
HAL Id: hal-02314892
https://hal.science/hal-02314892v1

Submitted on 14 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Placement optimization of IoT security solutions for
edge computing based on graph theory

Tanguy Godquin, Morgan Barbier, Chrystel Gaber, Jean-Luc Grimault,
Jean-Marie Le Bars

To cite this version:
Tanguy Godquin, Morgan Barbier, Chrystel Gaber, Jean-Luc Grimault, Jean-Marie Le Bars. Place-
ment optimization of IoT security solutions for edge computing based on graph theory. 38th IEEE
International Performance Computing and Communications Conference (IPCCC 2019), Oct 2019,
London, United Kingdom. �hal-02314892�

https://hal.science/hal-02314892v1
https://hal.archives-ouvertes.fr

Placement optimization of IoT security solutions for edge

computing based on graph theory

Tanguy Godquin1,2, Morgan Barbier1, Chrystel Gaber2, Jean-Luc Grimault2, and
Jean-Marie Le Bars1

1Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen
2Orange Labs, France

October 11, 2019

Abstract

In this paper, we propose a new method for
optimizing the deployment of security solutions
within an IoT network. Our approach uses
dominating sets and centrality metrics to propose
an IoT security framework where security functions
are optimally deployed among devices. An example
of such a solution is presented based on EndToEnd
like encryption. The results reveal overall increased
security within the network with minimal impact on
the traffic.

1 Introduction

Since 2009, the estimated birth of the IoT by Cisco
ISBG, the number of connected objects has been
growing steadily, to reach in 2020, 25 (Gartner [15]),
50 (Cisco [11]) and even 200 billion devices according
to Intel [2].

Besides a large amount of devices, the wide variety
of devices and the multiplicity of communication
protocols make the IoT a complex area to model.
Different approaches consist in decreasing the variety
of objects by regrouping them under taxa using
taxonomies [10]. While these approaches provide
an attractive level of abstraction, they do not allow
for the different network topologies available in the

IoT to be addressed. Because of the coexistence
of numerous protocols, the IoT combines distinct
network topologies that are important to model.

The communication aspect of connected objects
raises important security concerns. Often
constrained in terms of hardware, software, and
energy, a large majority of devices do not offer
sufficient security to their communications. HP
reports in 2014 that 70% of devices did not perform
encryption during their communications [17]. This
problem is exacerbated as manufacturers who use
and design connected devices are not aware of the
security issues of their products [12].

The rapid increase of connected objects leads
to high data production. With over 70% of all
wirelessly connected objects [2], factories, businesses
and health services account for the majority of uses
of IoT devices. Exploiting these data usually involves
significant computational capabilities, including
transferring the processing and analyzing operations
to dedicated servers into the cloud.

Using cloud technologies over the IoT raises
several anxieties. One is related to data
confidentiality, which is addressed when sensitive
or identifiable data are used (e. g. video
stream feedback for trajectory analysis in malls
[16]). A second preoccupation is the observed
latency when communicating with cloud servers

1

while using IoT applications. Although more than
tolerable in most situations, reducing this duration
is crucial in vital applications such as healthcare or
autonomous driving. Perhaps the most significant
issue hoisted by the use of cloud technologies is the
amount of information being transmitted to servers
and the lack of sufficient capacity to secure said
information by the devices themselves. Overall,
the IoT applications reliance on the cloud raises
major security considerations, magnified by the
overwhelming volume of information being produced
and consumed in the area.

Concerns expressed regarding the cloud are
partially mitigated with edge computing where cloud
functionalities are decentralized to the network’s
edge. However, migrating from cloud to edge raises
major concerns about service placement.

To the best of our knowledge, this article is
the first one which addresses placement of security
functions using graph theory. Several studies have
targeted IoT, edge or fog networks but they either
did not focus on security ([4, 9, 18, 23, 25]) or
did not use graph-based solutions and problems
[9, 18, 23, 25]. It is worth noting that Banerjee et
al. [4] addresses network coverage using graph theory
and centrality metrics. The authors define network
coverage optimization as the minimum vertex cover
problem where each edge of a graph has to have one
extremity in the vertex cover set. While this problem
is appropriate for network coverage, it does not cover
our specific requirements (discussed in section 3).

