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Abstract

In this paper, we propose and study a risk model with two types of claims in

which the insurer may invest into a prevention plan which decreases the intensity

of large claims without impacting the small claims. We identify a necessary and

sufficient condition for insurers to use prevention if there is no surplus. If, in

addition, the severity of large claims dominates that of small claims by the

harmonic mean residual life (HMRL) order, insurers invest more in prevention

in the presence of a surplus.

Finally, we characterize the asymptotic optimal prevention strategy when the

initial surplus tends to infinity in the two main cases where both claim types
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are light-tailed and where one of them is light-tailed and the other one is heavy-

tailed.
Key words: Ruin theory, Prevention, Optimal prevention strategy, Insurance.

1. Introduction

Due to their corporate social responsibility, insurance companies tend to be

more and more interested in prevention. The South African insurer Discovery

has developed the pioneer prevention program Vitality in association with many

insurance companies all around the world, such as Generali, John Hancock

or Prudential. Based on wearables, these programs aim to offer a premium

reduction as an award of an healthy way of life. Similarly, most health companies

have launched their own plans, which can take several forms: back-to-work

schemes, osteopathy sessions, sports licenses... Some of them, such as the sports

related ones, target the global health of policyholders, whereas others, such has

psychotherapy sessions or screening campaigns, target more specific and heaviest

risks. Since most insurance companies are exposed to multiple risks (e.g. an

health insurer is exposed to many diseases), it is therefore interesting to study

optimal prevention strategies in presence of two types of claims: large claims

for which prevention has an impact and small claims for which the effect of

prevention is limited or does not exist. An example of this situation would be

the reimbursement of psychotherapy sessions, effectively reducing the risk of

relapse (and thus the global frequency) of psychiatric disease, but only affecting

marginally the risk of other diseases. Outside of the health sector, one can also

think of smoke detectors, only preventing the major risk of fire.

The impact of prevention (sometimes combined with self-insurance, that can be

assimilated to reinsurance in our framework) has been investigated in economics

by Ehrlich and Becker (1972), Dionne and Eeckhoudt (1985) or Courbage (2001)

among others. In ruin theory, a first risk model with prevention has been

recently proposed by Gauchon et al. (2020), with a unique set of claims for
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which prevention has some effect. The authors consider an insurance company

with initial surplus U(0) = u. This company receives premiums at a rate c

per unit of time and invests a fixed amount p in prevention per unit of time.

The aggregate claim amount up to time t is given by a compound Poisson

process S(t) =
∑N(t)
i=1 Xi, where N is a Poisson process of arrival intensity λ(p)

and the (Xi)i∈N∗ are i.i.d. random variables, independent from N , and with

cumulative distribution function FX , such that E(X) = µ < ∞. Gauchon

et al. (2020) assume that λ(.) is a decreasing, strictly convex, positive, and C2

function defined on [0, c]. They determine the optimal prevention investment for

different risk indicators, and in particular for the ruin probability. This optimal

prevention strategy does not depend on the initial surplus level.

Most economic models of prevention built on Ehrlich and Becker (1972) involve

a single source of risk and a single type of prevention activity. Exceptions

include Courbage and Rey (2012) who consider an independent background risk,

Hofmann and Peter (2015) who study the interplay of early and late prevention,

and Courbage et al. (2017) who investigate prevention of correlated risks. When

it comes to prevention by insurers, Gauchon et al. (2020) focus on a single source

of risk. We instead distinguish between large claims and small claims and assume

that prevention reduces only the intensity of large claims. We show that in this

case, the optimal prevention investment does depend on the initial surplus level.

One could think that it would be optimal to do less prevention if one has a high

initial surplus level. In the present paper, we show that it is the opposite: when

the initial surplus is large enough, under reasonable conditions, optimising the

ruin probability leads to implement more prevention than without an initial

surplus.

