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Introduction

Smart grids are operated by the advanced distribution management system (DMS), which is responsible for supervisory control and data acquisition in reactive dispatch, voltage regulation, contingency analysis, capability maximization and other smart operations. The optimal power flow (OPF) problem, which determines a steady state operating point that minimizes the cost of electric power generation or the transmission loss is the backbone of DMS (see e.g. [START_REF] Carpentier | Contribution to the economic dispatch problem[END_REF][START_REF] Huneault | A survey of the optimal power flow literature[END_REF][START_REF] Momoh | A review of selected optimal power flow literature to 1993. part I: Nonlinear and quadratic programming approaches[END_REF][START_REF] Pandya | A survey of optimal power flow methods[END_REF] and references therein). Mathematically, the OPF problem is highly nonlinear and nonconvex due to numerous quadratic equality and indefinite quadratic inequality constraints for bus interconnections, hardware operating capacity and the balance between power demand and supply. These nonlinear constraints are mathematically troublesome so the state-ofthe-art nonlinear optimization solvers may converge to just stationary points (see [START_REF] Bukhsh | Local solutions of the optimal power flow problem[END_REF] and references therein), which are not necessarily feasible. To handle these nonlinear constraints, it is common to reformulate them as linear constraints on the outer product W = V V H of the voltage vector V = (V 1 , V 2 , ..., V n ) T ∈ C n . As a result, the OPF problem is recast by a semi-definite program (SDP) plus the additional rank-one constraint on outer product matrix W [START_REF] Bai | Semidefinite programming for optimal power flow problems[END_REF][START_REF] Lavaei | Zero duality gap in optimal power flow problem[END_REF]. The rank-one constraint is then dropped for semi-definite relaxation (SDR). However, the optimal solution of SDR is of rank-more-than-one in general and cannot help retrieval of a feasible point or stationary point of the OPF problem [START_REF] Lavaei | Zero duality gap in optimal power flow problem[END_REF][START_REF] Madani | Convex relaxation for optimal power flow problem: Mesh networks[END_REF][START_REF] Madani | Promises of conic relaxation for contigency-constrained optimal power flow problem[END_REF]. In [START_REF] Shi | Nonsmooth optimization for optimal power flow over transmission networks[END_REF], we have extended the technique of [START_REF] Phan | Nonsmooth optimization for efficient beamforming in cognitive radio multicast transmission[END_REF] for solving the beamforming optimization problems in signal processing to optimize the outer product matrix W , which works very well and is practical for moderate-scale power distribution networks up to n = 300 buses. There is another approach (see e.g. [START_REF] Josz | Moment/sum-of-squares hierarchy for complex polynomial optimization[END_REF] and references therein), which is based on hierarchies of moment-based relaxation for nonconvex quadratic problems to tackle large networks with simple nonconvex constraints. Power transmission networks in modern smart grids are often devised with a few thousand buses [START_REF] Bamberger | Vision and Strategy for Europes Electricity Networks of the Future[END_REF][START_REF] Hallberg | Smart Grids and Networks of the Future -EURELECTRIC Views[END_REF][START_REF] Hashmi | Survey of smart grid concepts, architectures, and technological demonstrations worldwide[END_REF]. Under a such large number n of buses it is impossible to use the single matrix W ∈ C n×n , which involves n(n+1)/2 ≈ O(10 7 ) complex variables. On the other hand, the number of the flow lines for bus connection is relatively moderate so only a small portion of the crossed nonlinear terms V k V * m appears in the nonlinear constraints. The common approach is to use the outer products of overlapped groups of the voltage variables to cover them [START_REF] Molzahn | Implementation of a large-scale optimal power flow solver based on semidefinite programming[END_REF][START_REF] Andersen | Reducedcomplexity semidefinite relaxations of optimal power flow problems[END_REF][START_REF] Madani | Promises of conic relaxation for contigency-constrained optimal power flow problem[END_REF]. All rank-one constraints on these outer products are then dropped for SDR. Obviously, the optimal solution of this SDR usually is not of rank-one and thus does not have any physical meaning. There is no technique to retrieve a feasi-ble rank-one point from the rank-more-than-one solution of SDR. 1 Multiple matrix rank constrained optimization has received a great attention due to its potential application in robust control synthesis [START_REF] Apkarian | A sequential SDP/Gauss-Newton algorithm for rank-constrained LMI problems[END_REF][START_REF] Apkarian | A trust region spectral bundle method for nonconvex eigenvalue optimization[END_REF] but to our best knowledge there is no effective computation so far. The contribution of this paper is two-fold:

• An effective decomposition for large-scale OPF problems, which involves essentially reduced numbers of the rank-one constraints on matrices of moderate size for expressing the network nonlinear constraints;

• A new iterative procedure for rank-one constrained optimization, which is practical for computational solutions of large-scale indefinite quadratic programming. Simulations for the large-scale OPF problems show that it is capable of finding the global optimal solution with the computational tolerance less than 0.01%.