In the present paper, we propose a framework
where an object without security capabilities could
entrust security measures to network edge security
entities as security nodes. We model an IoT
network in the form of a graph, in which security
nodes are defined based on the identification of
a dominating set. Two major constraints are
expressed, one regarding the financial costs to adjust
security nodes, the second involves the location of
nodes to fit networks information flow. We therefore
propose a methodology to optimize the placement
of security nodes while minimizing their number.
The methodology can be adapted to various security
needs.

This paper is organized as follows. Section 2
presents important contextual information regarding
security constraints and attack threats on the
network. A first approach is discussed consisting
to apply edge computing concepts to IoT security.
Section 3 provides an abstract methodology for
optimal positioning of edge computing security
functions on IoT networks. Section 4 outlines
the proposed methodology behind a given security
function and observes the benefits of this approach.
Finally, we conclude this study in section 5 with
a summary of our contributions supplemented by
perspectives for further development of the model.

2 Security model

The limited hardware capacities of IoT devices
reduce access to advanced security functions
such as cryptography, identity and authorization
management or antivirus protection for example. A
solution would be to substitute all concerned objects
by equipments with suited capacities but it appears
neither cost-effective nor realistic. Cloud Computing
addressed this by centralizing services in powerful
datacenters and servers. However, in the past few
years, there has been a tendency to decentralize
the functions present in the cloud, a shift that is
consistent with edge computing.

In this new paradigm, processing activities are
moved closer to the information producers or
consumers. Some of the most well-known examples of
these mechanisms are the provision of video resources
by streaming platforms on servers close to users
who are most likely to consume such resources [5]
or processing tasks closer to information producers
such as providing face recognition at the edge of the
network [1].

2.1 Threat model

It is acknowledged that no absolute security exists
and the security of computer systems consists often
in protecting a system against a specific threat. To
propose a securing method, it is, therefore, necessary
to define a model that reflects the capabilities

2

and objectives of an attacker to protect a device
effectively against that threat.

Stellios et al. [24] discuss an attacker model
suitable for the IoT composed of 3 categories: device
accessibility, attacker capabilities and motivations.
The attacker we consider is based on the outsider
model defined by Stellios et al. and is depicted
Figure 1. He has no physical nor proximal
access to the object (in range of targeted device
wireless protocols). Resources of the addressed
model are those of a regular person with moderate
technical capacities (between neophyte and expert).
Motivations of the attacker model depends on the
targeted IoT network. We consider an occasional
hacker or a cybercriminal whose ressources remain
moderate as per the definitions of motivations and
attacker profiles provided by Mosenia and Jah [19]
and Onik et al. [20].

Figure 1: Positioning of the attacker on considered
model.

Given a target device invisible from the Internet
and the capacities of the attacker model, the
considered threats use one or multiple intermediate
devices to reach the target device, and the source is
either on the internet or in a local network. The
presence of the attacker within the wireless range
or his ability to physically access the target is not
considered due to the higher cost of performing such
attacks.

Choosing this configuration is a trade-off on the

costs of security in accordance with the proportion of
attackers evicted.

2.2 Security as a Service Model for
Edge Computing

To address this threat model, we propose to
deploy security services at the edge of the network,
thus benefitting from latency reduction, control
over data processing and physical proximity of
the objects. These security services can be
deployed either as dedicated devices with sufficient
capacities added to the considered network or as a
virtualized services in existing devices or gateways.
Examples of such services are cryptographic services
which encrypt/decrypt messages or proxy services
controlling inputs and outputs.

Figure 2: Example of applied security solutions
(green) over considered model.

Figure 2 illustrates the deployment of security
solutions to prevent threats identified in Figure 1. It
is noticeable that all three attack paths (red arrows in
fig. 1) have been blocked as a result of the insertion
of security solutions (green circles in fig. 2) in specific
devices on the network. There is no need to deploy
security solutions on every device in the network,
however, it must be located with regards to identified
threats.

3

2.3 Model relevancy

To achieve the objective described in 2.2, the way
security solutions are placed is of paramount concern.
Indeed, it is necessary to maximize efficiency and
coverage to minimize costs. Section 3 proposes an
optimization method to address the positionning of
security solutions in an IoT network.

Studying the most suitable locations for deploying
security measures requires modelling an IoT network.
Therefore, a simplified modeling is proposed, even if
not all the characteristics of the IoT are covered, it
is sufficient for a first study.