Our main contribution is threefold. First, we propose and analyse a first risk

model with two types of claims, where prevention has some impact on the large

claims only. Second, we show that prevention is advantageous when claim sever-

ities of small claims and large claims are ordered in the sense of the so-called

Harmonic Mean Residual Lifetime (HMRL) order, and that the optimal preven-
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tion effort is higher with a positive initial surplus than when the initial surplus is

zero. Third, we characterize the asymptotic optimal prevention strategy when

the initial surplus tends to infinity in the two main cases where both claim types

are light-tailed and where one of them is light-tailed and the other one is heavy-

tailed. In addition, on the occasion of a natural example of the second case, we

provide a necessary and sufficient condition to order a translated Exponential

random variable and a Pareto one in the HMRL order.

The paper is organized as follows. In Section 2, we describe our model with two

types of claims. In Section 3, we recall the definition of the HMRL order and

we notably provide a necessary and sufficient condition to order a translated

Exponential random variable and a Pareto one in the HMRL order. In Section

4, we show that, under some HMRL ordering condition, the optimal prevention

level is positive and higher than when the initial surplus is zero. In Section 5,

we study the asymptotic optimal prevention strategy when both claim types are

light tailed. Section 6 is devoted to the case where the second type of claims is

heavy tailed.

2. The model

Let us consider an insurer facing two types of claims, namely small claims and

large claims. The insurer invests an amount p ∈ [0, c] in prevention3, in order to

prevent large claims from happening. In such a case, the number of claims N(t)

up to time t can be written as N1(t) +N2(t), where N1 (resp. N2) is a Poisson

process of arrival intensity λ1 (resp. λ2(p)) that represents the number of small

claims (resp. large claims), such that λ(p) = λ1 + λ2(p). The function λ2(p) is

assumed to be a decreasing, strictly convex, positive, and C2 function defined

on [0, c]. These constraints on λ2(.) are similar to the ones imposed on λ(.) in

Gauchon et al. (2020) and we refer the reader to this latter paper for a discussion

3For the following, prevention refers to self-protection, in the sense of Ehrlich and Becker

(1972).
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about these assumptions. The Poisson processes N1 and N2 are assumed to be

independent. Hence, the aggregate claim amount S(t) =
∑N(t)
k=1 Xk up to time

t can be decomposed as

S(t) =
N(t)∑
k=1

Xk =
N1(t)∑
i=1

X
(1)
i +

N2(t)∑
j=1

X
(2)
j ,

where the X(1)
i s (resp. X

(2)
j s) are the claim severities for small claims (resp.

large claims) and are assumed to be independent and identically distributed as

X(1) (resp. X(2)) with mean µ1 (resp. µ2) such that µ1 ≤ µ2. Furthermore,

the claim severities X(1)
i and X

(2)
j are also supposed to be independent and

independent of the number of claims N1(t) and N2(t). Such a model amounts

to consider the claim severity Xk with cumulative distribution function

FX(x) = λ1FX(1)(x) + λ2(p)FX(2)(x)
λ(p) , x ≥ 0, (1)

where FX(1)(.) and FX(2)(.) are the cumulative distribution functions of X(1)

and X(2), respectively.

In the following, we consider an insurer with a surplus process given by

U(t, p) = u+ (c− p)t−
N(t)∑
k=1

Xk

= u+ (c− p)t−
N1(t)∑
i=1

X
(1)
i −

N2(t)∑
j=1

X
(2)
j . (2)

In order to avoid ruin with certainty, we define plim ∈ [0, c] as the solution of

λ1µ1 + λ2(plim)µ2

c− plim
= 1 (3)

and we require p < plim. Since functions λ2, h : p 7→ λ1µ1+λ2(p)µ2
c−p and deriva-

tives of h follow similar properties as the ones in Proposition 1 of Gauchon

et al. (2020), it is possible to show that the function h is either increasing or

first decreasing and then increasing with p. Thus, the intermediate value the-

orem ensures the existence and the uniqueness of plim when λ1µ1+λ2(0)µ2
c < 1,

which is assumed in the rest of the paper.
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Remark: Since the function h is either increasing or first decreasing and then

increasing with p, we have ∂h
∂p (plim) > 0. Thus, the implicit function theorem

gives easily comparative statics of plim as a function of exogenous parameters :
∂plim
∂λ1

< 0, ∂plim∂µ1
< 0, ∂plim∂µ2

< 0 and ∂plim
∂c > 0.