The paper is structured as follows. Section 2 is devoted to the OPF problem formulation and its difficulties. Its computational solution is developed in Section 3. Section 4 provides simulation to show the efficiency of our method.

The conclusions are drawn in Section 5. Notation. j denotes the imaginary unit; M 0 means that M is a Hermitian symmetric positive semi-definite matrix; rank(M ) is the rank of the matrix M ; (•) and (•) denote the real and imaginary parts of a complex quantity; a ≤ b for two complex numbers a and b is componentwise understood, i.e. (a) ≤ (b) and (a) ≤ (b); ., . is the dot product of matrices, while diag{A i } denotes the matrix with diagonal blocks A i and zero off-diagonal blocks; the cardinality of a set L is denoted by |L|.

Optimal power flow problem and challenges

Consider an AC electricity transmission network with a set of n buses N := {1, 2, • • • , n}. The buses are connected through a set of flow lines L ⊆ N × N , i.e. bus m is connected to bus k if and only if (m, k) ∈ L. Accordingly, N (k) := {m ∈ N : (m, k) ∈ L}. The power demanded at bus k ∈ N is S L k = P L k + jQ L k , where P L k and Q L k are the real and reactive power. A subset G ⊆ N of buses is supposed to be connected to generators. Any bus k ∈ N \G is thus not connected to generators.

Other physical parameters are following [START_REF] Hadi | Power system analysis[END_REF][START_REF] Dommel | Optimal power flow solutions[END_REF][START_REF] Zimmerman | MAT-POWER: steady-state operations, planning, and analysis tools for power systems research and education[END_REF]:

• Y = [y km ] (k,m)∈N ×N ∈ C n×n
is the admittance matrix [START_REF] Zimmerman | MAT-POWER: steady-state operations, planning, and analysis tools for power systems research and education[END_REF]. Each y km is the mutual admittance between bus k and bus m, so y km = y mk ∀ (k, m) ∈ L.

• V is the complex voltage vector,

V = [V 1 , V 2 , • • • , V n ] T ∈ C n
, where V k is the complex voltage injected to bus k ∈ N .

1 There is an algorithm of finding a rank-one solution [18, Alg. 1], which however is applicable to simple nonconvex constraints and is not guaranteed to convergence

• I is the complex current vector, I = Y V = [I 1 , I 2 , • • • I n ] T ∈ C n
, where I k is the complex current injected to bus k ∈ N .

• I km is the complex current in the power line (k, m) ∈ L, m∈N (k)

I km = I k = m∈N (k)
y km V m .

• S km = P km +jQ km is the complex power transferred from bus k to bus m, where P km and Q km represent the real and reactive transferred power.

• S G k = P G k + jQ G k is the complex power injected by bus k ∈ G, where P G k and Q G k represent the real and reactive generated power.

For each bus k, it is obvious that

S G k -S L k = (P G k -P L k ) + j(Q G k -Q L k ) = V k I * k = V k m∈N (k) V * m y * km .
Therefore, the real generated power P G k and reactive generated power Q G k at bus k are the following nonconvex quadratic functions of the bus voltage vector variable

V := (V 1 , V 2 , ..., V n ) T ∈ C n : P G k = P L k + ( m∈N (k) V k V * m y * km )
and For illustrative purpose, Figure 1 provides a diagram of WB5-Five Bus Network [START_REF] Bukhsh | Test case archive of optimal power flow (OPF) problems with local optima[END_REF] with N = {1, 2, 3, 4, 5}. It is seen from the bus connection in this Figure that N (1) = {2, 3} because buses 2 and 3 are connected to bus 1, N (2) = {1, 3, 4}, N (3) = {1, 5}, N (4) = {2, 5} and N (5) = {3, 4}. Also G = {1, 5} because buses 1 and 5 are connected to generators.

Q G k = Q L k + ( m∈N (k) V k V * m y * km ).
The objective of OPF is to minimize either the total cost of the generated power defined by [START_REF] Dommel | Optimal power flow solutions[END_REF] 

f (P G ) = k∈G (c k2 P 2 G k + c k1 P G k + c k0 ), (1) 
with given c k2 > 0, c k1 and c k0 and real active generated power P G , or the total transmission losses defined by

F loss (P G ) = k∈G (P G k -P L k ) - k∈N \G P L k . (2) 
In this paper, we consider only the objective function [START_REF] Carpentier | Contribution to the economic dispatch problem[END_REF].

