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STABILIZATION OF A RIGID BODY MOVING IN A COMPRESSIBLE
VISCOUS FLUID

ARNAB ROY AND TAKEO TAKAHASHI

Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

ABSTRACT. We consider the stabilizability of a fluid-structure interaction system where the fluid is
viscous and compressible and the structure is a rigid ball. The feedback control of the system acts on
the ball and corresponds to a force that would be produced by a spring and a damper connecting the
center of the ball to a fixed point h1. We prove the global-in-time existence of strong solutions for the
corresponding system under a smallness condition on the initial velocities and on the distance between
the initial position of the center of the ball and hi. Then, we show with our feedback law, that the
fluid and the structure velocities go to 0 and that the center of the ball goes to h1 as t — oo.

Keywords. Fluid-structure interaction, compressible Navier-Stokes system, global solutions, stabili-
tization.
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1. INTRODUCTION AND MAIN RESULT

Let © C R3 be a bounded domain with C* boundary occupied by a fluid and a rigid body. We
denote by B(t) C 2, the domain of the rigid body and we assume it is an open ball of radius 1 and of

center h(t), where t € Ry is the time variable. We suppose that the fluid domain F(t) = Q\ B(t) is
connected.
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2 STABILIZATION OF A RIGID BODY MOVING IN A COMPRESSIBLE VISCOUS FLUID

The fluid is modeled by the compressible Navier-Stokes system whereas the motion of the rigid body
is governed by the balance equations for linear and angular momentum. We also assume the no-slip
boundary conditions. The equations of motion of fluid-structure are:

E(;/t)—l—div(pu)zo t>0, e F(t), (1.1)
ou .
p<m+(u.V)U> —divo(u,p) =0 t>0,z€F(), (1.2)
ml = — / o(u,p)NdI' +w t >0, (1.3)
OB(t)
Jd:__/kx—h@)xdmeﬂ“t>0, (14)
OB(t)
W=0 t>0, (1.5)
u(t,z) =0 t>0, z €09, (1.6)

u(t, ) = 6(t) + w(t) x (z — h(t)) t>0, z € IB(),

:0(07 ) = P0; U(O, ) =uwug In f(0)> (18)
h(0) = ho, £(0) = Lo, w(0)=wp. (1.9)
In the above equations, p = p(t,z) and u = u(t,x) represent respectively the density and the ve-
locity of the fluid and the pressure of the fluid is denoted by p. We assume that the flow is in the

barotropic regime and we focus on the isentropic case where the relation between p and p is given by
the constitutive law:

p=ap’,
with @ > 0 and the adiabatic constant v > % The Cauchy stress tensor is defined as:
o(u,p) = 2uD(u) + Adiv ully — pl,
where D(u) = % (Vu + VuT) denotes the symmetric part of the velocity gradient (Vu! is the transpose
of the matrix Vu) and A, o are the viscosity coefficients satisfying
w>0, A4+p=0.

Here ¢ and w are the linear and angular velocities of the rigid body, N (¢, x) is the unit normal to 9B(t)
at the point x € 9B(t), directed to the interior of the ball and m, J are the mass and the moment of
inertia of the rigid ball respectively. The formulae for m and J are

4 2m
m 37rp87 5 3?

where pp > 0 is the constant density of the rigid ball.
Finally, w (in (1.3)) is our control that we take as a feedback control:

w(t) = kp(t)(h1 — h(t)) — kal(t), (1.10)
where kq > 0 and k,(t) > 0 are well-chosen so that

Jim h6) =

{continu

{momentu

{linear:

gEae

{angular

{boundar

{boundar

{initial

f

{feedbac
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whereas the velocities of the fluid and of the rigid ball go to 0:
tliglo u(t) =0, tligloﬁ(t) =0, thm w(t) =0.

—00

In literature, this type of control is known as Proportional-Derivative (PD) controller generated by a
spring and a damper. The spring-damper is connected from the center of the ball to the fixed anchor
point hy and it is attracting the ball towards the point h;.

In order to give the precise statement of stabilization (Theorem 1.2), we first need a global in time
existence result for (1.1)—(1.10) with (1.10). Such a result in the case without control is given in [1]
by adapting a method introduced in [13].