In this model, prevention does not only act on the number of claims but also

on the distribution FX of the claim severities Xk. In the following, we denote

by X(p) the random variable X to make explicit the link with the prevention

amount p.

In this paper, we are interested in the prevention amount p∗(u) that minimizes

the ruin probability

ψ(u, p) = P (∃t > 0 such that U(t, p) < 0) .

It is known that ψ(u, p) coincides with the tail function of a compound geometric

distribution, namely

ψ(u, p) = P

 M∑
j=1

Dj > u

 , (4)

where M follows the geometric distribution with success probability ϕ(0, p) =

1− ψ(0, p). The random variables D1, D2, . . . are called ladder heights and are

independent and identically distributed as the random variable D, also denoted

D(p) in the following to make explicit the dependence with respect to p. In our

compound Poisson model, the cumulative distribution function of D(p) is given

by the integrated tail distribution

FD(p)(u) =
∫ u

0

1− FX(x)
E(X) dx, u > 0. (5)

From (4), we get the Pollaczeck Khinchin formula

ϕ(u, p) = ϕ(0, p)
∞∑
n=0

(1− ϕ(0, p))nF ∗nD(p)(u), (6)

where F ∗nD(p) is the n-fold convolution of FD(p), and ϕ(0, p) = 1− λ1µ1+λ2(p)µ2
c−p .

This formula guarantees the existence of the derivative ∂ϕ(u,p)
∂p when ∂FD(p)(u)

∂p

exists.
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Denoting by MX(.) the moment generating function of X, we can define for our

model the adjustment coefficient κ(p), which verifies

λ(p) + (c− p)κ(p) = λ(p)MX(κ(p)). (7)

It always exists when

MX(s) <∞ for all s ∈ R (8)

or when there exists s∗ > 0 such that

MX(s) <∞ for all s < s∗ and MX(s) =∞ for all s ≥ s∗. (9)

We refer the reader to Asmussen and Albrecher (2010) for more details.

Models with multiple risks have been introduced by Cramér (1955) and have

been used for example by Dickson and Gray (1984), Bowers et al. (1984) or

Gerber et al. (1987).

3. Preliminaries

Before studying the optimal prevention amount p∗(u), we state the Harmonic

Mean Residual Life (HMRL) order (more details can be found in Shaked and

Shanthikumar (2007)). Also, we prove two results that will be useful in the

subsequent analysis.

Definition 1. Given two non-negative random variables X(1) and X(2) with

respective cumulative distribution functions FX(1) and FX(2) , X(1) is said to

be smaller than X(2) in the harmonic mean residual life order (denoted as

X(1) �hmrl X
(2)) when∫∞
t
FX(1)(u) du
E(X(1)) ≤

∫∞
t
FX(2)(u) du
E(X(2)) for all t ≥ 0, (10)

where FX(1) = 1− FX(1) and FX(2) = 1− FX(2) . The inequality in (10) can be

equivalently written as

E((X(1) − t)+)
E(X(1)) ≤ E((X(2) − t)+)

E(X(2)) for all t ≥ 0. (11)
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The mean residual life of a random variable X at t is defined as m(t) = E(X −

t|X > t) for t < t∗ and m(t) = 0 otherwise, where t∗ = sup{t : 1− FX(t) > 0}.

Let X(1) and X(2) be two non-negative random variables. Then, denoting by

m(1) (resp. m(2)) the mean residual life of X(1) (resp. X(2)), it can be shown

that X(1) �hmrl X
(2) if and only if the harmonic averages of m(1) and m(2)

satisfy [
1
x

∫ x

0

1
m(1)(u)du

]
≤
[

1
x

∫ x

0

1
m(2)(u)du

]
for all x > 0. Therefore, ordering two random variables by the HMRL order

is equivalent to ordering the harmonic averages of their corresponding mean

residual life.