In the pursuit of the approach envisaged, two
important elements must be considered: the
bandwidth of the different communication interfaces
and the inherent capabilities of IoT devices. In our
study, the bandwidth of all interfaces is considered
equally. However, a difference in bandwidth between
interfaces could impact the way communications
transit over a network.

Similarly, to further improve the positioning of
security solutions, it would be advantageous to be
aware of the inherent capabilities of devices. This
model assumes that no single device has sufficient
security capabilities by itself. It requires that the
devices be improved to accommodate new security
solutions. Introducing device capabilities into the
security solution deployment process could thus help
to favor devices that have sufficient capabilities
to perform required tasks. In addition to device
capabilities, device vulnerability could be considered
in the deployment process to avoid deploying security
solutions on objects that have a significant risk.

3 Optimization methodology

In order to propose better security at the edge
of the network, it is important to define the best
positioning of this security. Due to the multitude of
connected devices, we first propose to adopt a more
abstract representation of IoT networks by converting
these networks into graphs with objects as vertices
and communications as edges. This representation
enables a higher degree of abstraction while at the

same time providing the opportunity to introduce
graph theory concepts to IoT security.

In the following paragraph, d refers to the distance
(measured in number of hops) between an IoT device
and its security method. Not being able to always
provide security measures on objects (d = 0), a
compromise must be made. While the usage of the
security capabilities of a direct neighbor (d = 1) may
be acceptable assuming that an attacker does not
interfere with this communication, proposing security
methods at a higher distance (d ≥ 2) introduces
security issues regarding the entities that are relaying
the information.

Therefore, we seek to ensure that each object in
our network is in direct contact with at least one
device that offers security services (security node).
Representing this demand on a graph would be
equivalent to the identification of a dominating set.

A dominating set is a subset S of vertices of a
graph G for which each vertex of G is either in S
or adjacent to a vertex of S. To reduce the expense
of converting devices into security nodes, one would
like to identify a minimum dominating set. Finding
a minimum dominating set is proved NP-Hard where
even the estimation of the minimum size remains
difficult [14]. Aware of this situation, we do not
attempt to identify the minimum dominating set;
a small set corresponding to a local minimum is
sufficient.

Finding a small dominating set is not our only
objective, we also aim to ensure that the positioning
of the vertices making the dominating set is
consistent with the transit of information in the
graph. Figure 3 illustrates a bad scenario where
the vertices of a dominating set (in red) are not
positioned along the information path.

12

93 5 8

6 4

0

7

Figure 3: Dominating set (red vertices) localized off
the dataflow.

4

We propose to improve the positioning of
the vertices of the dominating set by valuing
preliminarily the importance of each vertex of the
graph with concepts of graph centrality.

Indeed, the importance of a vertex in a graph can
be measured using centrality metrics. Depending on
our security needs, some centrality metrics are more
appropriate.

The dominating set vertex selection process relies
on the previous evaluation to promote adding vertices
of high importance (high centrality values). Our
methodology could be evaluated by analyzing the
appropriateness of the location of the vertices in the
dominating set according to our security needs. A
suggested evaluation consists of comparing the size
of the assemblies obtained and examining whether
the positioning of the vertices is in accordance with
our safety constraints.

Once a good dominating set has been identified,
IoT devices corresponding to security nodes can
either be updated to deliver desired security features
or be replaced if their security capabilities are not
sufficient. Two devices interacting with each other
are able to use those security nodes as gateways
whenever it is necessary to benefit from the security
functions offered by the latter ones. To ensure that
communication has been carried out through one
(or more if necessary) of these security gateways,
the Proof Of Transit [7] could be applied. For
this procedure, one or more secrets are shared
via Shamir Secret Sharing to nodes where one
wishes to attest the passage of the communication.
The security nodes would use their secrets (or
sub-secrets) to sign communication packets flowing
through them. Recipients could then verify that all
previously imposed signatures had been applied to
communications and then attest the application of
asked security methods.

