ = f−1σXf = g−1hσXh
−1g = g−1σY g.

Therefore, the actions of σX , σY , and σZ on the k-points have the same parity by Lemma 3.12,
which completes the proof.
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3.2.2 Birational self-maps of finite order

Theorem 1.5 allows us to transfer the parity problem from one surface to another via conjugations.
In the case that f ∈ BCr2(k) has finite order, we have the following fact.

Lemma 3.13. Let k be a perfect field. Suppose G ⊆ Cr2(k) is a finite subgroup. Then there exists a
surface X together with a birational map φ : X 99K P2 such that there is an injective homomorphism

φ∗ : G ↪→ Aut(X) : g → φ−1gφ. (3.7)

Moreover, X can be minimal with respect to G in the sense that

(1) X admits a structure of a conic bundle with Pic(X)G ∼= Z2, or

(2) X is isomorphic to a del Pezzo surface with Pic(X)G ∼= Z.

Proof. The same argument in the proof of [DI09, Lemma 3.5] works in our situation. As a conse-
quence, there exists a surface X and a birational map φ : X 99K P2 such that (3.7) holds.

Now consider G as a subgroup of Aut(X). Assume that X is not minimal with respect to G,
i.e. there exists a surface Y and a birational morphism h : X → Y together with an inclusion

h∗ : G ↪→ Aut(Y ) : g → h−1gh

such that the rank of Pic(Y )G is strictly less than the rank of Pic(X)G. This process terminates
at either (1) or (2) by [Isk79, Theorem 1G].

As a corollary, given f ∈ BCr2(k) of finite order, we can always conjugate it to an automorphism
on a minimal surface. This reduces the parity problem for such elements to the problem on the
parities induced by the automorphisms on a conic bundle or a del Pezzo surface. We start the
investigation case-by-case starting from §3.3.

Since the parity of a permutation is invariant upon taking an odd power, we will usually assume
the order of an induced permutation to be 2r for some r > 0 when studying its parity. The following
lemma will be useful in this situation.

Lemma 3.14. Let X be a surface defined over k = Fq, q = 2m ≥ 4, which is rational over the
algebraic closure, and let σ ∈ Sym(X(k)).

(1) If ord(σ) = 2r for some r ≥ 0, then σ has odd number of fixpoints.

(2) If ord(σ) = 2 and the number of fixpoints equals 1 modulo 4, then σ is an even permutation.

Proof. It is well-known that |X(k)| = q2 + aq + 1 for some non-negative integer a [Wei56]; see
also [Poo17, Proposition 9.3.24]. On the other hand, the cardinality of each orbit of σ divides
ord(σ) = 2r, so

q2 + aq + 1 = 2`+ |{fixpoints of σ}|, for some ` ≥ 0,

which implies (1) immediately.
Assume that ord(σ) = 2 and that σ has 4b+ 1 fixpoints for some b ≥ 0. In particular, σ can be

decomposed into a product of disjoint 2-cycles. The amount of the 2-cycles equals

1

2
(|X(k)| − (4b+ 1)) =

1

2
(q2 + aq − 4b) ≡ 0 mod 2.

Hence the induced permutation is even.
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We use a simple observation to end this section.

Proposition 3.15. Let X be a del Pezzo surface defined over a finite field k = Fq. Then Aut(X)
is a finite group.

Proof. If X is a del Pezzo surface, then the anticanonical class −KX is ample and thus −rKX

becomes very ample for some r ≥ 1. The linear system | − rKX | defines an embedding X ↪→ Pn.
Since every f ∈ Aut(X) preserves KX , it extends to an automorphism on Pn. Hence f is of finite
order because PGLn+1(Fq) is a finite group.

3.3 Birational self-maps on conic bundles

Fix the ground field as k = Fq where q = 2m ≥ 4. Here we show that the birational permutations
on a conic bundle preserving the fibration induce even permutations.

Recall that, over a finite field k, a conic C ⊂ P2
k is isomorphic to one of the following four

configurations

(I) C is smooth, i.e. C ∼= P1
k.

(II) C is double line.

(III) C = ` ∪ `′ where ` and `′ are distinct lines defined over k.

(IV) C = ` ∪ `′ where ` and `′ are conjugate over the quadratic extension.

Let B be a finite set. We define a conic bundle over B to simply be a set of conics indexed by B:

C =
⋃
i∈B

Ci

together with the natural map
h : C // B : Ci

� // i.

As C is a union of conics, we can consider the set C(k) of k-points on C in the usual way. We
are interested in elements σ ∈ Sym(C(k)) of the form:

(1) For every i ∈ B, σ(Ci(k)) = Cj(k) for some j ∈ B; in other words, the conjugation σB :=
hσh−1 is well-defined as an element of Sym(B).

(2) Each bijection σ : Ci(k)→ Cj(k) is induced by an isomorphism between conics over k.

Note that such elements form a subgroup of Sym(C(k)).

Lemma 3.16. Let k = Fq, q = 2m ≥ 4. Assume that σ ∈ Sym(C(k)) satisfies (1) and (2). Then
σ and σB := hσh−1 ∈ Sym(B) share the same parity.

Proof. Since the parity of a permutation is invariant upon raising it to an odd power, we can assume
that both σ and σB consist of disjoint cycles of sizes powers of 2. In particular, each nontrivial
cycle is an odd permutation. Suppose that

O := {p1, ..., pr} ⊂ B, r = 2s ≥ 1,
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is one of the orbits of σB. Then the set of k-points in h−1(O) ⊂ C is invariant under σ, and it’s
sufficient to show that this action is odd. This reduces the case to O = B.

By hypothesis, the fibers over O are mutually isomorphic and thus of the same type. If they are
of type (IV), then the node in each fiber appears as the only one k-point in that fiber. It follows
that σ has the same cycle type as σB, hence are both odd. Case (II) can be reduced to Case (I) by
considering the reduced substructure. On the other hand, Case (I) follows from Lemma 3.7.

Assume that the fibers are of type (III). Then each Ci := h−1(pi) = `i ∪ `′i where `i and `′i are
copies of P1

k. In this case, the nodes

δi := `i ∩ `′i, i = 1, ..., r

form an orbit of size r. Let σL denote the action of σ on the set of lines

L := {`1, `′1, `2, `′2, . . . , `r, `′r}.

Then there are two possibilities:

(i) L has two orbits of size r. More precisely, we can relabel the components of Ci as `+i and `−i
such that

σL = (`+1 , . . . , `
+
r )(`−1 , . . . , `

−
r ).

(ii) L forms a single orbit of size 2r. In this case, using the notation from the previous case we
can write

σL = (`+1 , . . . , `
+
r , `
−
1 , . . . , `

−
r ).

In both cases, we use those lines to form a new conic bundle

C̃ = C+ q C− h̃=h+qh− // O+ qO−,

where O± = {p±1 , ..., p±r } are two copies of O, and

C± = {`±1 , . . . , `±r }
h± // O± : `±i

� // p±i .

For each i = 1, ..., r, the node δi splits as δ+
i ∈ `

+
i and δ−i ∈ `

−
i .

Suppose that we are in case (i). Replacing the cycle (δ1, . . . , δr) in σ by the product

(δ+
1 , . . . , δ

+
r )(δ−1 , . . . , δ

−
r )

produces σ̃ ∈ Sym(C̃(k)) which satisfies (1), (2), and

h̃σ̃h̃−1 = (p+
1 , ..., p

+
r )(p−1 , ..., p

−
r ),

which is even. Because the fibers of h̃ are smooth, we conclude that σ̃ is even by the result of the
previous case. It follows that σ is odd since σ has one less odd cycle than σ̃.

Suppose that we are in case (ii). Replacing the cycle (δ1, . . . , δr) in σ by the cycle

(δ+
1 , . . . , δ

+
r , δ

−
1 , . . . , δ

−
r )

produces σ̃ ∈ Sym(C̃(k)) which satisfies (1), (2), and

h̃σ̃h̃−1 = (p+
1 , ..., p

+
r , p

−
1 , ..., p

−
r ),

which is odd. We conclude in a similar way that σ̃ is odd. Therefore, σ is also odd in this case.
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For our applications of the above lemma, we are interested in the case where B is the set of
k-points on a curve. The following corollary is then immediate.

Corollary 3.17. Let C → D be a conic bundle over a curve D defined over k = Fq, where
q = 2n ≥ 4. For f ∈ BCrC(k) preserving the conic bundle structure, let ρ(f) ∈ Aut(D) be the
induced automorphism on D.

(1) The permutation of C(k) induced by f and the permutation of D(k) induced by ρ(f) have the
same parity.

(2) If D = P1, the permutation of C(k) induced by f is even.

Proof. The bundle morphism π : C → D sends C(k) onto B := D(k), so f induces a permutation σf
on C(k) satisfying (1) and (2). Let σB be the permutation of B induced by ρ(f). By Lemma 3.16,
σ and σB have the same parity. If D = P1, it follows from Proposition 3.5 that σB and hence σ are
even.

3.4 Automorphisms of rational del Pezzo surfaces

Recall that, over an arbitrary field k, a del Pezzo surface X is a smooth projective surface such
that the anticanonical divisor −KX is ample. The degree of X is defined as the integer d = K2

X

which takes values from 1 to 9. For example, a del Pezzo surface X of degree 9 is a Severi-Brauer
surface, i.e. Xk := X ⊗k k ∼= P2

k
.