Below we give some examples taken from Heilmann and Schröter (1991) where

X(1) �hmrl X
(2) holds true:

• If X(1) is Uniformly distributed over the interval [a, b] and X(2) is Uni-

formly distributed over the interval (a′, b′), then X(1) �hmrl X
(2) if and

only if a+ b ≤ a′ + b′ and b ≤ b′.

• If X(1) is Exponentially distributed with mean 1/a and X(2) is Expo-

nentially distributed with mean 1/a′ then X(1) �hmrl X
(2) if and only if

a ≥ a′.

• If X(1) is Pareto distributed with parameters a and b, that is, X(1) has

distribution function 1 − (ax )b, x > a, and if X(2) is Pareto distributed

with parameters a′ and b′ with min(b, b′) > 1, then X(1) �hmrl X
(2) if and

only if b−1
b′−1 ≥ max( aa′ , 1)

We will now order two random variables whose distributions belong to different

classes.

Proposition 2. If X(1) follows a translated Exponential distribution over the

interval [a,∞] with mean a+ 1
λ and X(2) is Pareto distributed with parameters

a and b, then X(1) �hmrl X
(2) if and only if b ≤ λa+ 1.
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Proof. Since

FX(1)(x) = 1− e−λ(x−a), x ≥ a (12)

and

FX(2)(x) = 1−
(a
x

)b
x ≥ a, (13)

inequality (10) is equivalent to

eλ(a−t)

λa+ 1 ≤
(a
t

)b−1 1
b
, for all t ≥ a. (14)

In particular, inequality (14) must hold for t = a. A necessary condition for

X(1) �hmrl X
(2) is thus given by

1
λa+ 1 ≤

1
b
. (15)

Let us now show that (15) is actually a sufficient condition for X(1) �hmrl X
(2).

Inequality 14 can be rewritten as

log

(
b

λa+ 1

)
+ λ(a− t)− (b− 1) [log(a)− log(t)] ≤ 0 for all t ≥ a. (16)

Considering t > a and introducing the function g(t) = log( b
λa+1 ) + λ(a − t) −

(b− 1)[log(a)− log(t)], we easily see that g′(t) < 0 if and only if b−1
λ < t, which

is always true since (15) yields b−1
λ ≤ a < t. Therefore, g′(t) < 0 for all t > a.

Now, as (15) implies that g(a) < 0, we finally get g(t) < 0 for all t ≥ a.

Notice that if b > 1, E(X(1)) ≤ E(X(2)) if and only if 1 + λa ≤ b aλb−1 . Indeed,

multiplying both sides of the last inequality by b−1 shows that X(1) �hmrl X
(2)

is equivalent to E(X(1)) ≤ E(X(2)).

The next proposition will be useful to prove Proposition 5. In particular, it is

based on the observation that, in the context of ruin theory, if a claim severity

X(1) is smaller than another claim severity X(2) in the sense of the HMRL

order, then it means that the ladder height associated to X(1) is smaller than

the ladder height associated to X(2) in the sense of the usual stochastic order.

Claim severity X(1) is smaller than claim severity X(2) in the usual stochastic

order, denoted X(1) �st X
(2), when FX(1)(t) ≥ FX(2)(t) for all t.
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Proposition 3. Let p1 ≤ p2. We have X(1) �hmrl X
(2) if and only if D(p2) �st

D(p1).

Proof. We know from Theorem 2.B.2. in Shaked and Shanthikumar (2007) that

X(p2) �hmrl X(p1)⇔ D(p2) �st D(p1). (17)

Moreover, we remark that
∫∞
t

FX(p2)(u) du
E(X(p2)) ≤

∫∞
t

FX(p1)(u) du
E(X(p1)) is equivalent to

(
λ1µ1

λ1µ1 + λ2(p2)µ2
− λ1µ1

λ1µ1 + λ2(p1)µ2

)(∫∞
t
FX(2)(u) du
µ2

−
∫∞
t
FX(1)(u) du
µ1

)
≥ 0,

(18)

which, in turn, is equivalent to the left-hand side of Equation (17).