4 Experiments over a specific
use case

4.1 Dataset

Acquiring data related to communications between
IoT objects is a difficult task. A large part
of IoT datasets only contains values from various
sensors. Researchers working on the concept of Social
IoT have made available a few datasets containing
information on devices interactions [3]. In our work,
we use a graph generated from the OOR (Ownership
Object Relationship) adjacency matrix containing
information about public and private objects that
we have filtered to keep only public static devices.
The graph thus obtained is a non-oriented graph
composed of 1458 vertices and 35657 edges. The
vertices correspond to IoT objects while the edges
are potential communications between these devices
determined according to the available communication
protocols of vertices (Bluetooth: 40 meters, Wifi: 400
meters and LoRa: 1,500 meters).

4.2 Centrality measures

The approach we suggest involves identifying the
importance of each vertex in our network using
graph centrality. Many graph centrality metrics
are available, it is, therefore, important to identify
which one best matches our security constraints.
We concentrate our investigations on four of the
most popular centrality measures, namely degree
centrality, eigenvector centrality, closeness centrality,
and betweenness centrality.

Degree centrality The degree centrality is a
measure of the importance of a vertex according it’s
degree.

Eigenvector centrality The idea behind
eigenvector centrality is that the importance
of a vertex depends on the importance of its
neighbors [6, 21]. Given a graph G, the centrality
value of a vertex i ∈ G is calculated using the
following equation where n is the number of vertices

5

of G, A is the adjacency matrix of G and λmax

is the largest eigenvalue (non-negative due to the
Perron-Frobenius theorem):

C(i) =
1

λmax

n∑
j=1

AijC(j).

Closeness centrality The closeness value
corresponds to the proximity of a vertex with
all vertices of the graph [22]. To compute this
measure, all the shortest paths between the analyzed
vertex and the rest of the vertices of the graph are
studied. The centrality measurement of a vertex
thus correspond to the average distance between
the vertex and the other vertices of the graph.
The normalized mathematical representation of this
measurement is the following where n is the number
of vertices in the graph and gij the geodesic distance
between vertices i and j:

C ′(i) =
n− 1∑n
j=1
i 6=j

gij
.

Closeness centrality is a metric of centrality adapted
when one wishes to favor the vertices from which it
is faster to reach all the other vertices of the graphs.
It is used when positioning fire stations in cities [8]
and could also be used for the positioning of update
servers in IoT networks when required.

Betweenness centrality This measurement
corresponds to the number of times a vertex acts
as a bridge on the shortest path between two other
vertices in the graph [13]. The centrality value of
a vertex i is expressed using the following equation
where gjk is the number of shortest paths (or
geodesics) connecting the vertices j and k, j 6= k,
and gjk(i) is the number of these that pass through
i:

C(i) =
∑
i 6=j
i 6=k

gjk(i)

gjk
.

Assuming the information in the graph flows along
the shortest paths, the betweenness centrality
measures the contribution of a node on a network’s

traffic.

Depending on the centrality measure that is used,
the importance of a vertex in a graph may differ.
Figure 4 corroborates this statement by displaying
the vertex with the highest centrality value for the
four defined measures on a given graph.

0

1

2

3

9

5

8

1011

4 6

7 Highest degree centrality

Highest eigenvector centrality

Highest betweenness centrality

Highest closeness centrality

Figure 4: Difference of centrality values on a given
graph.

EndToEnd encryption involves encrypting all
traffic that passes from a sender to a receiver. Aiming
to replicate this process with communications relayed
by our security nodes, the centrality metric that
theoretically seems the most appropriate is the one
that takes into account the flow of information in the
graph, namely the betweenness centrality.

4.3 Dominating set selection

Once the centrality values for all vertices in the graph
have been calculated, our methodology suggests
selecting a dominating set by favoring the addition
of vertices with the highest centrality values. More
precisely, the selection operates as follows: the
weakest centrality value vertices are first put apart
from the dominating set. A vertex is placed in the
dominating set when it has no other options.

We propose to use the algorithm 2 for dominating
set selection dependent on the sequence in which the

6

vertices of a graph are browsed. Supposing a graph
G(V,E) where V and E correspond respectively to
the vertices and edges ofG, the neighborhood of x ∈V
is defined as N [x].

The execution of the algorithm involves defining
several sets of vertices. One is called F and
corresponds to free vertices that have not yet been
browsed by the algorithm. Once the vertex is
scanned, it is either transferred to the dominating
set (DS), to covered vertices set (C, vertices adjacent
to vertices in DS) or in the set B corresponding to
browsed vertex that will later be in C but require
an adjacent vertex in DS. An adjacency list, labeled
NF (x) tracks the neighborhood of vertex x within F
at any time. This suggested algorithm requires the
following two functions (algorithm 1) to be specified:
ForcedDominant and Propagation.