It is quite clear that our approach can be adjusted to solve the objective (2) in a straightforward manner. Write the objective (1) as the following function of the bus voltages V :

f (V ) = k∈G [c k2 (P L k + ( m∈N (k) V k V * m y * km )) 2 +c k1 (P L k + ( m∈N (k) V k V * m y * km )) + c k0 ]. (3) 
Accordingly, the OPF problem is formulated as follows

min V ∈C n f (V ) s.t. (4a) -P L k -jQ L k = m∈N (k) V k V * m y * km , k ∈ N \ G, (4b) 
P min G k ≤ P L k + ( m∈N (k) V k V * m y * km ) ≤ P max G k , k ∈ G (4c) Q min G k ≤ Q L k + ( m∈N (k) V k V * m y * km ) ≤ Q max G k , k ∈ G (4d) V min k ≤ |V k | ≤ V max k , k ∈ N , ( 4e 
)
|S km | = |V k V * m y * km | ≤ S max km , ∀(k, m) ∈ L (4f) |V k -V m | ≤ V max km , (k, m) ∈ L, (4g) |arg(V k ) -arg(V m )| ≤ θ max km , (k, m) ∈ L, (4h) 
where (4b) is the equation of the balance between the demand and supply power at bus k ∈ N \ G, (4c)-(4d) are the power generation bounds with the lower bound

P min G k , Q min G k and upper bound P max G k , Q max G k of
the real power reactive power generations, (4e) are the voltage amplitude bounds, (4f)-(4h) are capacity limitations with the line currents between the connected buses constrained by (4f), while (4g)-(4h) guarantee the voltage balance in terms of their magnitude and phases [START_REF] Zimmerman | MAT-POWER: steady-state operations, planning, and analysis tools for power systems research and education[END_REF]. One can see that (4) is a highly nonlinear optimization subject to nonlinear inequality and equality constraints and thus poses a real challenge for its computation. A common approach is to use the slack variables

W km = V k V * m , k = 1, ..., n; m = 1, ..., n (5) 
and then recast the problem (4) in V ∈ C n to the following

problem in W = [W km ] k,m=1,...,n ∈ C n×n : min W ∈C n×n F (W ) s.t. W 0, (6a) -P L k -jQ L k = m∈N (k) W km y * km , k ∈ N \ G, (6b) 
P min G k ≤ P L k + ( m∈N (k) W km y * km ) ≤ P max G k , (6c) 
k ∈ G, Q min G k ≤ Q L k + ( m∈N (k) W km y * km ) ≤ Q max G k , (6d) 
k ∈ G, (V min k ) 2 ≤ W kk ≤ (V max k ) 2 , k ∈ N , (6e) 
|W km y * km | ≤ S max km , (k, m) ∈ L, (6f) 
W kk + W mm -W km -W mk ≤ (V max km ) 2 , ( 6g 
) (k, m) ∈ L, (W km ) ≤ (W km ) tan θ max km , (k, m) ∈ L, (6h) rank(W ) = 1, (6i) 
where

F (W ) = k∈G [c k2 (P L k + ( m∈N (k) W km y * km )) 2 + c k1 (P L k + ( m∈N (k) W km y * km )) + c k0 ],
which is convex quadratic in W km , while all constraints (6b)-(6h) are linear. All the problem nonconvexity is now concentrated in the single rank-one constraint (8b), which is then dropped for SDR. If the solution of this SDR is of rank-one, then it obviously leads to the global solution of the nonconvex optimization problem [START_REF] Bai | Semidefinite programming for optimal power flow problems[END_REF]. Otherwise even a feasible point of ( 6) is hardly retrieved from the SDR solution. Moreover formulation (6) cannot be practically used for n more than a few thousands in large-scale networks as it involves n(n + 1)/2 variables-a prohibitively large number. The next section will address and resolve all these issues.

Nonsmooth optimization based solution

The first issue is to decompose large-size matrix W in (6) into matrices of smaller size to make the problem tractable even with limited computational power. This is also prompted by the fact that there is only a small portion of the crossed terms V k V * m appearing in the nonlinear constraints (4b)-(4h) so the large-size matrix variable W ∈ C n×n contains many redundant terms V k V * m . The main result of [START_REF] Molzahn | Implementation of a large-scale optimal power flow solver based on semidefinite programming[END_REF][START_REF] Andersen | Reducedcomplexity semidefinite relaxations of optimal power flow problems[END_REF][START_REF] Madani | Promises of conic relaxation for contigency-constrained optimal power flow problem[END_REF] is to decompose the set N := {1, 2, ..., n} of buses into I overlapped subsets N i = {i 1 , ..., i Ni } of buses, called bags, such that i ∈ N (i +1 ), = 1, ..., N i -1 and i Ni ∈ N (i 1 ), for each i = 1, 2, ..., I, i.e. the buses in the same bag are serially connected. The set of bags can be reset to make bags of relatively same size. Define the Hermitian symmetric matrix variables [START_REF] Bai | Semidefinite programming for optimal power flow problems[END_REF] we have the following equivalent reformulation for [START_REF] Bai | Semidefinite programming for optimal power flow problems[END_REF] min