In this section, we investigate the parities of the permutations on X(k) induced by automor-
phisms on a rational del Pezzo surface X defined over k = Fq, where q = 2m ≥ 4. Our goal is to
prove the following theorem:

Theorem 3.18. Every automorphism on a rational del Pezzo surface X defined over k = Fq,
q = 2m ≥ 4, induces an even permutation on X(k).

Remark 3.19. Over F2 there are rational del Pezzo surfaces X of degree 6 which have an auto-
morphism inducing an odd permutation on X(F2), as is shown in Proposition 4.7.

A rational del Pezzo surface of degree 9 over k is just P2
k, so this case is covered by Proposi-

tion 3.5. We proceed the proof case-by-case with the degree d going from high to low in a similar
way as the proof of [Man86, Theorem 29.4].

Proposition 3.20. The claim of Theorem 3.18 holds for rational del Pezzo surfaces X of degree
d = K2

X , 3 ≤ d ≤ 8.

Proof. Let g ∈ Aut(X). Since raising g to an odd power does not change the parity of its permu-
tations, we can assume g has order a power of 2. By Lemma 3.14(1), there exists p ∈ X(k) that is
fixed by g.

Case (d = 8): If X is not minimal (over k), then there exists a (−1)-curve E ⊂ X defined over
k, and the contraction of E gives a morphism h : X → P2. Every g ∈ Aut(X) leaves E invariant,
hence is conjugate to an automorphism of P2 fixing h(E) ∈ P2. It follows that g induces an even
permutation on X(k) by Propositions 3.5 and Theorem 1.5.

If X is minimal, then it is a quadric surface obtained by blowing up P2
k at a point of degree 2

(resp. two rational points), and then contracting the proper transform of the unique line through
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that point (resp. the two rational points). In particular, over the quadratic extension L := Fq2 , we
have XL

∼= P1
L × P1

L. Let X7 be the blow up of X at p and let E be the exceptional curve. Then
the two rulings of X ∼= P1

L × P1
L meeting at p lift to disjoint (−1)-curves E1, E2 ⊂ X7 over L that

are conjugate to each other (resp. rational), and g is conjugate to g′ ∈ Aut(X7) which leaves the
set {E1, E2} invariant. Let h : X7 → P2

k be the contraction of E1, E2. Then hg′h−1 is a PGL3(k)-
action on P2 leaving the set {h(E1), h(E2)} invariant. It then follows from Propositions 3.5 and
Theorem 1.5 that g induces an even permutation.

Case (d = 7): There is a unique (−1)-curve E on X that is invariant under both the Galois
action and g. Hence, blowing down E, we get X → X8 where X8 is a del Pezzo surface of degree
8, and g descends to an automorphism g8 on X8. The result then follows from Theorem 1.5 and
Case d = 8.

Case (d = 6): Over the algebraic closure, Xk contains six (−1)-curves E1, ..., E6 whose
intersection relations can be depicted as a hexagon:

E1

E2

E3

E4

E5

E6

This configuration is invariant under Gal(k/k),
If p does not lie on any of the lines on Xk, then the blow up X5 = Blp(X) is a del Pezzo surface

of degree 5, and g lifts to an automorphism g5 of X5. Let Ep denote the exceptional curve over
p. Over k, there are exactly three disjoint (−1)-curves intersecting Ep. The set of these lines is
invariant under both Gal(k/k) and g5, we contract them and get X5 → X8, where X8 is a del Pezzo
surface of degree 8, and g5 descends to an automorphism g8 of X8. By Case d = 8, g8 induces an
even permutation on X8(k), and we finish by applying Theorem 1.5.

Suppose p lies on some line, say E1, on Xk. If p does not lie on any other line, then E1 must be
invariant under both Gal(k/k) and g. We can then blow down E1 to get X → X7 where X7 is a del
Pezzo surface of degree 7, and g descends to an automorphism g7 of X7. By Case d = 7, g7 induces
an even permutation on X7(k), and we finish by applying Theorem 1.5. Otherwise, p lies on the
intersection of two lines, say E1, E2. Then the orbit structure of {E1, . . . , E6} under Gal(k/k) or g
is either (1) {E1}, . . . , {E6} or (2) {E1, E2}, {E3, E6}, {E4, E5}. It follows then that {E3, E6} must
always be invariant under both Gal(k/k) and g, so blowing down E3, E6 yields X → X8 and the
automorphism descends to one on X8. We finish by applying Case d = 8 and Theorem 1.5.

Case (d = 5): If p does not lie on any exceptional curves, then the blow up X4 = Blp(X) is
a del Pezzo surface of degree 4. Moreover, g lifts to an automorphism g4 on X4. Let Ep denote
the exceptional curve lying above p. There are 5 pairwise disjoint (−1) curves which intersect Ep,
and they must be Galois invariant. Hence we can blow these down to get X4 → P2, and g4 also
descends to an automorphism on P2. An application of Propositions 3.5 and Theorem 1.5 does the
job.

Suppose p lies on a (−1)-curve. We denote the set of (−1)-curves on Xk by {Dij}, where
1 ≤ i < j ≤ 5 and Dij intersects Dkl if and only if i, j, k, l are all distinct. Suppose that p lies on
D12. If p does not lie on any other Dij , then D12 is invariant under both Gal(k/k) and g, so we can

26



THE PARITY PROBLEM IN CHARACTERISTIC TWO

blow down X → X6 to a del Pezzo surface of degree 6, and g descends to an automorphism on X6.
We are then done by Case d = 6 and Theorem 1.5. If p lies on another line, we can assume this is
D34. By the intersection properties, these are the only two lines that p can lie on. It follows then
that D12∪D34 is defined over k and invariant under g. The other lines which intersect D12∪D34 are
D35, D45, D15, and D25. Hence D35∪D45∪D15∪D25 is defined over k and invariant under g. They
are pairwise disjoint, and blowing these down gives X → P2 and g descends to an automorphism
of P2. We are done after applying Propositions 3.5 and Theorem 1.5.

Case (d = 4): First assume that p does not lie on a (−1)-curve. Then the blowup of X at p is
a cubic surface X3 ⊂ P3, and the exceptional curve E ⊂ X is a line in P3 defined over k. Moreover,
each plane H ⊂ P3 containing E intersects X3 residually in a conic, so the pencil of such planes
induces a conic bundle X3 → P1

k defined over k. Corollary 3.17 yields the claim in this case.
Now suppose that p lies on a (−1)-curve. If it lies on only one such curve, then we can blow this

curve down, and g will descend to an automorphism of a del Pezzo surface of degree 5. Then Case
d = 5 and Theorem 1.5 gives the result. Otherwise, p lies on exactly two (−1)-curves. This defines
a (singular) conic Q on X. We can then define a conic bundle structure as follows: The linear
system |−KX | induces an embedding of X into P4 as an intersection of two quadrics. Consider the
pencil of hyperplanes containing Q. Each hyperplane intersects X at a conic residual to Q. This
defines a morphism X → P1 where the fibers are conics. Since g preserves Q and extends to an
automorphism of P4, it preserves the conic bundle structure. Hence, it follows from Corollary 3.17
that g induces an even permutation on X(k).

Case (d = 3): If p does not lie on any (−1)-curves, then the automorphism lifts onto the blow
up Blp(X) which is a del Pezzo surface of degree 2. Then the result follows from Case d = 2 proved
in Proposition 3.22 and Theorem 1.5.

Suppose p lies on exactly one (−1)-curve. Then this curve is defined over k and invariant under
g. Hence blowing down, g descends to an automorphism g4 of a del Pezzo surface of degree 4. Then
the result follows from Case d = 4 and Theorem 1.5.

Suppose p lies on exactly two (−1)-curves L1, L2. The plane containing L1, L2 intersect X at a
third (−1)-curve L3. Since L1 ∪ L2 is invariant under both Galois action and g, we have L3 must
be also be invariant under both Galois action and g. Hence we can blow down L3 and conclude as
in the previous case.

Suppose p lies on three (−1)-curves L1, L2, L3. Then p is an Eckardt point, and g lifts to an
automorphism g2 on the blow up Blp(X) which is a weak del Pezzo surface of degree 2. The strict
transforms of Li give a Galois invariant set of 3 disjoint (−2) curves on Blp(X). We can blow these
down to get Blp(X)→ Y , and g2 descends to an automorphism on Y . The morphism Blp(X)→ P2

induced by the projection from p, factors through Y → P2 which is a double cover ramified along
a singular quartic curve. The same argument as in the Case d = 2 in Proposition 3.22 shows that
every automorphism of Y induces an even permutation. We finish by applying Theorem 1.5.

To prove Theorem 3.18 for degree d = 1, 2, we first begin with a proposition on permutations
induced by double covers that will be used in both cases.

Proposition 3.21. Let π : X → Y be a degree two Galois cover of a weighted projective space
Y = P[a0, . . . , an], where ai are weights, over k = Fq, where q = 2m ≥ 2. Suppose X is given by

w2 + fw + g = 0

where f, g are nonzero homogeneous polynomials in the weighted polynomial ring k[x0, . . . , xn] of
degrees d, 2d respectively.
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Let β ∈ Aut(X) be the deck transformation and B ⊂ X be the branch locus defined by f = 0.
Assume that there is an exact sequence of groups

1 // 〈β〉 // Aut(X)
π∗ // Aut(Y )

where π∗h = πhπ−1 for h ∈ Aut(X), and that β acts as an even permutation on X(k). Then every
h ∈ Aut(X) induces an even permutation on U(k) := X(k) \B(k).