Algorithm 1 Functions used on algorithm 2

1: function ForcedDominant(node)
2: if NF (node) = ∅ then
3: Return True
4: for all n ∈ N [node] ∩B do
5: if |NF (n)| = 1 then
6: Return True
7: Return False
8: function Propagation(node)
9: for all n ∈ N [node] ∩B do

10: Move n from B to C

The ForcedDominant function specifies whether
a vertex provided as a parameter should be added to
a dominating set. To do so, it checks whether the
vertex no longer has the possibility of being covered
or whether one of its neighbors depends on it for its
coverage. In this case, the addition in theDS package
is required. The Propagation function is performed
when a vertex is added to the dominating set (DS).
It consists of covering all the neighbors of this vertex
that have already been traversed by the algorithm
and that were on hold (B set).

The proposed algorithm (2) browses a given set
of vertices, if the current vertex analyzed is not
covered yet but has at least one neighbor to be
analyzed (meaning it could be covered later by

this neighbor), the latter is put on hold. When
a vertex no longer has neighbors not analyzed to
provide coverage, the current vertex is added to
the dominating set. By providing a list of vertices
sorted by ascending value of centrality as input to
the algorithm (vList), the dominating set discovered
(DS) favors vertices of high importance. Vertices
with lowest centrality values are first placed in C or
B providing a possibility to integrate vertices with
higher centrality values latter in DS.

Algorithm 2 Central Dominating Set Algorithm.

Input:
vList: ordered list of V

Output:
DS: dominating set vertices

1: F ← V
2: DS,B,C,NF ← ∅
3: while vList 6= ∅ do
4: a← vList[0]
5: if a ∈ F then
6: if ForcedDominant(a) then
7: Move a from F to DS
8: Propagation(a)
9: else if |NF (a)| = 1 then

10: b← NF (a)[0]
11: Move a from F to C
12: Move b from F to DS
13: Propagation(b)
14: else
15: Move a from F to B
16: else
17: vList← vList− a
18: Return DS

4.4 Evaluation

The algorithm introduced allows the analysis of the
performance offered by applying various centrality
metrics. To reflect our requirements regarding the
number of security nodes and vertices positioning,
we use the following rating methods: the number
of vertices in the dominating set, the protection

7

provided through their positioning as well as a
normalized value of protection independent of the
graph size.

The protection provided by vertex placement
on dominating set is obtained by computing the
percentage of vertex pairs from the graph that have
at least one shortest path secured as follows:

protection =

∑
a,b S(a, b)(

n
2

)
where:

S(a, b) = 1 if there is a secured shortest path
between vertices a and b

S(a, b) = 0 otherwise.

We define a shortest path secured if the vertices
(sender and receiver) are adjacents or if each vertex
of that pair is either member of the dominating
set or adjacent to one. The illustration Figure 5
visually depicts this definition. Red vertices refer to
dominating set vertices, while blue vertices are free
to belong either to the set or not.

| | | |

| | | |

Figure 5: Illustration of secured paths

The normalized value of protection corresponds to
the protection value normalized by the size of the
graph over the size of it’s dominating set. It is
computed using the following equation:

normalized value = protection ∗ n

|DS|
.

This process is essential to consider the size of a
dominating set when comparing the contributions of
different methods of selection. Otherwise, a method
returning a dominating set containing all vertices

of a graph (100% protection ratio according to our
evaluation) could be considered better than any
dominating set.

Consider Figure 3, where we described the
positioning of vertices not consistent with the
information flow. According to our evaluation
methodology, the protection provided by the
dominating set placement on Figure 3 is 53%. Using
the proposed approach for placement of dominating
set using the betweenness centrality on the same
graph, we obtain the graph in Figure 6 with a
protection index of 100%. The dominating set
discovered using our methodology is positioned across
the information flow unlike in the one on Figure 3.

12

93 5 8

6 4

0

7

Figure 6: Dominating set (red vertices) identified
using our methodology on Figure 3 graph.