Here we will prove again this existence result, with the same approach but with a special attention
to the estimates on h(t) and with some modifications in the proof of [1] due to the feedback law (1.10).

In order to state our result we introduce p the mean-value of py:

S U A
7= [ miw)de (1.11)
F(0)

Note that, from equation (1.1) and Reynold’s Transport Theorem, we obtain

/po(m)dm: /p(t,x)dx.

F(0) F(t)
For 0 <11 < T < 0o, we introduce the following space:
St = {(p, u, b,w) | p € L*(T1,Ty; H*(F(t))) N BCO([Ty, To); H*(F(t))) N H' (T4, To; H*(F (1))
N BCY([Ty, To]; H*(F (1)) 0 H?(T1, Ta; L*(F (1)),
w e L*(Th, To; HY(F (1)) N BC*([Th, To); H(F(t ))) H' (T, Ty; H*(F(t))
NBCY(T1, Tl HY(F(1)) N H(T1, To; LA(F(1))),

(e HXT\,Ty), weH (Tl,TQ)}.

(1.12)
Here BC* are the functions of class C* bounded with bounded derivatives. We set

1oy, &0) s, = o = Pllcoen msmsF ey + 1o = Pl @ mwm2 ) + 10 = Pllwre 7oy

+Hlp = Pl a2y mosr2F @) + ull2 e momsF @) + lwll o w3 F @) + 1ullmr @ mm2 @)

Hwllwroe oy ot (7)) + Nl 20y 2 ) + W20 ) + ellwoe (1 )

Hwll 27y 1) + wllwroo (7 12)5
(1.13)
and for T >0

| (po, w0, o, wo)|l g 1po = Pllaszcry) + llwoll g3z ry) + ol + wol-

ls, . =

Since we are working with regular solutions of (1.1)7(1.10), we need to introduce the following com-
patibility conditions at initial time:

uo(y) = Lo +wo X (y — ho) for y € 9B(0), wup =10 on 99, (1.14)

1
— —divo(ug,po) = 0 on 012, (1.15)
Po

{mean va

{solutio

{finalco
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_ (WO X (WO X (y — ho))) - :Ole U(“Oap())(y)

/ o (ug, po)ndl — kalo | + | J 7 (x — ho) x o(ug,po)ndl'y| % (y — ho)
58B(0) 9B(0)

1
m
for y € 0B(0), (1.16)
where
po = ap;.
Finally, we introduce the following notation
QY= {z € Q; dist(x,00Q) > 1}.
Our hypotheses on k, and kg are the following ones:

kq

k, € CY(R,[0,1]), kp(0) =0, kp > 01in (0,00), kp =1 in [T,00), 0 < k), < 777
I

4 (1.17)
for some Ty > 0.

Theorem 1.1. Assume that Q° is non empty and connected. Let hy € Q0 and p > 0. Assume w is
given by the feedback law (1.10) with (k,, kq) satisfying (1.17). There exists 6 > 0 such that for any

ho € QO, po € Hg(f(O)), po >0, ug € H3<]:(0)>, Ly, wo € Rg, (1.18)
satisfying the compatibility conditions (1.14)—(1.16) with
1(po; wo, €0, wo)llg, , + 1h1 = hol <6, (1.19)

the system (1.1)—(1.10) admits a unique strong solution (p,u,¥,w) € go,oo, h € L*>(0,00). Moreover,
there exist C,n > 0 such that

Iy, )5, .+ I1V/En (B = )l z2(0.00) < C (1100510, fo, w0)llg, , + It = hol ) (1.20)
dist(h(t),00) >1+n (t>0). (1.21)
We are now in a position to state our stabilization result.

Theorem 1.2. With the notations and assumptions of Theorem 1.1, the solution (p,u,h,l,w) of
(1.1)-(1.10) satisfies

Jim {|p(t, ) = Pl ey =0, Jim flult, ) g2z =0, (1.22)
tllglo h(t) = ha, tlggoﬁ(t) =0, tliglow(t) =0. (1.23)

During the last two decades, there has been a considerable interest in fluid-structure interaction
problems involving moving interfaces. Broadly speaking, these types of models can be classified into
two types: either the structure is moving inside the fluid or the structure is located at the boundary
of the fluid domain. Since in this article we are interested in studying the motion of body inside the
compressible fluid domain, below we mention related works from the literature concerning this case
only.