Proof. Let h ∈ Aut(X) and let h0 ∈ Aut(Y ) be the induced automorphism. Since h0 must fix
the ramification locus of π, it follows that h∗0(f) = cf for some constant c ∈ k. Let k(X) be the
function field of X, it is a quadratic extension of k(Y ), so by Artin-Shreier theory, it is given by

u2 + u = z

for some z ∈ k(Y ). Set w′ = g/(fw). Then our original equation becomes

w′2 + w′ = g/f2

This is our Artin-Shreier extension. Now consider the double cover coming from the composition
h0 ◦ π : X → Y . Under this viewpoint, we can repeat the same calculation to conclude that k(X)
is given by the extension

w′′2 + w′′ = g′/c2f2

where g′ is h∗0(g) It is well-known that these two extensions are the same if and only if there exists
some a ∈ k(Y ) such that

g′/c2f2 = g/f2 + a2 + a

So
g′ = c2g + c2f2(a2 + a)

By degree considerations, we must have a ∈ k.
Define an automorphism h′ ∈ Aut(X) by

x, y, z 7→ h0(x), h0(y), h0(z), w 7→ cw + caf.

Let us show that h′ induces even permutation on X(k) \B(k).
If a = 0: Let p ∈ π(X(k)) ⊂ Y (k) not lying on the branch locus, and Op be the orbit of p

under h0. Let i = |Op| and note that π−1(Op) consists of 2i many k-points. It follows from a = 0
that π−1(Op) breaks into two orbits of size i under h′. Hence h induces an even permutation on
π−1(Op). It follows then that h′ induces even permutation on X(k).

If a = 1: After composing with the Geiser involution (which we know is an even permutation
on U(k)), we are reduced to case a = 0.

If a 6= 0, 1: Keep the notation of p,Op, i as before. Since h∗0(f) = cf , plugging in p gives
f(h0(p)) = cf(p). This implies h0 rescales the coordinates of p by a constant e such that ed = c.
Now

h∗i0 (g) = c2ig + i(a2 + a)c2if2.

Plugging in p, we get

c2ig(p) = g(h0(p)) = c2ig(p) + i(a2 + a)c2if(p)2,
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so that i(a2 + a) = 0, which implies i is even. Hence h′∗i(w) = ciw, so both points above p are
fixed by h′i. So then π−1(Op) breaks into two orbits of size i under h′, which shows h′ induces even
permutation on U(k) as before.

Now we finish the proof by showing h has even permutation on U(k). The composition hh′−1

acts as the identity on Y , so it is either the identity or β. But h′ and βh′ both induce even
permutation on U(k), so we are done.

Proposition 3.22. The claim of Theorem 3.18 holds for del Pezzo surfaces X of degree d = K2
X

for d = 1, 2.

Proof. Case (d = 2): The anticanonical divisor embeds X as a hypersurface of degree 4 in the
weighted projective space P[w : x : y : z] = P[2 : 1 : 1 : 1],

w2 + fw = g (3.8)

where f, g ∈ k[x, y, z] have degrees 2, 4 respectively [Kol99, Theorem III.3.5]. The linear system
| − KX | gives a double cover π : X → P2 sending [w : x : y : z] to [x : y : z]. The double cover
involution on X is called the Geiser involution, which we denote by γ. Since KX is preserved under
any automorphism, we have an exact sequence

0→ 〈γ〉 → Aut(X)→ Aut(P2). (3.9)

Let us first prove that γ induces an even permutation. By Lemma 3.14, it suffices to show that
the fixed point set Fix(γ)(Fq) of γ in X(k) has cardinality |Fix(γ)(Fq)| ≡ 1 mod 4. We have

γ([w : x : y : z]) = [−w − f : x : y : z]. (3.10)

Over characteristic 2, the fixed locus is given by f = 0, a conic in P2. This contains q + 1 many
Fq-points if it is smooth. If singular it contains either 1, 2q + 1, or q + 1 many Fq-points if
it is a union of two conjugate Fq-lines, two Fq-lines, or double line respectively. In particular,
|Fix(γ)(Fq)| ≡ 1 mod 4, and so γ is even by Lemma 3.14.

Now applying Proposition 3.21, we get that for any h ∈ Aut(X) induces an even permutation
on X(k) \B(k) where B := V (f). Hence, to finish the proof for d = 2, it suffices to show h induces
an even permutation on B(k). Since f has degree 2, B is a conic in P2, so the result follows from
Corollary 3.17.

Case (d = 1): The equation for X can be given as a hypersurface of degree 6 in the weighted
projective space P[w : z : x : y] = P[3 : 2 : 1 : 1],

w2 + a1wz + a3w = z3 + a2z
2 + a4z + a6 (3.11)

where ai ∈ k[x, y] is homogeneous of degree i [Kol99, Theorem III.3.5]. The linear system | −KX |
defines a rational map ρ : X 99K P1 which sends [w : z : x : y] to [x : y]. The fibers of ρ are
affine elliptic curves. Since KX is fixed under any automorphism of X, we have a homomorphism
Aut(X)→ Aut(P1), and set G to be the kernel. Hence, we have an exact sequence

1→ G→ Aut(X)→ Aut(P1).

Any g ∈ G is of the form g : [w : z : x : y] → [W (w, z, x, y) : Z(w, z, x, y) : x : y], preserves the
equation of S, so comparing the degrees in x, y yields that W = w or W = w − a1wz − a3 and
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Z3 = z3. Moreover, if a4 6= 0 we have Z = z. It follows that if a4 6= 0, then G ' Z/2Z and is
generated by the involution

β : [w : z : x : y] 7→ [w − a1wz − a3 : z : x : y], (3.12)

which is called the Bertini involution. Suppose that a4 = 0. If a2 6= 0, then Z2 = z implies that
G = 〈β〉. If a2 = 0 and there exists a primitive 3rd root of unity δ, then G is generated by β and
[w : z : x : y] 7→ [w : δz : x : y], and hence G ' Z/6Z. If there is no such δ, then G = 〈β〉.

We first show that the unique element β of order two in G induces an even permutation. By
Lemma 3.14, it suffices to show that the fixed point set Fix(β)(Fq) of β in X(k) has cardinality
|Fix(β)(Fq)| ≡ 1 mod 4. Note that for smooth fibers of the elliptic fibration ρ : X → P1, β restricts
to taking the inverse in the group law of the elliptic curve. Since char k = 2, the locus of fixed
points is given by a1(x, y)z+a3(x, y) = 0. Note that x = y = 0, z = w = 1 is a fixed rational point,
and the only such point when x = y = 0. We now proceed by two cases:

If a1 6= 0, then the fixed locus restricted to the open set a1(x, y) 6= 0 is given by

z = a3(x, y)/a1(x, y),

w2 = z3 + a2(x, y)z2 + a4(x, y)z + a6(x, y),

which gives q more fixed Fq-points. Now let x0, y0 ∈ Fq, not both zero, be such that a1(x0, y0) = 0.
If a3(x0, y0) 6= 0, then ρ−1([x0 : y0]) has no fixed Fq-points. If a3(x0, y0) = 0, then ρ−1([x0 : y0])
is a singular affine curve with q-many Fq-points (unique solution in w for every choice of z) which
are all fixed under β. Hence, if a1 6= 0 we have a total of either q + 1 or 2q + 1 fixed Fq-points on
X. In particular, |Fix(β)(Fq)| ≡ 1 mod 4.

If a1 = 0, then we must have a3 6= 0 since X is smooth. If x0, y0 ∈ Fq, not both zero, such
that a3(x0, y0) = 0, then the same argument as above shows that ρ−1([x0 : y0]) has q many fixed
Fq-points. Again, |Fix(β)(Fq)| ≡ 1 mod 4. It follows by Lemma 3.14 that β induces an even
permutation.

The involution β is also the deck transformation of the double cover X → P[2, 1, 1] defined by
[w : z : x : y] 7→ [z : x : y], where P[2, 1, 1] is the weighted projective space with weights 2, 1, 1. This
double cover is given by | − 2KX | which is preserved under any automorphism of X, so induces an
exact sequence

1→ 〈β〉 → Aut(X)→ Aut(P[2, 1, 1]).

Now applying Proposition 3.21, we get that any h ∈ Aut(X) induces an even permutation on
X(k) \B(k) where B := V (a1z + a3). It suffices to show h induces an even permutation on B(k).
Since that p = (x = y = 0, z = w = 1) ∈ B(k) is the unique base point of | − KX |, it is fixed
under h. Moreover, since we only care about the rational points, it suffices to consider the reduced
subscheme B0 := Bred \ {p}. We proceed by cases:

If a1 6= 0 and a1 - a3: B0 is isomorphic to A1. Hence h|B0 induces an even permutation by
Proposition 3.5.

If a1 6= 0 and a1 | a3: B0 is isomorphic to a union of A1 and A1 meeting at a point. The result
again follows from Proposition 3.5.

If a1 = 0: B0 is isomorphic to a disjoint union of r copies of A1 where 0 ≤ r ≤ 3. The result
again follows from Proposition 3.5.