4.5 Results

According to the assumption that information flows
along an optimal path, using betweenness centrality
appears more suitable for our EndToEnd encryption
emulation security examples. Algorithm 2 was used
several times with lists of vertices ordered differently,
the resulting dominating sets were then examined.
We focused our experiments on the contribution
of centrality usage by comparing its four most
popular metrics, namely closeness centrality (CC),
eigenvector centrality (EC), degree centrality (DC)
and betweenness centrality (BC). The proposed
algorithm favors selection of vertices located at the
end of the list provided, therefore these listings
were sorted by increasing order of centrality. The
dominating sets obtained are analyzed according to
our evaluation criteria (size, protection provided by
the set and protection brought by one vertex) to
be compared with those identified from randomly
ordered lists (R) of vertices. Comparison to randomly

8

ordered lists of vertices highlights the importance of
vertex order in the selection of dominating sets. The
results of this comparison are summarized in Table 1
below.

Table 1: Comparison of central dominating set
results between centrality ordered and randomly

ordered vertex lists.

Centralities Random order

Graph Metric BC CC DC EC
R

seed=82
R

seed=45

IoT
dataset
(1458
vertices)

DS size
107

(7.33%)
107

(7.33%)
155

(10.63%)
176

(12.07%)
191

(13.10%)
212

(14.54%)

Protection
(%)

100 99.92 99.95 99.91 90.87 99.16

Normalized
protection

13.63 13.62 9.402 8.277 6.937 6.820

4.6 Analysis on IoT dataset

Results from this study indicate that the betweenness
and closeness centralities provide smaller dominating
sets. It is noticeable that using centrality values in
general offers better performance overall. Table 1
presents two random tests by choice of readability
of the data. The dominating sets identified
using random lists of vertices benefit from similar
performance to Table 1 ranging from 180 to 210
vertices to a proportion of protection from 81% to
99.91%.

Dominating set sizes are about twice as small using
betweenness and closeness values as when vertices are
sorted in random order. The gain observed is not
limited to the number of vertices of the dominating
sets but also their positioning. While the majority
of the results in Table 1 reveals protection level
approaching 100% (only reached with betweenness
centrality), it should be remembered that this value
depends on the number of vertices in the dominating
set. A larger dominating set is more likely to have
a high protection value. Normalizing the measure
according to the number of vertices of sets is therefore
important for an accurate representation of gains.

Protection index provided by a vertex from our

IoT reference graph using betweenness centrality is
almost twice as high as for random lists. The metrics
of betweenness and closeness centralities stand out
particularly from this analysis by offering a gain of
one-third superior to the degree centrality (highest
index of all other results).

The dominating sets identified by betweenness and
closeness, although highly similar from a performance
point of view, are not identical. There are 18 vertices
that are not shared between them, this similitude
lies in the calculation methods of these metrics which
both use shortest paths within a graph.

Closeness centrality attaches increasing
importance to vertices that can spread information
the fastest in a graph while betweenness centrality
reveals vertices that are located across the
information flow. We are more likely to select
betweenness centrality when using EndToEnd
encryption as described above. Closeness centrality
cannot be excluded, however, it could very well
correspond to a use case requiring the propagation
of information in an IoT network.

We have decided to distinguish the centrality
measurement choice from the proposed algorithm and
our methodology in order to allow the user to decide
which option is best suited to his security needs.

5 Conclusion and future work

We propose a strategy to effectively deploy security
solutions within an IoT network while minimizing
costs. Based on graph theory, we reformulate the
security constraints as the identification of minimum
dominating set relying on centrality notions. Our
solution has a minimum impact on the information
transit while respecting the assumption that it flows
optimally in a graph.

Interesting perspectives could be to improve the
proposed model by including other IoT features
(device capabilities, risks or even bandwidth) to
achieve a more realistic model. Future studies will
have to investigate the role of those features when
looking for optimal positioning of security solutions
on the edge of IoT networks. Based on the usage
and restrictions issued, additional limitations may be

9

applied when selecting security nodes.

Acknowledgment

The authors would like to thank Paul Dorbec and
Nancy Perrot for their help regarding dominating sets
and their constructive remarks.

References

[1] Face recognition: Moving more and more to the
edge - asmag.com.

[2] A Guide to the Internet of Things Infographic.

[3] Social Internet of Things.

[4] P. S. Banerjee and B. Maiti. Optimality
criterion for the insertion of multi-interface
nodes to improve connectivity in heterogeneous
IoT framework. In 2017 Devices for Integrated
Circuit (DevIC), pages 556–560, Kalyani, India,
Mar. 2017. IEEE.