W i = [W i k im ] k,m=1,..,Ni ∈ C Ni×Ni , i = 1, 2, ..., I. (7) By replacing W km = V k V * m in
W =diag{W i } F (W ) s.t. (6b) -(6h), (8a) 
W i 0, i = 1, ..., I, (8b) rank(W i ) = 1, i = 1, ..., I. (8c) 
Reference [START_REF] Molzahn | Implementation of a large-scale optimal power flow solver based on semidefinite programming[END_REF][START_REF] Andersen | Reducedcomplexity semidefinite relaxations of optimal power flow problems[END_REF] just dropped all rank-one constraints in (8c) for SDR without any justification. Reference [START_REF] Madani | Promises of conic relaxation for contigency-constrained optimal power flow problem[END_REF] also dropped all rank-constraints in (8c) but then used a penalized SDR for locating low-rank semi-definite matrices W i in [START_REF] Lavaei | Zero duality gap in optimal power flow problem[END_REF]. Based on these low-rank matrices, [9, Sec. IV] also proposed to find rank-one matrices, which however are not necessarily feasible to [START_REF] Madani | Convex relaxation for optimal power flow problem: Mesh networks[END_REF].

The variable number in [START_REF] Madani | Convex relaxation for optimal power flow problem: Mesh networks[END_REF] is

I i=1 N i (N i + 1)/2.
To keep this number reasonably moderate, it is desired that both I and N i are sufficiently moderate. However, one can see that the above described decomposition [START_REF] Molzahn | Implementation of a large-scale optimal power flow solver based on semidefinite programming[END_REF][START_REF] Andersen | Reducedcomplexity semidefinite relaxations of optimal power flow problems[END_REF][START_REF] Madani | Promises of conic relaxation for contigency-constrained optimal power flow problem[END_REF] leads to a large number I of bags as well as few large size N i that result in many rank-one constraints in (8c), which are much less probably satisfied by solving SDR.

Our first step toward to computation of ( 4) is to develop a new decomposition with many fewer bags involved. Recalling that N (k) is the set of the buses that are connected to bus k, the cardinality |N (k)| is small in largescale networks. We resort N = {1, 2..., n} as

N = {N 1 , ..., N n } such that the cardinality |N (N k )| is in decreased or- der: |N (N 1 )| ≥ |N (N 2 )| ≥ ... ≥ |N (N n )|.
Accordingly, the first bag of buses is defined as N 1 = N (N 1 ). The second bag is defined as

N 2 = {i ∈ N (N 2 ) : {i, N 2 } ⊂ N 1 }.
Note that the crossed term V i V * N2 is already treated in the previous bag N 1 whenever {i, N 2 } ⊂ N 1 so we exclude such bus i in defining bag N 2 . Similarly, for ≥ 3 the -th bag is defined as

N = {i ∈ N (N ) : {i, N } ⊂ N ∀1 ≤ ≤ -1}
to exclude those buses i, whose crossed term V i V * N already is treated in a previous bag. As each |N i | is obviously small, such decomposition is very efficient, leading to a substantial reduction of involved bags in comparison with that used in [START_REF] Molzahn | Implementation of a large-scale optimal power flow solver based on semidefinite programming[END_REF][START_REF] Andersen | Reducedcomplexity semidefinite relaxations of optimal power flow problems[END_REF][START_REF] Madani | Promises of conic relaxation for contigency-constrained optimal power flow problem[END_REF]. Our next step is to tackle the numerous difficult rankone constraints in (8c), not dropping them for SDR as in all the previous works. Firstly we express I rank-one constraints in (8c) by the following single spectral constraint

I i=1 (Trace(W i ) -λ max (W i )) = 0, (9) 
where λ max (W i ) stands for the maximal eigenvalue of W (i) .

Indeed, (8b) implies Trace(W i ) -λ max (W i ) ≥ 0 ∀ i, so (9) means that Trace(W i ) = λ max (W i ), i.e. W i has only one nonzero eigenvalue so it is of rank-one. The nonnegative quantity I i=1 (Trace(W i ) -λ max (W i )) can therefore be used to measure the degree of satisfaction of the rankone constraints [START_REF] Madani | Promises of conic relaxation for contigency-constrained optimal power flow problem[END_REF]. Without squaring, the penalization I i=1 (Trace(W i ) -λ max (W i )) is exact, meaning that (9) can be satisfied by a minimizer of the problem min 8b), [START_REF] Shi | Nonsmooth optimization for optimal power flow over transmission networks[END_REF] with a finite value of µ > 0 (see e.g. [START_REF] Bonnans | Numerical Optimization Theoretical and Practical Aspects[END_REF]Chapter 16]). This is generally considered as a sufficiently nice property to make such exact penalization attractive. For any W i,(κ) feasible for the convex constraints (6b)-(6h), (8b), function λ max (W i ) is nonsmooth and is lower bounded by

W =diag{W i } F µ (W ) := F (W ) + µ I i=1 (Trace(W i ) -λ max (W i )) s.t. (6b) -(6h), (
λ max (W i ) = max ||w||=1 w H W i w ≥ (w i,(κ) max ) H W i w i,(κ) max , (11) 
where w i,(κ) max is the normalized eigenvector corresponding to the eigenvalue λ max (W i,(κ) ), i.e.