Proof of Theorem 3.18. Let X be a rational del Pezzo surface and d = K2
x. The claim follows from

Proposition 3.5 for d = 9, Proposition 3.20 for d = 3, . . . , 8 and Proposition 3.22 for d = 1, 2.
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3.5 Proof of Theorem 1.2

We can finally assemble the proof of Theorem 1.2.

Proof of Theorem 1.2. The statement for elements conjugate to a birational self-map of a conic
bundle over P1 follows from Corollary 3.17 and Theorem 1.5. The statement for elements conjugate
to an automorphism of a del Pezzo surface follows from Theorem 3.18 and Theorem 1.5. Finally,
for elements of finte order, Lemma 3.13 implies such elements are of the two types above, so we are
done.

4 General studies over perfect fields

4.1 A list of generators

Throughout this section, let k be a perfect field. In this section, we provide a list of generators of
BCr2(k), for which we will compute the sign of the induce permutation if k is finite.

Lemma 4.1. Let k = Fq for q = pm, where p ≥ 2 is a prime and m ≥ 1.

(1) Let p, p′, q, q′ be four points of degree 2 in P2 in general position. Then there exists A ∈
Aut(P2) that sends p, p′ onto q, q′.

(2) Let p, q be two points of degree 4 in P2 in general position. Then there exists A ∈ Aut(P2)
that sends p onto q.

Proof. (1) Let p1, p2 (resp. p′1, p
′
2, resp. q1, q2 resp. q′1, q

′
2) be the geometric components of p (resp.

p′ resp. q resp. q′). Then each pi, p
′
i, qi, q

′
i is defined over Fq2 , i = 1, 2, and there exists a unique

Fq2-automorphism A of P2 that sends pi onto qi and p′i onto q′i for i = 1, 2. For any g ∈ Gal(Fq2/Fq)
we have

(AgA−1)(qi) = Ag((pg
−1

i )g) = (Apg
−1

i )g = (qg
−1

i )g = qi.

In particular, AgA−1 is the identity map for all g ∈ Gal(Fq2/Fq). It follows that A is defined over
Fq.

(2) Let p1, p2, p3, p4 (resp. q1, q2, q3, q4) its geometric components of p (resp. q). Then each pi
and qi is defined over Fq4 , i = 1, 2, and over Fq2 , p (resp. q) splits into two orbits, say {p1, p2} and
{p3, p4} (resp. {q1, q2} and {q3, q4}). By (1), there exists a Fq2-automorphism A of P2 that sends

pi onto qi, i = 1, . . . , 4. As analogously to above, we obtain that AgA−1qi = (Apg
−1

i )g = qi for any
g ∈ Gal(Fq2/Fq) and for i = 1, . . . , 4; hence A is defined over Fq.

Let S be a smooth projective surface over a perfect field k, B a point or a curve defined over
k, and π : S → B a surjective morphism over k. We say that S/B is a Mori fibre surface if π has
connected fibres, the relative Picard rank ρ(S/B) of S over B is ρ(S/B) = 1 and −KS is π-ample,
that is −KS · C > 0 for all curves C contracted by π.

A Sarkisov link is a birational map φ : S 99K S′ between two Mori fibre spaces π : S → B and
π′ : S′ → B′ that is one of the following four types:

type I: B is a point, B′ is a curve and ϕ is the blow-up of a point.
type II: B ' B′, and φ = η2η1, where η1 is the blow-up of a point p = {p1, . . . , pd} of degree d

with the pi in general position, and η2 is the contraction of an orbit of (−1)-curves of cardinality
e. We write φ = fde if we want to emphasize the degree of the base-point of φ.
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type III: the inverse of a link of type I, i.e. B is a curve, B′ is a point and φ is the contraction
of a Galois-orbit of disjoint (−1)-curves defined over the algberaic closure of k.

type IV: S = S′ and B,B′ are both curves. If S is rational, then B = B′ ' P1 and the φ is
the exchange of the two fibrations.

Proposition 4.2. Let X → B and X ′ → B′ be Mori fibre surfaces and ψ : X 99K X ′ a birational
map. Then there is a decomposition ψ = φr · · ·φ1 into Sarkisov links and isomorphism of Mori
fibre surfaces such that

(1) for i = 1, . . . , r − 1, φi+1φi is not an automorphism,

(2) for i = 1, . . . , r, every base-point of φi is a base-point of φr · · ·φi.

Proof. The claim follows from the proof of [Isk96, Theorem 2.5], see also [BM14, Proposition 2.7].

Remark 4.3. In particular, if ψ induces a map X(k)→ X ′(k), then the link φ1 does not have any
rational base-points. Moreover, the rational base-points of

ψ(φ1)−1 = φr · · ·φ2

are exactly the base-points of (φ1)−1. Since φ2φ1 is not an automorphism, φ2 does not have a
rational base-point.

The proof of the following proposition is similar to the proof of [BM14, Theorem 1.2], which
shows that BCr2(R) is generated by Aut(P2) and elements of BCr2(R) of degree 5; the latter are in
family (1) and they are the only non-linear maps in the generating set from Proposition 4.4 that
exist over k = R.

A surface Xd, X
′
d denote del Pezzo surfaces of degree d and Q,Q′ del Pezzo surfaces of degree

8 with ρ(Q) = ρ(Q′) = 1.

Proposition 4.4. Let k be a perfect field. Then BCr2(k) is generated by Aut(P2) and the set of
elements f in the list below that exist over k.

(1) f sends the pencil of conics passing through two points of degree 2 in general position onto a
pencil of conics passing through two points of degree 2 in general position.
If k is finite, we can choose the two pencils to pass through the same points.

(2) f sends the pencil of conics passing through one point of degree 4 in general position onto a
pencil of conics passing through a point of degree 4 in general position.
If k is finite, we can choose the two pencils to pass through the same points.

(3) f is one of the following compositions, where Xd is a del Pezzo surface of degree d = (KXd
)2

and fab is a Sarkisov link of type II blowing up a point of degree a and its inverse blowing up
a point of degree b:

X6 X2 X1 X3

P2 P2 P2 P2 P2 P2 P2 P2f33 f77 f88 f66

(4.1)
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or
X7 X8−d X7

P2 Q Q P2

p p′

f21 fdd f12

d ∈ {7, 6}

p′ = fdd(p)

(4.2)

or

X7 X3 X5−d X3 X7

P2 Q X5 X5 Q P2

p p′

f21 f52 fdd f−1
52 f12

d ∈ {3, 4}

p′ = f−1
52 fddf52(p)

(4.3)

or
X7 X3 X4

P2 Q X5 P2

p p′

f21 f52 f15
p′ = f52(p) (4.4)

or
X7 X3 X ′3 X ′7

P2 Q X5 Q′ P2

p p′

f21 f52 f25 f12

p′ = f25f52(p) (4.5)

or
X7 X5 X ′5 X ′7

P2 Q X6 Q′ P2

p t p′ t′

f21 f31 f13 f12

p′ = f31(p)

t′ = f13(t)

(4.6)

or

X7 X5 X6−d X ′5 X ′7

P2 Q X6 X ′6 Q′ P2

p r fdd(r) p′

f21 f31 fdd f13 f12

d ∈ {2, 3, 4, 5}

p′ = f13fddf31(p)

(4.7)

or
X ′4 X5−d X ′4

P2 X5 X5 P2

p p′

f51 fdd f15

d ∈ {4, 3}

p′ = fdd(p)

(4.8)

Moreover, all links of the form fdd can be chosen to be involutions, except possibly f66 in
(4.1), f33 and f22 in (4.7).

Since the proof of Proposition 4.4 is quite long, we will check afterwards in Lemma 4.5 that the
generators (4.5) and (4.6), (4.7, d = 2) and (4.8, d = 4) are redundant.

Proof. First note that any element in (3) is contained in BCr2(k) as they only contract non-rational
curves. The list of involutions is from [Isk96, Theorem 2.6]. For (1) and (2), the claim over a finite
field k follows from Lemma 4.1.

Let ψ ∈ BCr2(k). There is a decomposition into Sarkisov links ψ = φr · · ·φ1 as in Proposi-
tion 4.2. We do induction on r, the case r = 0 corresponding to ψ ∈ Aut(P2). Let r ≥ 1. Then φ1

is a link of type I or II, and its base-point is a base-point of ψ, so is of degree ≥ 2. By [Isk96, The-
orem 2.6(i,ii)], φ1 a link of type I with a base-point of degree 4 or a link of type II of the form
f88, f77, f66, f33, f21 or f51. We are going to look at these cases separately.
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(a) If φ1 : P2 99K X is a link of type I, then it is the the blow-up of a point of degree d1 = 4;
X/P1 is a conic bundle whose fibres are the strict transforms of conics through the four points, and
K2
X = 5. Now φ2 is either a link of type II of conic bundles, a link of type III [Isk96, Theorem 2.6(i-

iv)], or an isomorphism. As φ2φ1 /∈ Aut(P2) by hypothesis (see Proposition 4.2(1)), φ2 is a link of
type II of conic bundles or an isomorphism. Moreover, ψφ−1

1 = φr · · ·φ2 is well defined on X(k),
so φ2 is well defined on X(k) as well by Remark 4.3. Let r− 1 ≥ s ≥ 2 be the maximal index such
that φi is an isomorphism over P1 or a link of type II over P1 without a rational base-point for any
2 ≤ i ≤ s. The map φs · · ·φ1 is a birational map over P1 from X to a Mori fibre surface X ′/P1.
We now look at two cases

If φs+1 is a link of type III, then ν ′ := φs+1φs · · ·φ2φ1 is as in (2). Note that ψν−1 = φr · · ·φs+2

is as in Proposition 4.2.