4. Optimal prevention amount p∗(u)

Let us first consider an insurer with no initial surplus. We then have the fol-

lowing result.

Proposition 4. The optimal prevention amount p∗(0) is positive if and only if

− λ′2(0) > λ1µ1 + λ2(0)µ2

µ2c
. (19)

In this case, p∗(0) satisfies

− λ′2(p∗(0)) = λ1µ1 + λ2(p∗(0))µ2

µ2(c− p∗(0)) . (20)

Proof. Starting from

ϕ(0, p) = 1− µ1λ1 + µ2λ2(p)
c− p

, (21)

we get
∂ϕ(0, p)
∂p

= − λ1µ1

(c− p)2 −
λ2(p)µ2

(c− p)2 −
λ′2(p)µ2

c− p
(22)

and
∂2ϕ(u, p)
∂p2 = 2

c− p
∂ϕ(0, p)
∂p

− λ′′2(p)µ2

c− p
. (23)
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Now, similarly to the proof of Proposition 1 in Gauchon et al. (2020), it suffices

to see that Equations (22) and (23) enable us to prove that if ∂ϕ(0,0)
∂p ≤ 0, then

∂ϕ(0,p)
∂p < 0 and ∂2ϕ(0,p)

∂p2 < 0 for all p > 0.

Hence, if Condition (19) is fulfilled, an insurer with no initial surplus can de-

crease its risk by investing a part of its premiums in prevention.

Condition (19) is more easily met than Condition (10) in Gauchon et al. (2020),

which suggests that, in some cases, insurers will optimally spend money in pre-

vention by targeting only large claims while they should not make any expenses

for prevention if they would target both small and large claims.

Remark: The implicit function theorem allows us to write p∗(0) as a function

of c, λ1, µ1 and µ2, so that one can study the sensitivity of p∗(0) with respect

to each of these parameters. For instance, rewriting Equation (20) as

p∗(0) = c+ λ1µ1 + λ2(p∗(0))µ2

λ′2(p∗(0))µ2
, (24)

we get
∂p∗(0)
∂µ1

= λ1λ
′
2(p∗(0))µ2

[λ1µ1 + λ2(p∗(0))µ2]λ′′2(p∗(0))µ2
. (25)

Since λ2 is a decreasing convex function, we have ∂p∗(0)
∂µ1

≤ 0. Similarly, one can

show that ∂p∗(0)
∂λ1

≤ 0, ∂p
∗(0)
∂c ≥ 0 and ∂p∗(0)

∂µ2
≥ 0. Thus, the higher the average

severity of large claims (resp. small claims), the more (resp. the less) insurers

should invest in prevention. It shows that p∗(0) is influenced by the relative

difference in average severity between small and large claims.

Next to Condition (19), the following result gives an additional sufficient con-

dition ensuring that an insurer with a positive initial surplus can also decrease

its risk through prevention.

Proposition 5. If Condition (19) is verified and if X(1) �hmrl X
(2), then p∗(u) >

0 for all u ≥ 0.
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Proof. By definition, ϕ(u, plim) = 0 and p < plim ensures that ϕ(u, 0) > 0. As

Condition (19) holds true, we know from the boundedness theorem that ϕ(u, .)

reaches a maximum for one p ∈ [0, plim].

Now, it suffices to prove that ∂ϕ(0,p)
∂p > 0 implies ∂ϕ(u,p)

∂p > 0 and the proof will

be completed. From the Pollaczeck Khinchin formula (6), we get

∂ϕ(u, p)
∂p

= ∂ϕ(0, p)
∂p

∞∑
n=0

(1− ϕ(0, p))nF ∗nD(p)(u)
(

1− ϕ(0, p)
1− ϕ(0, p)n

)

+ϕ(0, p)
∞∑
n=0

(1− ϕ(0, p))n
∂F ∗nD(p)(u)

∂p
. (26)

First, we show that
∞∑
n=0

(1− ϕ(0, p))nF ∗nD(p)(u)
(

1− ϕ(0, p)
1− ϕ(0, p)n

)
≥ 0. (27)

Let vn = (1− ϕ(0, p))n
(

1− ϕ(0,p)
1−ϕ(0,p)n

)
, n ∈ N. We get

∞∑
n=0

vn =
∞∑
n=0

(1− ϕ(0, p))n
(

1 + n− n

1− ϕ(0, p)

)

=
∞∑
n=0

(1− ϕ(0, p))n(1 + n)−
∞∑
n=0

(1− ϕ(0, p))n−1n

= 0.