The global-in-time existence (up to contact) of weak solutions for compressible viscous flow (for
v > 2) in a bounded domain of R3 interacting with a finite number of rigid bodies has been studied
by Desjardins and Esteban [6]. In [9], Feireisl established the global existence result (for v > 3/2)
regardless of possible collisions of several rigid bodies or a contact of the rigid bodies with the exterior

{finalco

:

{hypkp}

{initial

{smallne

{final e

i

{1451}

{limit:f

{limit:s
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boundary. Regarding strong solutions, the existence and uniqueness of global solutions for small initial
data have been achieved in [1] in the Hilbert space framework by Boulakia and Guerrero as long as
no collisions occur. Their work is based on a method proposed in [13] for a viscous compressible
fluid (without structure). In a LP-L7 setting, the authors in [12] proved the existence and uniqueness
of local-in-time strong solutions for the system composed by rigid bodies immersed into a viscous
compressible fluid and in [11], the authors establish the global in time existence up to contact.

Let us mention some works related to the large time behavior of fluid-structure interaction system.
In [17], the authors analyze the fluid-structure model in one space dimension where the fluid is governed
by the viscous Burgers equation and the solid mass is moving by the difference of pressure at both
sides of it. They obtain that the asymptotic profile of the fluid is a self-similar solution of the Burgers
equation and the point mass enjoys the parabolic trajectory as t — co. An extension of this work in
several space dimensions is obtained in [14] for the heat equations in interaction with a rigid body.
Their result is that as ¢ — oo, the fluid solution behaves as the fundamental solution of the heat
equation and the ball goes to infinity in bidimensional case whereas the ball remains in a bounded
domain in three dimension. Regarding the long-time behavior of a moving particle inside a Navier-
Stokes fluid, the authors in [10] consider in particular the case of a ball falling over an horizontal
plane and show that the velocity of the fluid goes to zero and the particle reaches the bottom of the
container asymptotically in time. In [7], the authors analyze the case of a rigid disk immersed into a
two-dimensional Navier-Stokes equations filling the exterior of the structure domain. They restrict to
the case of a solid and a fluid with the same density and for the linear case.

Finally, let us mention two works using a control supported on the rigid body: [5] in the 1d case for
a Burgers-particle system and [16] in the 3d case for a rigid ball moving into a viscous incompressible
fluid. The main difference between this study and the two previous references come from the fact that
in our case we need to deal with stronger solutions than in the incompressible case. In particular, to
avoid compatibility conditions at ¢ = 0 that involve the feedback control w, we take here k, depending
on time with k,(0) = 0.

The plan of the paper is the following. In Section 2, we establish the local-in-time existence of solu-
tions for the system (1.1)—(1.10). We then obtain a priori estimates in Section 3 to prove Theorem 1.1.
Finally Section 4 is devoted to the asymptotic analysis of the solutions in order to prove Theorem 1.2.

Notation. For any a € R3, we set

Bla)={zeR®| |z —a| <1}, F(a)=Q\B(a).

In particular,
B(t) = B(h(t)), F(t) = F(h(1)).
In this article, to shorten the notation, we write H™ and L? instead of H™(F(0)) and L?(F(0)).
Assume X is Banach space. We need to consider a particular norm for H™(0,7"; X) if m € N* and

if T'e RY.

£l e 0,m5) = [ FllEm o,y + I Fllwm—1.00 (0,75)- (1.24) | {HmX}
Using the Sobolev embedding, this norm is equivalent to the usual one, but the corresponding constants

depend on 7" and that is the reason why we introduce such a notation.
Assume X1 and X5 are Banach spaces. We also introduce the following spaces

H™(0,T; %1, %) = L*(0,T; %) N H™(0,T; X2) (m >1).
In the case T' € RY, we also need to introduce the following norm for the above space:

£l o o,msm2,02) = W fll 22 o,msm2) + 1 f oo o,msmry + 1 0,229 (1.25) |{infinit



solution

xistence

ariables

6 STABILIZATION OF A RIGID BODY MOVING IN A COMPRESSIBLE VISCOUS FLUID

£l 20,1 m4,22) = 1|2 0,msm0) + 1 f lnooo,msm3) + 1 f 1m0, m2) + 1 llwiee 0,y + Il 20,7:22)-
(1.26)

Using interpolation results, we see again that the corresponding norm is equivalent to H'(0,T; H?)
but the corresponding constants depend on T

2. LOCAL IN TIME EXISTENCE OF SOLUTIONS

In order to prove Theorem 1.1, we first prove the existence and uniqueness of strong solutions of
system (1.1)-(1.10) for small times. More precisely, we show in this section the following result:

Theorem 2.1. Let hy € QY and p > 0. Assume w is given by the feedback law (1.10) with kg € R
and k, € H} ([0,00)). There exist 8, Cy, T > 0 such that for any

ho € (20, po € f{3, Uy € ffg, by, wo € E@s, (2.1)
satisfying the compatibility conditions (1.14)—(1.16) with
H(pOaanEOa(JJO)HgO70 + |hl *h’0| < 507 (22)

the system (1.1)-(1.9) admits a unique strong solution (p,u,l,w) € §O,T*7 h € L*>*(0,T,) and
I, 0)lg, . + 1 = Rllzory < Ca( (o0, w0, bo,0)l1 g, , + 11 = hol). (2.3)

2.1. Lagrangian change of variables. Firstly, we use a Lagrangian change of variables to rewrite
the system (1.1)—(1.10) in a fixed spatial domain: let introduce the flow X (¢,-) : F(0) — F(¢) defined
by

O () = ult, X(19)),

X(0,y) =y.

Due to the boundary conditions, we have

X(t,y) = h(t) + Q(t)(y — ho) if y € 0B(0),
e Yy if y € 99,

where Q(t) € SO(3) is the rotation matrix associated to the angular velocity w:
Q' =AW)Q, Q) =1Is.

For any w € R3, A(w) is the skew-symmetric matrix:

0 —Ww3  Wo
Alw) = | ws 0 —w
—wy Wi 0

If u is regular enough, X is well-defined and X (¢, -) is a C'-diffeomorphism from F(0) onto F(t) for all
€ (0,T). We denote by Y (t,-) the inverse of X (t,-) and we consider the following change of variables

ﬁ(tv y) = Q(t)Tu(th(t)y))v ﬁ(tv y) = p(th(t7y)) =P (24)
h(t) = h(t) —h1, £(t) = Q1) TL(t), () = Q1) w(t). (2.5)

Note that now we have

t
ty—y+/Q s,y)ds, Vy e F(0). (2.6)
0

{initial

{initial

o E

{final 1

{chng of

{chng of

i

{def:X}
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Under the change of variables (2.4)-(2.5), the system (1.1)-(1.9) is transformed as follows:

gj%—poleU—Fl(p,u 0,0,Q) in (0,T) x F(0), (2.7)
Od_ 1pg - A (dva) = BGEELZ,Q) i (0,T) x F(0), (2.5)
ot po Po

ml = F3(p,u,h,0,5,Q) in (0,7),
J&' = Fy(p,u,0,&,Q) in  (0,T), (
=Ql, Q' =QAW@) i (0,7), (
U=l+wx(y—ho) on (0,T)x dB(0), (
u=0 in (0,7) x 09, (2.13
p0,) = po(-) =P, u(0,") =uo(-), in F(0), (
h(0) = ho — h1, €(0) =to, ©(0) =wy, Q(0)=1Is. (

In the above equations, FY, Iy, F3, Fy are defined in the following way:
Fy (ﬁ? avzwa Q) - _(5+ E)Vﬂ : [((VY(X))Q)T - ]I3:| - (:5"’_ p— ,00) div Ha (216)

fori=1,2,3:

0%, 19)¢
()i, ,0.5,Q) = —(@ x W) p+p > oot (0G0 = Gy

Z&uZOYl )+ AN( (p+p> /\+u28up 8Yl
p+p oy 31‘2 po(p + p) p+p = dy ﬁwpf?:m

A p 0%, <8Ym > Y, A+ p 82up <8Yl >
X) = 6mp | = (X) + =—L X) — &y
p+p20ym8yz ébsp( ) b Owi( ) PP Ayp0y 8552‘( )=