If φs+1 is not a link of type III, then the map ν := φ−1
1 φs · · ·φ2φ1 ∈ BCr2(k) is as in (2) and

the map ψν−1 = φr · · ·φs+1φ1 is as in Proposition 4.2 since the base-point of φ1 is a base-point of
φr · · ·φs+1 by construction.

(b) Suppose that φ1 is a link of type II, i.e. one of the forms f33, f66, f77, f88, f21, or f51. In
the first four cases it is of the form (4.1) and we proceed by induction with ψφ−1

1 = φr · · ·φ2. If φ1

is of the form f21 (case (b1)) or f51 (case (b2)), then φ−1
1 has a rational base-point p, which is the

unique base-point of ψφ−1
1 = φr · · ·φ2. Since φ2φ1 is not an automorphism by hypothesis, p is not

a base-point of φ2. Then φ2(p) is the unique rational base-point of ψφ−1
1 φ−1

2 = φr · · ·φ3. It may or
may not be a base-point of φ3.

(b1) Suppose that φ1 = f21 : P2 99K Q. Then φ2 is a link of type I (case (b1.1)) or II
[Isk96, Theorem 2.6]. If φ2 is a link of II, then it is of the form f77, f66, f44 (case (b1.2)) or f52

(case (b1.3)) or f31 (case (b1.4)) by [Isk96, Theorem 2.6(ii)]. The option φ2 = f12 does not occur
since it forces φ2φ1 ∈ Autk(P2), which is not allowed by hypothesis.

(b1.1) Suppose that φ2 : Q 99K X is a link of type I. Then it is the inverse of blowing-up a point
t of degree 2 [Isk96, Theorem 2.6(i)]. Then K2

X = 6 and X → P1 is a Mori fibre space whose fibres
are the images by φ2φ1 of conics in P2 passing through p and φ−1

1 (t). Now, φ3 is an isomorphism
or a link φ3 of type II or III. We will assume that φ3 is not an isomorphism, as otherwise we can
assume that φ4 is not an isomorphism and continue the argument below with φ4 instead of φ3.
Since φ3φ2 is not an automorphism by hypothesis, φ3 : X 99K X ′ is a link of type II over P1.

(b1.1.i) If φ3 has a rational base-point q, then q = φ2(p), where p is the base-point of φ−1
1 ,

as it is the unique rational base-point of φr · · ·φ3 by hypothesis, see (b). There exists a link
φ′2 : X ′ → Q′ of type III to a quadric surface Q′. Let q′ ∈ X ′ be the base-point of φ−1

3 . It is a
rational point, so there exists a link f12 : Q′ 99K P2 of type II with base-point φ′2(q′). The map
ν := f12φ

′
2φ3φ2φ1 ∈ BCr2(k) sends the pencil of conics through p, φ−1

1 (t) onto the pencil of conics
through the base-point of f−1

12 and the image by f12 of the base-point of φ−1
2 , hence belongs to the

family (1). The map ψν−1 = φr · · ·φ4φ
′
2f
−1
12 is a decomposition as in Proposition 4.2 and we can

proceed by induction.

(b1.1.ii) Suppose that φ3 has no rational base-point. Let 3 ≤ s ≤ r − 1 be the maximal index
such that φi is an isomorphism over P1 or a link of type II with no rational base-points for all
3 ≤ i ≤ s and consider the map φs · · ·φ3 : X 99K X ′. The map φs+1 is a link of type III or a
link of type II with a rational base-point. If φs+1 is a link of type II, we proceed as in (b1.1.i)
with φs+1φs · · ·φ3 instead of φ3. If φs+1 is a link of type III, then φs+1 is a contraction X ′ → Q′
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to a quadric surface Q′. Recall from (b) that φ2(p) is the unique rational base-point of φr · · ·φ3,
where p is the base-point of φ−1

1 . There exists a link f12 : Q′ 99K P2 of type II with base-point
(φs+1φs · · ·φ3φ2)(p). The map ν := f12φs+1 · · ·φ1 sends the pencil of conics through p, φ−1

1 (t) onto
the pencil of conics through the base-point of f−1

12 and the image by f12 of the base-point of φ−1
s+1.

We proceed as in (b1.1.i).

(b1.2) If φ2 ∈ {f77, f66}, then φ2 is, up to an automorphism of Q, a birational involution of
Q [Isk96, Theorem 2.6(ii)]. Recall from (b) that φ−1

1 has a rational base-point p ∈ Q, which is the
unique rational base-point of φr · · ·φ2. There exists a link f12 : Q 99K P2 of type II with base-point
φ2(p). Then f12φ2φ1 ∈ BCr2(k) and is as in (4.2). Furthermore, ψ(f12φ2φ1)−1 = φr · · ·φ3f

−1
12 is

a decomposition as in Proposition 4.2 as the base-point of f−1
12 is a base-point of φr · · ·φ3f

−1
12 by

construction.

If φ2 = f44 : Q 99K Q′, let f12 : Q′ 99K P2 be the link of type II with φ2(p) as base-point and
q, q′ the base-point of φ2, φ

−1
2 , respectively. Then f12φ2φ1 sends the pencil of conics through φ−1

1 (q)
onto the pencil of conics through f12(q′), so it is a member of (2).

(b1.3) Suppose that φ2 = f52 : Q 99K X5, where X5 is a del Pezzo surface of degree 5. Then
φ3 is one of f33, f44, f15, f25 [Isk96, Theorem 2.6].

If φ3 ∈ {f33, f44}, then it is a birational self-map of X5 [Isk96, Theorem 2.6(ii)]. Let f12 : Q 99K
P2 be a link of type II with base-point (φ−1

2 φ3φ2)(p), where p is the (rational) base-point of φ−1
1

according to (b). Then ν := f12φ
−1
2 φ3φ2φ1 is in the family (4.3) and ψν−1 = φr · · ·φ4φ2f

−1
12 is a

decomposition as in Propostion 4.2.

If φ3 = f15, then its base-point is q = φ2(p) by (b) and so φ3φ2φ1 is as in (4.4).

If φ3 = f25, then it is a map to a quadric surface Q′. Let f12 : Q′ 99K P2 be a link of type II
whose base-point is φ3φ2(p), where p is the (rational) base-point of φ−1

1 according to (b). Then
f12φ3φ2φ1 ∈ BCr2(k) is as in (4.5), and ψ(f12φ3φ2φ1)−1 = φr · · ·φ4f

−1
12 is a decomposition as in

Proposition 4.2.

(b1.4) If φ2 = f31 : Q 99K X6, then ψφ−1
1 φ−1

2 = φr · · ·φ3 has two rational base-points, namely
φ2(p) and the base-point t of φ−1

2 . Furthermore, φ3 is a link of type II of the form f55, f44, f33, f22

or f13 or a link of type III to a quadric surface [Isk96, Theorem 2.6]. The latter forces φ3φ2 to be
an automorphism, which contradicts our hypothesis, see Proposition 4.2(1).

Suppose that φ3 = f13 : X6 99K Q′ is a link to a quadric surface Q′. As ψφ−1
1 φ−1

2 = φr · · ·φ3 has
exactly two rational base-points, namely φ2(p) and t, and the base-point of q of φ3 is a base-point
of φr · · ·φ3 by hypothesis (see Proposition 4.2(2)), it follows that q = φ2(p) or q = t. The latter
forces φ3φ2 to be an automorphism, which contradicts our hypothesis (see Proposition 4.2(1)), so
q = φ2(p). Let f12 : Q′ 99K P2 be a link of type II with base-point φ3φ2(t). Then ν := f12φ3φ2φ1 is
of the form (4.6) and ψν−1 = φr · · ·φ4f

−1
12 is as in Proposition 4.2.

Suppose that φ3 : X6 99K X ′6 is one of f55, f44, f33, f22. There is a link f13 : X ′6 99K Q′ of
type II with base-point φ3(t), and f12 : Q′ 99K P2 a link of type II with base-point f13φ3φ2(p).
Then ν := f12f13φ3 · · ·φ1 is of the form (4.7) and ψν−1 = φr · · ·φ4f

−1
13 f

−1
12 is a decomposition as in

Proposition 4.2. By [Isk96, Theorem 2.6], f55 and f44 can be taken to be birational involutions.

(b2) Finally, suppose that φ1 = f51 : Q 99K X5. Then, as φ2 has no rational base-point by (b),
it is a link of type II and hence of the form f44, f33, f25 [Isk96, Theorem 2.6]. We proceed as in case
(b1.3) with φ2 instead of φ3 and construct a map as in (4.8) if φ2 = fdd, d = 3, 4, or the inverse of
a map of type (4.4) if φ2 = f25.
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Lemma 4.5. In the list in Proposition 4.4, the generators (4.5) and (4.6), (4.7, d = 2) and (4.8,
d = 4) are redundant.