Also, for all n ∈ N, we have

vn+1 − vn = (1− ϕ(0, p))n−1ϕ(0, p) [ϕ(0, p)(n+ 2)− 2] . (28)

Thus, the sequence {vn, n ∈ N} is first decreasing and then increasing. Since
∞∑
n=0

vn = 0, there exists K ∈ N∗ such that vn ≥ 0 for n ≤ K and vn ≤ 0 for

n > K. Moreover, we notice that F ∗n+1
D(p) (u) ≤ F ∗nD(p)(u) ≤ 1 for all n ∈ N∗.

Hence,
∞∑
n=0

vnF
∗n
D(p)(u) =

K∑
n=0

vnF
∗n
D(p)(u) +

∞∑
n=K+1

vnF
∗n
D(p)(u)

≥
K∑
n=0

vnF
∗K
D(p)(u) +

∞∑
n=K+1

vnF
∗K
D(p)(u)

≥ 0,
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so that
∞∑
n=0

(1− ϕ(0, p))nF ∗nD(p)(u)
(

1− ϕ(0, p)
1− ϕ(0, p)n

)
≥ 0. (29)

Secondly, we find

ϕ(0, p)
∞∑
n=0

(1− ϕ(0, p))n
∂F ∗nD(p)(u)

∂p
≥ 0. (30)

Indeed, as the usual stochastic order is closed under convolution, Proposition 3

directly leads to ∂F∗nD(p)(u)
∂p ≥ 0, which completes the proof.

Thus, in case (19) and X(1) �hmrl X
(2) hold true, we know that p∗(u) > 0 for

all u. We learn from the next proposition that the minimum of p∗(u) is reached

in u = 0. Notice that contrary to Gauchon et al. (2020), one observes that p∗(u)

is not constant anymore in the present context.

Proposition 6. If (19) holds true and if we have X(1) �hmrl X
(2), then p∗(0) <

p∗(u) for all u > 0.

Proof. From Equation (26) and inequalities (29) and (30), one sees that ∂ϕ(0,p∗(u))
∂p <

0 is a necessary condition for ∂ϕ(u,p∗(u))
∂p = 0. Now, Equations (22) and (23) im-

ply that ϕ(0, .) is increasing on [0, p∗(0)] and decreasing on [p∗(0), plim]. Thus,
∂ϕ(0,p∗(u))

∂p < 0 is only possible when p∗(u) > p∗(0).

Propositions 7 and 8 will show that the asymptotic values for p∗(.) are indeed

larger than p∗(0). This suggests that p∗(.) is increasing with u but we are not

in a position to prove this claim.

An explanation of Proposition 6 could be that, when the reserves are huge, one

knows that ruin is most likely to occur due to an extreme claim so that small

claims play a less important role. However, when the initial surplus is zero, the

insurer must escape the dangerous zone as fast as possible. Because this time

small claims matter, the insurer cannot afford to invest in prevention as much as

when the surplus is large. This is in line with the remark following Proposition

4: when u = 0, the larger is the relative importance of large claims compared

to small claims, the more the insurer should spend money in prevention.
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5. Optimal prevention amount when the adjustment coefficient exists for all p

In this section, we consider claim severities X(1) and X(2) such that the adjust-

ment coefficient κ(p) exists for all p ∈ [0, c]. This requirement is for example

met when both random variables X(1) and X(2) are Exponentially distributed,

which is a particular case of models considered in Gerber et al. (1987) and

Dufresne and Gerber (1988).

When the initial surplus u goes to infinity, we show in the next proposition that

the optimal prevention amount p∗(u) converges to the one that maximizes the

adjustment coefficient κ(p), denoted p∗κ.