λ max (W i,(κ) ) = (w i,(κ) max ) H W i,(κ) w i,(κ) max . (12) 
Accordingly, µλ max

(W i )-µλ max (W i,(κ) ) ≥ µ((w i,(κ) max ) H W i .w i,(κ) max -(w i,(κ) max ) H W i,(κ) w i,(κ) max ) = µ w i,(κ) max (w i,(κ) max ) H , W i - W i,(κ) , so µw i,(κ) max (w i,(κ) max ) H is a subgradient of the function µλ max (W i ) at W i,(κ) . Then µdiag{w i,(κ) max (w i,(κ) max ) H } is a subgradient of the function µ I i=1 λ max (W i ) at diag{W i,(κ) }.
The following SDP provides an upper bound for the nonconvex optimization problem [START_REF] Shi | Nonsmooth optimization for optimal power flow over transmission networks[END_REF] min [START_REF] Phan | Nonsmooth optimization for efficient beamforming in cognitive radio multicast transmission[END_REF]. Suppose that W (κ+1) = diag{W i,(κ+1) } is the optimal solution of SDP [START_REF] Bamberger | Vision and Strategy for Europes Electricity Networks of the Future[END_REF]. Since W (κ) = diag{W i,(κ) } is also feasible to [START_REF] Bamberger | Vision and Strategy for Europes Electricity Networks of the Future[END_REF] with

W =diag{W i } F (κ) (W ) := F (W ) + µ I i=1 (Trace(W i ) -(w i,(κ) max ) H W i w i,(κ) max ) s.t. (6b) -(6h), (8b) (13) because F (κ) (diag{W i }) ≥ F µ (diag{W i }) ∀ W i 0 ac- cording to
F µ (W (κ) ) = F (κ) (W (κ) ), it is true that F µ (W (κ+1) ) ≤ F (κ) (W (κ+1) ) ≤ F (κ) (W (κ) ) = F µ (W (κ) ), so W (κ+1
) is a better feasible point of (10) than W (κ) . Initialized by any feasible point W (0) = diag{W i,(0) } of SDP constraint (8a)-(8b), the sequence {W (κ) } = {diag{W i,(κ) }} with W (κ+1) = diag{W i,(κ+1) } iteratively generated as the optimal solution of SDP ( 13) is a sequence of improved feasible points of the nonconvex optimization problem [START_REF] Shi | Nonsmooth optimization for optimal power flow over transmission networks[END_REF].

Since W (κ) are uniformly bounded, the sequence {W (κ) } has a limit point W = diag{ W i }, which is the optimal solution of the optimization problem min

W =diag{W i } F (W ) + µ I i=1 (Trace(W i ) -( wi max ) H W i wi max ) s.t. (6b) -(6h), (8b), ( 14 
)
where wi max is the normalized eigenvector corresponding to the eigenvalue λ max ( W i ) of W i . Particularly,

F (W ) + µ I i=1 (Trace(W i ) -( wi max ) H W i wi max ) ≥ F (W ) + µ I i=1 (Trace( W i ) -( wi max ) H W i wi max ),
or equivalently, under the definition g(W

) = F (W ) + µ I i=1 Trace(W i ), g(W ) -g( W ) -µdiag{ wi max ( wi max ) H }, W -W ≥ 0 for all feasible points W = diag{W i } in (6b)-(6h), (8b).
As a result, W is the optimal solution of the convex optimization problem min 6b) -(6h), (8b), so it must satisfy the optimality condition ∇g( W ) -µdiag{ wi max ( wi max ) H }, W -W ≥ 0 for all feasible points diag{W i } in (6b)-(6h), (8b). The latter is also the first order necessary optimality condition for [START_REF] Shi | Nonsmooth optimization for optimal power flow over transmission networks[END_REF] because µdiag{ wi max ( wi max ) H } is a subgradient of the function µ I i=1 λ max (W i ) at W . As our simulations will show, W is indeed the global optimal solution of ( 10) and [START_REF] Madani | Convex relaxation for optimal power flow problem: Mesh networks[END_REF].