Proof. (4.5): Consider a map ψ := f12f25f52f21 as in (4.5) and denote by q5 (resp. q2) the base-
point of f52 (resp. f25) and q′2 (resp. q′5) the base-point of f−1

52 (resp. f−1
25 ). We complete the

blow-up diagram of ψ given in Proposition 4.4(4.5) as follows:

X1

X6 X3 X ′3 X ′6

Q X5 Q′

q5

q′2
q2

q′5

q′2

q5 q2 q′2 q′5
q2f52 f25

Thus ψ sends the pencil of conics through the base-point of f21 and f−1
21 (q′2) onto the pencil of

conics through the base-point of f−1
12 and f12(q2), and is hence in the family (1).

(4.6): Consider a map ψ := f12f13f31f21 as in (4.6) and denote by q2, q3, q
′
3, q
′
2 the base-point of

f21, f31, f
−1
13 , f

−1
12 respectively. We complete the blow-up diagram of ψ given in Proposition 4.4(4.6)

as follows:
X4

X7 X5 X ′5 X ′7

P2 Q X6 Q′ P2

q3

p′ t

q′3

q2 p q3 t p′ q′3 t′ q′2

f21 f31 f13 f12

where p′ = f31(p) and t′ = f13(t). Let r1, r2 (resp. s1, s2, s3) be the geometric components of q2

(resp. f−1
21 (q3)). On X4, there are exactly sixteen (−1)-curves over the algebraic closure k̄ of k:

• The exceptional divisor of r1, r2; they make up an orbit of length 2.

• The exceptional divisor of s1, s2, s3; they make up an orbit of length 3.

• The strict transform of the conic through r1, r2, s1, s2, s3, which is rational.

• The strict transform of the line through r1, r2, which is rational.

• The strict transform of the line through si, sj , i 6= j; they make up an orbit of length 3.

• The strict transform of the line through ri, sj ; they make up an orbit of length 6 whose
members are not disjoint.

It follows that the blow-up of q2, q
′
2 is redundant and ψ = f33.

(4.7, d = 2): Consider a map ψ := f12f13f22f31f21 as in (4.7) and denote by q3, q2, q
′
2, q
′
3

the base-points of f31, f22, f
−1
22 , f

−1
13 respectively. We complete the blow-up of ψ given in Proposi-

tion 4.4(4.7) as follows:

X6 X3 X ′6

X7 X5 X4 X ′5 X ′7

P2 Q X6 X ′6 Q′ P2

q2

q3

q2
t

q′2

q′3

q′2

p q3

t q2 q′2 t′ q′3

p′

f21 f31 f22 f13 f12
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where p′ = (f13f22f31)(p) and t′ = f22(t). Thus ψ belongs to the family (1).
(4.8, d = 4): Consider a map ψ := f15f44f51 as in (4.8). Let q4, q

′
4, q5, q

′
5 be the base-point

of f44, f
−1
44 , f51, f15, respectively. We complete the blow-up of ψ given in Proposition 4.4(4.8) as

follows, where Y is the blow-up of X1 at the point p, and is not a del Pezzo surface:

Y

X ′5 X4 X1 X ′4 X ′′5

P2 X5 X5 P2

q5
q4

p
q′4

q′5

q4

q5 p q4 q′4 p′ q′5

q′4f51 f44 f15

where p′ = fdd(p). With Lemma 4.1, we obtain that ψ is in the family (2).

Lemma 4.6. Let T ⊂ Cr2(k) be the set of generators for Cr2(k) given in [Isk91]. Then T∩BCr2(k)
forms a set of generators for BCr2(k).

Proof. We compare the list of generators in [Isk91] contained in BCr2(k) with the list of generators
in Proposition 4.4, and see that the two lists coincide, if we replace “preserving the pencil of conics
through a point of degree 4 (resp. two points of degree 2)” by “sending the pencil of conics trough a
point of degree 4 (resp. two points of degree 2) onto a pencil of conics of the same kind” in [Isk91]:

Prop. 4.4 (1) (2) (4.1) (4.2) (4.3)

[Isk91] A11 (15),(20) (7),(8),(19’),(15”’) (10),(11) (12),(13)

Prop. 4.4 (4.4) (4.5) (4.6) (4.7) (4.8)

[Isk91] A17 (14) (19’) (16),(17),(11”),(18) (21),(22)

while type (9), (9’), (11’), (15’), (15”), (19) from [Isk91] are not contained in BCr2(k). Note that
(4.6) is covered by (19’) by Lemma 4.5.

4.2 Revisiting the parity problem

In this section we prove that almost all of the generators given in Proposition 4.4 can only induce
an even permutation when the ground field is k = F2m for m > 1. We will rely heavily on the
results proven in Section 3.

4.2.1 Parities of the generators (4.1)

Here we prove that f33, f77, and f88 always induce even permutation.
Up to an automorphism of P2, the maps f77 and f88 are Geiser and Bertini involutions respec-

tively. They are given by equations (3.10) and (3.12) respectively. By Theorem 3.18, these and
hence f77 and f88 induce even permutation on P2(F2m), m > 1.

The birational map f33 is the usual quadratic transformation which is defined as follows. Fix
three non-colinear points in P2. The linear system of conics passing through these points defines
a birational map f : P2 99K P2, called a quadratic transformation. Choose a coordinate system
[x : y : z] for P2. Then, up to a projective transformation (over k̄), the map is given by the
equation f([x : y : z]) = [yz : xz : xy].
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Proposition 4.7. Let f : P2 99K P2 be a quadratic transformation over a finite field F2m. Suppose
f is regular. Then the permutation induced on the points P2(k) under σ is odd when m = 1 and
even when m > 1.

Proof. The base points of f form a Galois orbit under some Galois action σ of order three:

p = [a : b : c], pσ = [aσ : bσ : cσ], pσ
2

= [aσ
2

: bσ
2

: cσ
2
].

Let s : P2 99K P2 be the standard quadratic transformation defined by the three base points
[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]. Consider the action of PGL(3) on P2 as the multiplication from the
left on column vectors. Under the linear transformation

g :=

 a aσ aσ
2

b bσ bσ
2

c cσ cσ
2

 ,

we have f = gsg−1. The fix points under the standard transformation s are

[1 : 1 : 1], [−1 : 1 : 1], [1 : −1 : 1], [1 : 1 : −1]

which are all the same over characteristic two, so f has exactly one fix point

g([1 : 1 : 1]) = [a+ aσ + aσ
2

: b+ bσ + bσ
2

: c+ cσ + cσ
2
]

which is clearly defined over k. Note that f is an involution:

f ◦ f = (gsg−1) ◦ (gsg−1) = s ◦ s = id.

Hence f acts on P2(k) as a product of 1
2(22m + 2m) transpositions. Thus the permutation is odd

when m = 1 and even when m > 1.

4.2.2 Parities of the generators (4.2) to (4.8)

Any birational map f ∈ BCr2(k) which over k̄ is a Geiser involution (resp. Bertini involution) up
to an element of PGL3(k) lifts to an automorphism of a del Pezzo surface of degree 2 (resp. degree
1). In fact, the geometric description of f is analogous to the one of the Geiser involution (resp.
Bertini involution) over k̄ and to the Geiser involution (resp. Bertini involution) over k with only
one base-point. It yields directly that f lifts to an automorphism of a del Pezzo surface of degree
2 (resp. degree 1). Hence, f induces an even permutation by Theorem 3.18.

Generator (4.2), (4.3), or (4.7, d = 4, 5): Let f be the corresponding birational map. Note that
we can take fdd in the respective generator to be an involution, so that geometrically fdd is either a
Geiser or Bertini involution, which induces an even permutation. Upon applying an automorphism
of P2 or Q, we can assume that f is conjugate to fdd. Hence, f also induces an even permutation
by Theorem 1.5.

Generator (4.4): Let q2 be a point of degree 2 and q5 a point of degree 5, both in general
position. Over k̄ there are exactly two cubic curves passing through q5, q2 with a double point at
one of the points of q2, and we call C2 its orbit over k. Similarly, there are exactly five cubic curves
with a double point at one of the points of q5, and we call C5 its orbit over k. We complete the
blow-up diagram of f = f15f52f21. By abuse of notation we write p for f21(L), f52(p) and their
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image in X3. In X3 there are exactly two curves which over k̄ are orbits of disjoint (−1)-curves of
length 2 and 5, namely the strict transforms of C2 and C5, denoted by C̃2 and C̃5.

X2

X7 X3 X4

P2 Q X5 P2

q5 p
C̃2

q2 p q5 C̃2 p C̃5

f21 f52 f15

The blow-up diagram of f shows that f has the same geometric description as a Geiser involution
over k with base-points q2 and q5. Thus, up to composition by an element of PGL3(k), f lifts to
an automorphism of the del Pezzo surface X2. Now Theorem 3.18 and Proposition 3.5 imply that
f induces en even permutation over k = Fq, q = 2m ≥ 4.

Generator (4.5) By Lemma 4.5, this map is, up to an automorphism of P2, a member of the
family (1) and hence induces an even permutation for k = F2m , m ≥ 2 by Corollary 3.17.