Proposition 7. The prevention amount p∗κ maximizing the adjustment coefficient

κ(p) is solution of the equation

− λ′2(p)[(c− p) + λ1E(eκ(p)X(p)(X(1) −X(2)))] = λ1 + λ2(p). (31)

Moreover, we have

lim
u→∞

p∗(u) = p∗κ. (32)

Proof. The adjustment coefficient κ(p) verifies

λ1 + λ2(p) + (c− p)κ(p) = (λ1 + λ2(p))MX(p)(κ(p)). (33)

The implicit function theorem shows that κ(.) is differentiable. Now, deriving

(33) with respect to p yields

λ′2(p) (1−MX(κ(p)))− κ(p) = (λ1 + λ2(p))
(

λ1κ(p)
λ1 + λ2(p)

)′
M ′X(1)

(
λ1κ(p)

λ1 + λ2(p)

)
MX(2)

(
λ2(p)κ(p)
λ1 + λ2(p)

)
+(λ1 + λ2(p))

(
λ2(p)κ(p)
λ1 + λ2(p)

)′
MX(1)

(
λ1κ(p)

λ1 + λ2(p)

)
M ′X(2)

(
λ2(p)κ(p)
λ1 + λ2(p)

)
.

(34)

Now, Equation (33) can be rewritten as

(MX(κ(p))− 1) = (c− p)κ(p)
λ1 + λ2(p) . (35)

14



So, combining (34) and (35) and taking p = p∗κ, we get

− λ′2(p∗κ)[(c− p∗κ) + λ1E(eκ(p∗κ)X(p∗κ)(X(1) −X(2)))] = λ1 + λ2(p∗κ) (36)

since κ′(p∗κ) = 0. Notice that Equation (36) admits a unique solution when

Condition (19) holds true.

Let us now prove that limu→∞ p∗(u) = p∗κ. It is known that ϕ(u, p) can be

written as

ϕ(u, p) = 1− e−κ(p)uEκ(p)(e−κ(p)ξ(u)), (37)

where ξ(u) is the random variable representing the overshoot in case of ruin and

Eκ(p) is the expected value computed under a change of probability measure us-

ing the exponentials families (for more details, we refer the reader to Section 4.4

and Equations (5.4) to (5.6) in Section 4.5 of Asmussen and Albrecher (2010)).

Thus, for all u > 0, we have

∂ϕ(u, p∗(u))
∂p

= −κ′(p∗(u))ue−κ(p∗(u))uEκ(p)(e−κ(p∗(u))ξ(u))

+e−κ(p∗(u))u ∂Eκ(p)(e−κ(p∗(u))ξ(u))
∂p

= 0, (38)

from which we deduce
∂Eκ(p)

(
e−κ(p∗(u))ξ(u)

)
∂p

uEκ(p)(e−κ(p∗(u))ξ(u)) = κ′(p∗(u)). (39)

Moreover, the Cramer-Lundberg approximation shows that

lim
u→∞

Eκ(p)

(
e−κ(p)ξ(u)

)
= C(p) = (c− p) ϕ(0, p)

(λ1 + λ2(p))M ′X(κ(p))− c+ p
> 0.

(40)

Now, since p is bounded, C(p) is bounded as well. Furthermore, we get

lim
u→∞

∂Eκ(p)(e−κ(p∗κ)ξ(u))
∂p

= C ′(p∗κ) ∈ R. (41)

Then, combining (40) and (41) leads to

lim
u→∞

∂Eκ(p)(e−κ(p∗(u))ξ(u))
∂p

uEκ(p)(e−κ(p∗(u))ξ(u)) = lim
u→∞

C ′(p∗(u))
uC(p∗(u)) = 0. (42)
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As Equation (39) holds true for all u > 0, (42) shows that

lim
u→∞

κ′(p∗(u)) = 0.

Because p∗κ is the unique positive solution of κ′(p) = 0, we then get limu→∞ p∗(u) =

p∗κ.