W =diag{W i } g(W ) -µdiag{ wi max ( wi max ) H }, W -W s.t. (
However, unlike [START_REF] Shi | Nonsmooth optimization for optimal power flow over transmission networks[END_REF] with only a single rank-one constrained matrix, although quantity

I i=1 (Trace(W i,(κ) ) -λ max (W i,(κ) )) ( 15 
)
in ( 10) is iteratively decreased, not all individual quantities

Trace(W i,(κ) ) -λ max (W i,(κ) ) ( 16)

are iteratively decreased so the rank of each matrix W i,(κ) is no longer iteratively reduced to one as expected. Worse, W i,(κ) is rank-one but the rank of W i,(κ+1) in the next iteration may turn to be more than one with

Trace(W i,(κ+1) ) -λ max (W i,(κ+1) ) > Trace(W i,(κ) ) -λ max (W i,(κ) ).
Consequently, it is very difficult to achieve rank-one for all W i,(κ) as desired. It is also impossible to add a "weight" to each term under the sum in the objective in [START_REF] Bamberger | Vision and Strategy for Europes Electricity Networks of the Future[END_REF] to handle the individual convergence of Trace(W i ) -λ max (W i ).

We now develop a systematic way to resolve this issue as follows. For κ = 0, 1, ..., and W (κ) = diag{W (i,(κ)) } define

L (κ) = {i ∈ {1, ..., I} : rank(W i,(κ) ) = 1} (17) 
and generate W (κ+1) = diag{W i,(κ+1) } as the optimal solution of the following SDP instead of SDP [START_REF] Bamberger | Vision and Strategy for Europes Electricity Networks of the Future[END_REF] min

W =diag{W i } F (W ) + µ I i=1 [Trace(W i ) -(w i,(κ) max ) H W i w i,(κ) max ] s.t. (6b) -(6h), (8b), (18a) Trace(W i ) -(w i,(κ) max ) H W i w i,(κ) max ≤ tol , i ∈ L (κ) .( 18b 
)
Note that Trace(W i ) ≥ w H W w for all ||w|| = 1 and it is obvious that rank(W i ) = 1 if and only if Trace(W i )w H max W i w max = 0 for some normalized w max . Therefore, the constraint (18b) for some tolerance tol is introduced to warrant the rank-one of all W i,(κ+1) , i ∈ L (κ) . As a result L (κ) ⊂ L (κ+1) and L (κ) → {1, ..., I} is expected to have all W i,(κ) of rank-one. Unlike (13), the iterations (18) leads to achieving rank-one of all W i while the objective function F µ is still decreased.

In summary, we propose the following Large-Scale Nonsmooth Optimization Algorithm (Large-scale NOA) for the multiple rank-one constrained optimization problem [START_REF] Shi | Nonsmooth optimization for optimal power flow over transmission networks[END_REF].

Initialization. Solve SDP min W =diag{W i } F (W ) s.t. (6b) -(6h), (8b) (19) 
to generate W (0) := diag{W i,(0) }. If rank(W i,(0) ) ≡ 1 stop: W (0) is the global solution of the nonconvex optimization problem [START_REF] Madani | Convex relaxation for optimal power flow problem: Mesh networks[END_REF]. Otherwise set κ = 0 and define L (κ) by ( 17). κ-th iteration. For κ = 0, 1, .., solve [START_REF] Molzahn | A Laplacian-based approach for finding near globally optimal solutions to OPF problems[END_REF] to generate W (κ+1) := diag{W i,(κ+1) }. Reset κ = κ + 1 and define L (κ) by [START_REF] Andersen | Reducedcomplexity semidefinite relaxations of optimal power flow problems[END_REF]. Stop whenever L (κ) = {1, ..., I}. Otherwise go to the next iteration.

Simulation results

The computation facilities for our implementation are Processor Intel(R) Core i5-3470 CPU @3.20GHz, Matlab version R2013b and CVX with SDPT3. We set the tolerances = tol = 10 -5 and the penalty parameter µ = 10 6 which makes the penalty term µ I i=1 (Trace(W (i,(0)) )λ max (W i,(0) )) at similar magnitude with the objective F (W (0) ). The data source for all examples is Matpower version 5.1 [START_REF] Zimmerman | MAT-POWER: steady-state operations, planning, and analysis tools for power systems research and education[END_REF]. All examples were considered in [START_REF] Molzahn | Implementation of a large-scale optimal power flow solver based on semidefinite programming[END_REF][START_REF] Andersen | Reducedcomplexity semidefinite relaxations of optimal power flow problems[END_REF][START_REF] Madani | Promises of conic relaxation for contigency-constrained optimal power flow problem[END_REF] by SDR only. We recall that T is the number of matrix variables W i in the OPF problem [START_REF] Madani | Convex relaxation for optimal power flow problem: Mesh networks[END_REF] and L (κ) is defined by [START_REF] Andersen | Reducedcomplexity semidefinite relaxations of optimal power flow problems[END_REF] is the set of rank-one matrices W i found after κ-th iteration. The capability of our large-scale NOA in locating the global optimal solution of the OPF problems is demonstrated by showing that the global optimality tolerance (GOT) of its found solution defined as the found value-lower bound lower bound is almost zero.