Generator (4.6) By Lemma 4.5, this generator is equal to f33, so is treated in Proposition 4.7.
Generator (4.7, d = 3) We can complete the blow up diagram as in Lemma 4.5 to get

X ′′5 X2 X ′′′5

X7 X5 X3 X ′5 X ′7

P2 Q X6 X ′6 Q′ P2

p3

q3

p3
t

p′3

q′3

p′3

p q3

t p3 p′3 t′ q′3

p′

f21 f31 f33 f13 f12

where q3, p3, q
′
3, p
′
3 are the base points of f31, f33, f13, f

−1
33 respectively. Hence, the composition

f13f33f31 is geometrically a Geiser involution. Hence the permutation induced on Q 99K Q is even.
Since f = f12f13f33f31f21 is conjugate to f13f33f31 (upon applying automorphism of P2), f also
induces an even permutation by Theorem 1.5.

Generator (4.8) The case d = 4 follows from Lemma 4.5. If d = 3, we have the blow up diagram,

X1

X4 X2 X ′4

P2 X5 X5 P2

q3
p

q′3
q5 p q3 q′3 p′ q′5

f51 f33 f15

where q3, q
′
3, q5, q

′
5 are the base points of f33, f

−1
33 , f51, f15 respectively. Hence, f = f15f33f51 is a

Bertini involution, so f induces an even permutation.

Proof of Corollary 1.3. By Corollary 3.17 and results proven in §4.2.1 and §4.2.2, it follows that
the only generator listed in Proposition 4.4 for which we do not know to induce even permutations
is f66 in (4.1).

The difficulty in proving that f66 induces an even permutation is that the points of degree 6
being blown up by f66 and its inverse cannot be identified with one another via an automorphism
on the respective surface. This is in contrast with f33, f77, f88 in which we were able to do this. In
particular, we cannot apply Theorem 1.2.
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4.3 Some basic properties

In this section we prove the remaining parts of Therorem 1.1:

Theorem 4.8. Let k be a perfect field. Then BCr2(k) satisfies the following properties:

(1) BCr2(k) is not finitely generated if k admits a quadratic extension.

(2) BCr2(k) ⊂ Cr2(k) is not a normal subgroup.

(3) BCr2(k) ⊂ Cr2(k) is of infinite index.

The Cremona group Cr2(k) itself is not finitely-generated over any field k [Can12, Proposi-
tion 3.3], [Can18, Proposition 3.6]. Our proof for (1) borrows ideas from Cantat’s proof.

This proof is organized as follows. We first prove (1) for fields k such that k/k is a finite
extension. For (1) in all other cases, our strategy is to construct elements of BCr2(k) whose
indeterminacy locus consists of a point of arbitrarily large degree. The construction is a Sarkisov
link of type II for conic bundles. We prove (2) in §4.3.2 and (3) in §4.3.2. The proof of Theorem
4.8 is given at the end of this section.

4.3.1 Non-finite generation of BCr2(k)

Let k0 be the prime field of k, which is either Q or Fq depending on the characteristic. For each
f ∈ BCr2(k), let Bs(f) ⊂ P2(k) denote the indeterminacy locus of f . For any extension K/k0, we
say Bs(f) is defined over K if every point in Bs(f) is defined over K. Let kf be the minimal field
extension of k0 satisfying:

(1) f and f−1 are both defined over kf ,

(2) Bs(f) and Bs(f−1) are both defined over kf .

Lemma 4.9. If [k̄ : k] <∞, then BCr2(k) is not finitely-generated.

Proof. Assume that BCr2(k) is generated by a finite subset S. Let kS be the compositum of
{kf}f∈S . Since every g ∈ BCr2(k) is a composition of elements of S, it follows that kg ⊆ kS .
Choosing g ∈ PGL3(k) to be the map g : [x : y : z] 7→ [x + ay : y : z] for some a ∈ k, we obtain
that kg = k0(a) ⊆ kS . As a ∈ k is arbitrary, we have k ⊆ kS . Now, k0 ⊆ k ⊆ kS is a tower of field
extensions where [kS : k] is finite and kS is finitely-generated over k0. By the Artin-Tate lemma,
k is a finitely-generated extension of k0, which is impossible for fields with [k̄ : k] < ∞ (see for
instance [Jac89, Theorem 8.37] for this basic fact from field theory).

Proposition 4.10. Suppose that [k : k] =∞, and let T be a quadratic extension of k and K/T be
a non-trivial extension. Then there exists f ∈ BCr2(k) whose base locus contains a point of degree
[K : k] over k.

The construction of the Cremona maps in Proposition 4.10 requires careful selections of the
candidates for the indeterminacy points in P2. Before we prove Proposition 4.10, we first prove two
statements which help us accomplish the positioning problem.
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Remark 4.11. Suppose that [k : k] =∞ and that k has a quadratic extension T/k. There exists
four points {a1, a2, b1, b2} in P2(T ) such that {a1, a2} and {b1, b2} form Gal(T/k)-orbits, and no
three of these four points are collinear. Indeed, pick any a1 ∈ P2(T ) \ P2(k). Let a2 be its Galois
conjugate. Consider the k-line α spanned by a1 and a2. Take β to be any other k-line. Since
β ∼= P1 over k, we can find a pair of Galois-conjugate points {b1, b2} on β.

As a consequence of Remark 4.11, there exists a unique conic Cx through {a1, a2, b1, b2, x} for
every x ∈ P2 \{a1, a2, b1, b2}, which degenerates if and only if x lies on the line spanned by any two
of the four points [BKT08, Theorem 1]. In particular, all but three of these conics are smooth, and
the three degenerate ones consists of

C0 = span(a1, a2) ∪ span(b1, b2),

C1 = span(a1, b1) ∪ span(a2, b2),

C2 = span(a1, b2) ∪ span(a2, b1).

Note that C0, C1, and C2 are all defined over k.

Lemma 4.12. Let k, T and a1, a2, b1, b2 as in Remark 4.11. Let `1 ⊂ P2 be a line over T passing
through a1, but not a2, b1, b2, and let `2 be its Gal(T/k)-conjugate. Let K/T be a Galois extension.
There exists a closed point x ∈ `1 defined over K/k but not over any proper subfield, such that

(1) r of the Gal(K/k)-conjugates of x lie on `1 (resp. `2), where r = 1
2 [K : k].

(2) Let x1 = x, ..., x2r be the Galois conjugates of x. For each 1 ≤ i ≤ 2r, the unique conic
passing through {a1, a2, b1, b2, xi} is non-singular.

(3) If xi, xj are any two distinct conjugates of x, the six points a1, a2, b1, b2, xi, xj do not lie on
any conic.

Proof. By the primitive element theorem, K = k(z) for some z ∈ K, which can be seen as a K-point
z ∈ P1(K) = K ∪ {pt}. Let {z = z1, ..., z2r} be the Galois orbit of z in the base P1. The space of
conics in P2 passing through a1, a2, b1, b2 is parameterized by P1. Let F1, ..., F2r be the conics in
P2 corresponding to the points z1, ..., z2r, respectively. The conic F1 intersects `1 at the point a1,
which is defined over K. Moreover, F1 cannot be tangent to `1 at a1 since otherwise F1 is defined
over T . Hence the residual intersection with `1 will be a point x 6= a1 defined over K. Its Galois
orbit {x1 = x, ..., x2r} can be labeled in such a way so that xi is on the conic Fi. In particular, they
are all distinct. They equally distribute on l1 and l2 since Gal(T/k) ∼= Z/2Z induces an involution
on {x1, ..., x2r} compatible with the transposition on l1 and l2, which proves (1). The remaining
properties follows easily from the construction: Property (2) holds since each Fi is defined over K
but not over any proper subfield, while the three singular conics C0, C1, and C2 are all defined over
k. Finally, as Fi is the only conic passing through {a1, a2, b1, b2, xi} for every 1 ≤ i ≤ 2r, if xj ∈ Fi,
then Fi = Fj , which is a contradiction. This proves (3).

Proof of Proposition 4.10. The construction is accomplished via several steps:

(1) Pick four points a1, a2, b1, b2 ∈ P2 as in Remark 4.11. Blowup P2 along {a1, a2, b1, b2} to
obtain a conic bundle C → P1, which is fibered in the conics passing through {a1, a2, b1, b2}.
Recall that only three of the fibers are degenerate, namely, C0, C1, and C2. The exceptional
divisors A1, A2, B1, B2 over a1, a2, b1, b2, respectively, form four sections of the bundle.
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(2) Let x be the point obtained in Lemma 4.12 and consider it as a point on C. Blow-up C along
the Gal(K/k)-orbit of x to obtain a map X → C. Let E1, . . . , E2r be the exceptional divisors.
Then Pic(XK) is generated by {L,A1, A2, B1, B2, E1, . . . E2r} where L is the pullback of a
general hyperplane from P2. Let F1, . . . , F2r denote the fibers of C → P1 that contain a Galois
conjugate of the point x. By abuse of notation, we denote their strict transform in X by Fi
as well. Let F denote a general fiber on X. Then F 2 = 0 and F = Fi + Ei in Pic(XK) for
each i, from which we calculate that F 2

i = −1.

(3) Using Castelnuovo’s contractibility criterion (see [Băd01, Theorem 3.30] for the case of posi-
tive characteristics), blow-down F1, ..., F2r to get X → C′. Let us denote again by Ai, Bi, F, Ei
their images in C′. Define the following divisor classes on C′,

A′1 = A1 + rF − E1 − · · · − E2r

A′2 = A2 + rF − E1 − · · · − E2r

B′1 = B1 + rF − E1 − · · · − E2r

B′2 = B2 + rF − E1 − · · · − E2r.