[5] K. Bilal and A. Erbad. Edge computing for
interactive media and video streaming. In 2017
Second International Conference on Fog and
Mobile Edge Computing (FMEC), pages 68–73,
May 2017.

[6] P. Bonacich. Power and centrality: A family
of measures. American journal of sociology,
92(5):1170–1182, 1987.

[7] F. Brockners, S. Bhandari, S. Dara,
C. Pignataro, H. Gedler, S. Youell, J. Leddy,
D. Mozes, and T. Mizrahi. Proof of Transit.
Network Working Group Internet-Draft,
draft-brockners-proof-of-transit-05, May 2018.

[8] M. Dehmer and F. Emmert-Streib. Quantitative
Graph Theory: Mathematical Foundations and
Applications. Discrete Mathematics and Its
Applications. CRC Press, 2014.

[9] B. Donassolo, I. Fajjari, A. Legrand, and
P. Mertikopoulos. Fog Based Framework

for IoT Service Provisioning. In 2019 16th
IEEE Annual Consumer Communications &
Networking Conference (CCNC), pages 1–6, Las
Vegas, NV, USA, Jan. 2019. IEEE.

[10] B. Dorsemaine, J.-P. Gaulier, J.-P. Wary,
N. Kheir, and P. Urien. Internet of Things:
A definition & taxonomy. In Next Generation
Mobile Applications, Services and Technologies,
2015 9th International Conference On, pages
72–77. IEEE, 2015.

[11] D. Evans. The internet of things: How the next
evolution of the internet is changing everything.
CISCO white paper, 1(2011):1–11, 2011.

[12] S. Faux. La sécurité à l’ère des objets connectés:
Comment s’y prendre ? In Workshop ”Sécurité
Des Objets Connectés”, 2017.

[13] L. C. Freeman. A Set of Measures of Centrality
Based on Betweenness. Sociometry, 40(1):35–41,
1977.

[14] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of
NP-Completeness. 1978.

[15] Gartner. Gartner Says 4.9 Billion Connected
”Things” Will Be in Use in 2015. 2014.

[16] A. Ghose, B. Li, and S. Liu. Mobile Targeting
Using Customer Trajectory Patterns. page 52.

[17] HP. HP Study Reveals 70 Percent of Internet of
Things Devices Vulnerable to Attack. 2014.

[18] F. B. Jemaa, G. Pujolle, and M. Pariente.
QoS-Aware VNF Placement Optimization in
Edge-Central Carrier Cloud Architecture. In
2016 IEEE Global Communications Conference
(GLOBECOM), pages 1–7, Dec. 2016.

[19] A. Mosenia and N. K. Jha. A Comprehensive
Study of Security of Internet-of-Things. IEEE
Transactions on Emerging Topics in Computing,
5(4):586–602, Oct. 2017.

10

[20] M. H. Onik, N. Al-Zaben, H. P. Hoo, and C.-S.
Kim. A Novel Approach for Network Attack
Classification Based on Sequential Questions.
2(2):14, 2018.

[21] B. Ruhnau. Eigenvector-centrality—a
node-centrality? Social networks,
22(4):357–365, 2000.

[22] G. Sabidussi. The centrality index of a graph.
Psychometrika, 31(4):581–603, 1966.

[23] O. Skarlat, M. Nardelli, S. Schulte,
M. Borkowski, and P. Leitner. Optimized IoT
service placement in the fog. Service Oriented
Computing and Applications, 11(4):427–443,
Dec. 2017.

[24] I. Stellios, P. Kotzanikolaou, M. Psarakis,
C. Alcaraz, and J. Lopez. A Survey of
IoT-enabled Cyberattacks: Assessing Attack
Paths to Critical Infrastructures and Services.
IEEE Communications Surveys Tutorials, pages
1–1, 2018.

[25] Y. Xia, X. Etchevers, L. Letondeur, T. Coupaye,
and F. Desprez. Combining hardware nodes and
software components ordering-based heuristics
for optimizing the placement of distributed IoT
applications in the fog. In Proceedings of the 33rd
Annual ACM Symposium on Applied Computing
- SAC ’18, pages 751–760, Pau, France, 2018.
ACM Press.

11