The numerical examples are presented as follows.

Polish-2383wp system

There are n = 2383 buses, 327 generators and 2896 transmission lines, leading to 2056 nonlinear constraints in (4b). Initialization. A lower bound 1.8490×10 6 of ( 8) is found by solving SDP [START_REF] Apkarian | A sequential SDP/Gauss-Newton algorithm for rank-constrained LMI problems[END_REF]. |L (0) | = 1210 and there are 32 matrices W i,(0) of rank-more-than-one. Their largest size (smallest size, resp.) is 10 × 10 (2 × 2, resp.). Stage 1. |L (10) | = 1234 is achieved. There are 8 matrices W i, (10) of rank-more-than-one. Their largest size (smallest size, resp.) is 10 × 10 and (3 × 3, resp.). Stage 2. |L (19) | = 1237 is achieved. There are 5 matrices W i, (20) of rank-more-than-one. Their largest size (smallest size, resp.) is 9 × 9 (3 × 3, resp.). Stage 3. |L (25) | = I = 1242 is achieved. The found value of the objective is 1.8408 × 10 6 with GOT 4.3267e -04.

Polish-2736sp system

There are n = 2736 buses, 420 generators and 3504 transmission lines, which lead to 2316 nonlinear constraints in (4b). Initialization. A lower bound 1.3041 × 10 6 of ( 8) is obtained by solving SDP [START_REF] Apkarian | A sequential SDP/Gauss-Newton algorithm for rank-constrained LMI problems[END_REF]. |L (0) | = 1534 and there are 4 matrices W i,(0) of rank-more-than-one. Their largest size (smallest size, resp.) is 6 × 6 (4 × 4, resp.). Stage 1. |L (9) | = I = 1538 is achieved. The found value of the objective is 1.3042 × 10 6 with GOT 7.6681e -05.

Polish-2737sop system

There are n = 2737 buses, 399 generators and 3506 transmission lines, which lead to 2338 nonlinear constraints in (4b). Initialization. A lower bound 7.7571 × 10 5 of ( 8) is obtained by solving SDP [START_REF] Apkarian | A sequential SDP/Gauss-Newton algorithm for rank-constrained LMI problems[END_REF]. |L (0) | = 1532 and there are 6 matrices W i,(0) of rank-more-than-one. Their largest size (smallest size, resp.) is 6 × 6 (3 × 3, resp.). Stage 1. |L (2) | = I = 1538 is achieved. The found value of the objective is 7.7572 × 10 5 with GOT 1.2891e -05.

Polish-2746wop system

There are n = 2746 buses, 514 generators and 3514 transmission lines, which lead to 2232 nonlinear constraints in (4b). Initialization. A lower bound 1.2039 × 10 6 of ( 8) is obtained by solving SDP [START_REF] Apkarian | A sequential SDP/Gauss-Newton algorithm for rank-constrained LMI problems[END_REF]. |L (0) | = 1538 and there are 8 matrices W i,(0) of rank-more-than-one. Their largest size (smallest size, resp.) is 6 × 6 (3 × 3, resp.). Stage 1. |L (2) | = I = 1546 is achieved. The found value of the objective is 1.2040 × 10 6 with GOT 8.3063e -05.

Polish-2746wp system

There are n = 2746 buses, 520 generators and 3514 transmission lines, which lead to 2226 nonlinear constraints in (4b). Initialization. A lower bound 1.626590 × 10 6 of ( 8) is obtained by solving SDP [START_REF] Apkarian | A sequential SDP/Gauss-Newton algorithm for rank-constrained LMI problems[END_REF]. |L (0) | = 1545 and there are 2 matrices W i,(0) of rank-more-than-one. Their size is 4 × 4. Stage 1. |L (1) | = I = 1547 is achieved. The found value of the objective is 1.626591 × 10 6 with GOT 6.1478e -07.

Polish-3012wp system

There are n = 3012 buses, 502 generators and 3572 transmission lines, which lead to 2510 nonlinear constraints in (4b). Initialization. A lower bound 2.5717 × 10 6 of ( 8) is obtained by solving SDP [START_REF] Apkarian | A sequential SDP/Gauss-Newton algorithm for rank-constrained LMI problems[END_REF]. |L (0) | = 1682 and there are 7 matrices W i,(0) of rank-more-than-one. Their largest size (smallest size, resp.) is 7 × 7 (2 × 2, resp.). Stage 1. |L (4) | = I = 1689 is achieved. The found value of the objective is 2.5727 × 10 6 with GOT 3.8885e -04.