An easy intersection calculation shows that A′1
2 = −1, A′1 ·F = 1, A′1 ·Ei = 1 for each i, and

likewise for A′2, B
′
1, B

′
2. We calculate that A′1, A

′
2, B

′
1, B

′
2 are classes of (−1)-curves.

(4) Since X → C′ only blows down components of fibers, we still have an induced morphism
C′ → P1 which is itself a conic fibration since the generic fiber is still the same. The blow-
down of C′ along A′1, A

′
2, B

′
1, B

′
2 is a smooth rational surface of Picard rank 1 containing a

k-point from the initial P2, so it is isomorphic to P2 over k. Let a′1, a
′
2, b
′
1, b
′
2 ∈ P2 be the

images of the (−1)-curves. Then the conic fibration C′ → P1 corresponds to the family of
conics passing through the points a′1, a

′
2, b
′
1, b
′
2.

(5) The desired Cremona map f is then obtained from the composition

X

��   

C

��

C′

  

P2 f
// P2.

(4.9)

The map f belongs to Cr2(k) since it is composed from maps defined over k. It has indeter-
minacy

Bs(f) = {a1, a2, b1, b2, x1, ..., x2r}.

In particular, f ∈ BCr2(k), and Bs(f) contains the Gal(K/k)-orbit {x1, ..., x2r} of size 2r =
[K : k].

This process produces the desired Cremona maps whenever the point x ∈ C, defined over K
but not any proper subfield, has its Gal(K/k)-conjugates lying on distinct fibers and disjoint from
the sections A1, A2, B1, B2.
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It is worth mentioning that the transformation C 99K C′ constructed in the proof of Proposi-
tion 4.10 is a Sarkisov link of type II for conic bundles.

Lemma 4.13. If [k̄ : k] =∞, then BCr2(k) is not finitely generated.

Proof. Recall the definition of kf from the beginning of this section and define k′f = kkf to be the
composite field. Then k′f is a finite extension of k. If BCr2(k) is finitely-generated by f1, f2, ..., fr,
then for each f ∈ BCr2(k), k′f would is contained in the compositum of k′f1 , ..., k

′
fr

, and so

[k′f : k] ≤
r∏
i=1

[k′fi : k],

implying that the set {[k′f : k] : f ∈ BCr2(k)} is bounded. The assumption [k : k] =∞ guarantees
that k admits a field extension of arbitrarily large degree d. By Proposition 4.10 there exists
h ∈ BCr2(k) whose base-locus contains a point of degree d over k and hence d ≤ [k′h : k], a
contradiction.

We end this section with the following proposition which gives another viewpoint for the Cre-
mona map constructed in Proposition 4.10.

Proposition 4.14. The Cremona map (4.9) is of the homaloidal type due to Ruffini. More explic-
itly, let M ∈ Pic(X) be the pullback of a hyperplane class from the right P2. Then we have

M = (2n+ 1)L− 2

n∑
i=1

Ei − n(A1 +A2 +B1 +B2)

in Pic(X), where n = 2r is the cardinality of the large Galois orbit.

Proof. The fiber class F corresponds to a conic in the right P2 passing through a′1, a
′
2, b
′
1, b
′
2, so the

class in Pic(X) corresponding to a conic from the right P2 equals

2M = F +A′1 +A′2 +B′1 +B′2
= F +A1 +A2 +B1 +B2 + 2nF − 4

∑n
i=1Ei

= (2n+ 1)(2L−A1 −A2 −B1 −B2)− 4
∑n

i=1Ei
= (4n+ 2)L− 2n(A1 +A2 +B1 +B2)− 4

∑n
i=1Ei.

Divide both sides by 2 to get the result.

4.3.2 Infinite index and non-normality

Lemma 4.15. Let k be any field. Then BCr2(k) ⊂ Cr2(k) is a subgroup of infinite index.

Proof. First, assume that k is infinite. We inductively construct an infinite sequence of maps
f1, f2, f3, ... in Cr2(k) as follows. Let f1 ∈ Cr2(k) be the standard quadratic transformation [x : y :
z] 7→ [yz : zx : xy]. Assuming that fi has been found, take three non-collinear points

{a, b, c} ∈ P2(k) \
⋃

1≤j≤i
Bs(fj)(k),
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which is possible because k is infinite, and define fi+1 := τ ◦ fi where τ is a quadratic Cremona
map with indeterminacy exactly at {a, b, c}. It is clear that

|Bs(fi+1)(k)| ≥ |Bs(fi)|+ 3.

Note that the left-cosets f1BCr2(k), f2BCr2(k), ... are all pairwise disjoint because, by definition,
the elements in BCr2(k) cannot increase the indeterminacy points of fi in P2(k).

Next, assume that k = Fq is a finite field. Start with four points a1, a2, b1, b2 ∈ P2(Fq) such
that no three are on a line. The main construction of the Cremona map carried out in proof of
Propositon 4.10 still works, and for each even integer n = 2r, we get a map fr ∈ Cr2(Fq) with Bs(fr)
containing a1, a2, b1, b2 with multiplicity 2r (Prop. 4.14). In particular, fr /∈ BCr2(Fq). We obtain
an infinite sequence {f1, f2, f3, . . .} of elements in Cr2(Fq) such that the left cosets f1BCr2(Fq),
f2BCr2(Fq), f3BCr2(Fq) . . . are all pairwise disjoint. Indeed, for any g ∈ BCr2(k) the multiplicity
of frg at a1, a2, b1, b2 is equal to 2r.

When k is algebraically-closed, Blanc [Bla10, Theorem 4.2] has shown that Cr2(k) has no non-
trivial closed normal subgroup with respect to its natural topology. Cantat and Lamy [CL13] prove
that Cr2(k) is not simple as an abstract group, and Lonjou generalises it for Cr2(k) for any field k
[Lon16].

Lemma 4.16. For any field k, the group BCr2(k) is not a normal subgroup of Cr2(k).

Proof. Let f ∈ Cr2(k) be the standard quadratic involution f : [x : y : z] 7→ [yz : zx : xy]. Let
g ∈ PGL3(k) ⊂ BCr2(k) be any map sending [1 : 0 : 0] to [1 : 1 : 1]. Then f−1gf contracts the line
{x = 0} to the point

f−1gf([0 : y : z]) = f−1g([1 : 0 : 0]) = f−1([1 : 1 : 1]) = [1 : 1 : 1].

In particular, (f−1gf)−1 = f−1g−1f possesses a k-rational point in its indeterminacy locus, and
thus cannot be an element of BCr2(k).

We end with two propositions concerning the normality of the kernel of the natural homomor-
phism BCrn(k)→ Sym(Pn(k)).

Lemma 4.17. Let k be a finite field and n ≥ 2. Then the kernel of the natural homomorphism
BCrn(k)→ Sym(Pn(k)) is not a normal subgroup of Crn(k).

Proof. Let N be the kernel of BCrn(k) → Sym(P2(k)) and suppose it is a normal subgroup of
Crn(k). Let l ∈ k[x2, . . . , xn] be linear and homogeneous, and consider the birational map

f : [x0 : · · · : xn] 7→ [x2
0 : x1l : x0x2 : · · · : x0xn]

with inverse
f−1 : [x0 : · · · : xn] 7→ [lx0 : x1x0 : x2l : · · · : xnl].

Both f and f−1 contract only two hypersurfaces, namely Hl = {l = 0} and x0 = 0. By assumption,
N is normal, so fgf−1 is biregular, and hence g preserves Hl ∪ {x0 = 0}. We can do the same
argument with αfα−1 instead of f for any α ∈ Aut(Pn) and obtain that g preserves any rational
hyperplane of Pn. We write g : [x0 : · · · : xn] 7→ [g0 : · · · : gn] for some homogeneous gi ∈
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k[x0, . . . , xn] without a common non-constant factor. As g−1 preserves each rational hyperplane,
we have gi = xig

′
i for some g′i ∈ k[x0, . . . , xn], and for any a0, . . . , an ∈ k not all zero, we have∑

i ai(xig
′
i) =

∑
i aigi = pa0,...,an(

∑
aixi) for some pa0,...,an ∈ k[x0, . . . , xn]. It follows that gi =

pa0,...,an ∈ k∗ for i = 0, . . . , n, and so g is linear. Since g ∈ N , it fixes |Pn(k)| = qn+qn−1+· · ·+q+1 ≥
n + 2 points in P2, and so is equal to the identity map. We have reached a contradiction because
BCrn(k) is infinite by Proposition 4.10 and N is never trivial as it is of finite index in BCrn(k).

Proposition 4.18. Let k be an infinite field and n ≥ 1. Then the canonical homomorphism
BCrn(k)→ Sym(Pn(k)) is injective.

Proof. Any element in the kernel of BCrn(k) → Sym(Pn(k)) coincides with the identity map on
Pn(k), which is a dense subset of Pn(k̄), where k̄ is the algebraic closure of k. It follows that f
coincides with the identity everywhere.

4.4 Proof of Theorem 1.1

Proof of Theorem 4.8. (1) is Lemma 4.9 and Lemma 4.13. (2) is Lemma 4.3.2, and finally (3) is
Lemma 4.15.

Proof of Theorem 1.1. (1) is Lemma 4.6 and the remaining points make up Theorem 4.8.
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