6. Optimal prevention amount when the adjustment coefficient does not exist

Let us now consider the case where X(2) follows a sub-exponential distribution

and X(1) a light-tailed distribution. This is for example the case when X(1)

follows a translated Exponential distribution over the interval [a,∞] with mean

a+ 1
λ and X(2) a Pareto distribution of parameters a and b. Then, the stochastic

inequality X(1) �hmrl X
(2) holds true when b ≤ λa+1, as proved in Proposition

2.

In such a situation, the moment generating function MX(.) does not exist any-

more. However, we can still determine the optimal prevention amount when u

goes to infinity, as shown in the next proposition.

Proposition 8. If Condition (19) holds true, if X(1) �hmrl X
(2) and if D(p)

follows a sub-exponential distribution for all p, then limu→∞ p∗(u) = p∞ > 0,

where p∞ is solution of the equation

− λ′2(p)
[

µ2

ϕ(0, p) + λ1µ1

λ2(p)

]
= λ2(p)µ2 + λ1µ1

ϕ(0, p)(c− p) . (43)

Proof. Proposition 5 guarantees the existence of an optimal prevention amount

for all u. As seen in (26), we have

∂ψ(u, p)
∂p

= ∂ϕ(0, p)
∂p

∞∑
n=0

(1− ϕ(0, p))nF ∗nD(p)(u))
(

1− ϕ(0, p)
1− ϕ(0, p)n

)

+ϕ(0, p)
∞∑
n=0

(1− ϕ(0, p))n
∂F
∗n
D(p)(u)
∂p

. (44)

Moreover,

FD(p)(u) = 1
λ1µ1 + λ2(p)µ2

∫ u

0
λ1FX(1)(t) + λ2(p)FX(2)(t)dt, (45)
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which yields

∂FD(p)(u)
∂p

= λ′2(p)λ1µ1

λ2(p) (λ1µ1 + λ2(p)µ2)

(
FD(p)(u)− FD

X(1) (u)
)

(46)

with FD
X(1) (u) = 1

µ1

∫ u
0 FX(1)(t)dt.

Also, we have

∂
F∗nD(p)(u)
FD(p)(u)

∂p
=

∂F∗nD(p)(u)
∂p FD(p)(u)− ∂FD(p)(u)

∂p F ∗nD(p)(u)
F 2
D(p)(u) , (47)

which leads to

∂F∗nD(p)(u)
∂p

FD(p)(u) =

∂
F∗n
D(p)(u)

FD(p)(u)

∂p F 2
D(p)(u) + ∂FD(p)(u)

∂p F ∗nD(p)(u)
F 2
D(p)(u) . (48)

Hence, combining (44), (46) and (48) and letting u go to infinity, we finally

obtain

lim
u→∞

∂ψ(u,p)
∂p

FD(p)(u)
= ∂ϕ(0, p)

∂p

∞∑
n=0

(1− ϕ(0, p))nn− ∂ϕ(0, p)
∂p

∞∑
n=0

(1− ϕ(0, p))n−1n2ϕ(0, p)

+ϕ(0, p) λ′2(p)λ1µ1

λ2(p)(λ1µ1 + λ2(p)µ2)

∞∑
n=1

(1− ϕ(0, p))nn

= −
∂ϕ(0,p)
∂p

ϕ(0, p)2 + λ′2(p)λ1µ1

λ2(p)(λ1µ1 + λ2(p)µ2)
(1− ϕ(0, p))
ϕ(0, p) . (49)

Now, taking ∂ψ(u,p)
∂p = 0 gives the announced result.

7. Conclusion

In this paper, we have proposed a risk model with two types of risks where

prevention reduces the claim intensity of the most severe risk. In this context,

we have studied the ruin probability as a function of the prevention effort. A

sufficient condition for prevention to be efficient has been provided, and both

cases of light and heavy-tailed claims have been considered. Moreover, we have

shown that an insurer should invest more in prevention when its initial reserves

are large enough.
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Finally, let us notice that it would be interesting to consider a model where the

impact of prevention is not constant over time and where the uncertainty on

prevention efficiency is taken into account. This is left for further research.
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