Polish-3120sp system

There are n = 3120 buses, 505 generators and 3693 transmission lines, which lead to 2615 nonlinear constraints in (4b). Initialization. A lower bound 2.1314 × 10 6 of ( 8) is obtained by solving SDP [START_REF] Apkarian | A sequential SDP/Gauss-Newton algorithm for rank-constrained LMI problems[END_REF]. |L (0) | = 1749 and there are 8 matrices W i,(0) of rank-more-than-one. Their largest size (smallest size, resp.) is 8 × 8 (2 × 2, resp.). Stage 1. |L (9) | = I = 1757 is achieved. The found value of the objective is 2.1391 × 10 6 with GOT 0.0036.

Numerical summary

One can observe that GOT of the solutions computed by the large-scale NOA is very small, proving its capability to provide the global solution of [START_REF] Madani | Convex relaxation for optimal power flow problem: Mesh networks[END_REF]. Table 1 and Table 2 summarize the main points in our simulation. The second and third columns of Table 1 are the number I of bags in (7) by our decomposition and by that in [START_REF] Madani | Promises of conic relaxation for contigency-constrained optimal power flow problem[END_REF], while the fourth and fifth columns give the maximum size N i in [START_REF] Lavaei | Zero duality gap in optimal power flow problem[END_REF]. One can see that both I and the maximum N i by our decomposition are substantially smaller than their counterparts by [START_REF] Madani | Promises of conic relaxation for contigency-constrained optimal power flow problem[END_REF]. This leads to far smaller numbers of variables in [START_REF] Madani | Convex relaxation for optimal power flow problem: Mesh networks[END_REF], which are provided in the seventh and eighth columns. The number n(n + 1)/2 of complex variables in ( 6) is also provided in the sixth column to contrast to the number of complex variables in [START_REF] Madani | Convex relaxation for optimal power flow problem: Mesh networks[END_REF] in the seventh column. Furthermore, the second column of Table 2 provides the best values of (4) found by our large-scale NOA, which are far smaller than ones in the third and fourth columns found by [START_REF] Madani | Promises of conic relaxation for contigency-constrained optimal power flow problem[END_REF] and Matpower6.0 [START_REF] Zimmerman | MAT-POWER: steady-state operations, planning, and analysis tools for power systems research and education[END_REF] (using an interior point method), respectively. In short, our computation approach to the OPF problem (8) outperforms other existing approaches in terms of computational efficiency and performance.

Conclusion

The OPF problems over power transmission network are large-scale optimization problems, which involve a large number of quadratic equality and indefinite quadratic inequality constraints and thus are difficult computationally. We have developed a large-scale nonsmooth optimization algorithm to compute their optimal solutions, which is efficient and practical for large-scale power transmission networks of a few thousands of buses. Applications of the developed large-scale NOA to the OPF problems over three-phase power transmission networks are currently under investigation.

Figure 1 :

 1 Figure1: WB5-Five Bus Network[START_REF] Bukhsh | Test case archive of optimal power flow (OPF) problems with local optima[END_REF] 

Table 1 :

 1 Comparison of bags number I, largest bag size M i and number of variables

	System	I	I by [9] Max. N i	Max. N i by [9] Var. # in (6)	Var. # in (8)	Var. # in (8) by [9]	Found value	Found by [9]
	Polish-2383wp	1242	2383	10	23	2,840,536	23,199	89,893	1.8408 × 10 6	1.8742 × 10 6
	Polish-2736sp	1538	2736	10	23	3,744,216	27,298	104,388	1.3042 × 10 6	1.3082 × 10 6
	Polish-2737sop	1538	2737	10	23	3,746,953	27,034	103,720	7.7572 × 10 5	7.7766 × 10 5
	Polish-2746wop 1546	2746	10	23	3,771,631	29,024	108,950	1.2040 × 10 6	1.2085 × 10 6
	Polish-2746wp	1547	2746	10	24	3,771,631	28,257	107,148	1.6266 × 10 6	1.6324 × 10 6
	Polish-3012wp	1689	3012	10	24	4,537,578	30,996	116,799	2.5727 × 10 6	2.6089 × 10 6
	Polish-3120sp	1757	3120	10	24	4,868,760	32,637	121,869	2.1391 × 10 6	2.1608 × 10 6

Table 2 :

 2 Performance comparison 

	System	Found value	Found by [9]	Found by [23]
	Polish-2383wp	1.8408 × 10 6	1.8742 × 10 6	1.8685 × 10 6
	Polish-2736sp	1.3042 × 10 6	1.3082 × 10 6	1.3078 × 10 6
	Polish-2737sop	7.7572 × 10 5	7.7766 × 10 5	7.7763 × 10 5
	Polish-2746wop 1.2040 × 10 6	1.2085 × 10 6	1.2083 × 10 5
	Polish-2746wp	1.6266 × 10 6	1.6324 × 10 6	1.6317 × 10 6
	Polish-3012wp	2.5727 × 10 6	2.6089 × 10 6	2.5917 × 10 6
	Polish-3120sp	2.1391 × 10 6	2.1608 × 10 6	2.1427 × 10 6
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