Po—(ﬁJrP)) ~ e ~O0p 9Y;
po(p + )

+ (0 ) [V(div ) (

B30 0,3, Q) = —m(@ x 1) - / [ (Qua(vy (X)) + (QUa(vY (X)T)

8B(0)
FAQVA(VY (X)) : T3) — a(p+ zm} ndl — kyQ h — kql, (2.18)

F(FE05.Q) =~ [ ko) x [1(QUATY(X) + @VE(VY (X))

0B(0)
FAQVA(VY (X)) : 1d) — a(p + ;3’)7} ndl. (2.19)

Here n(y) = Q(t) " N(t, ) is the unit normal to dB(0) at the point y € dB(0), directed to the interior
of the ball.

{reform:

{reform:

{reform:
{reform:

{reform:

EaE e

{reformb

{reformb

{reformi

{reformb

-~
i
[y
-

{F3}



xistence

8 STABILIZATION OF A RIGID BODY MOVING IN A COMPRESSIBLE VISCOUS FLUID

2.2. Analysis of a linear problem. In this section, we want to study the existence and regularity

of the solution of the following linear system:

% +podivi=f1 in (0,7) x F(0), (2.20)

(?;; - %AE— A;;“v (divi)=f» in (0,T) x F(0), (2.21)
ml = f3 in (0,7), (2.22)

Jo'=f, in  (0,7), (2.23)

U=0+&x(y—ho) on (0,T)x dB(0), (2.24)

u=0 on (0,7) x 09, (2.25)

w(0,-) =wug(-) in  F(0), (2.26)

p(0,:) =po in  F(0), (2:27)

00) = £y, ©(0) = wo. (2.28)

We introduce the following set for T > 0:
Sr = {(ﬁ, T, 0.3) | 5 e HY0,T; H3) N CY([0,T]; H?) N H2(0, T; L?), @ € H2(0,T; H*, L?),
(e H*0,T), m € H*0,T), u=00n 09, 4 =1L+ x (y— ho) on dB(0), p(0) = po,
7(0) = uo, £(0) = by, &(0) = wo}, (2.29)
equipped with the norm

(P @Z@)HST = ol o0,1:m3) + 1Pllwre 0,1 m52) + 1Pl 520,7:02) + 10l 12, 0,714, 22
+ Ha’Hgo(o,T) + @l 2, 0,7)-
We recall that the norms || - g1 o.7,m3), || - [|a2 (0,7) are defined in (1.24) and || - || g2 0,1;m4,02) 18
defined in (1.26). The space St is similar to Sy, 7, defined by (1.12) except that here F(t) is replaced

by F(0) and we add the boundary and initial conditions.
Since p > 0, there exists dp > 0 such that (2.2) implies

In that case, the system (2.20)—(2.28) is well-posed:

Proposition 2.2. Let us assume p > 0, (2.2) with dy as above and
(Po, uo, Lo, wo) € H> x H> x R x R®,  f; € L*(0,T; H*) nC([0,T]; H*) n H'(0,T; L?),

f2€ H'(0,T; H? L?), fs€ H'(0,T), fie H'(0,T)
with
ug = Lo + wo X (y — ho) fory € 0B(0), wug =0 on 09, (2.30)
A
£200) + 2 Aug + 2 (divug) = 0 on 09, (2.31)
Po Po
p Adpg o -1 -1

f2(0) + —Aug + V (divug) =m™ f3(0) + J " f4(0) X (y — ho) for y € 9B(0). (2.32)

0o Po

{linearf

{linearf

{body:1i

{body:an

e

{boundar
{boundar

{initial

{13:40}

{comp co

{comp co

{comp co

il
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Then the system (2.20)~(2.28) admits a unique solution (p, 7, {,&) € Sr. Moreover, there exists Cp, > 0
(nondecreasing with respect to T') such that

(P, 0, £,0)||sp < CL(Hf1||L2(O,T;H3) + [ f1ll oo o,1m2) + 1 f1ll 0, 22) + I f2ll 0,702, H2)
+ 1 sl o,y + 1 fall o 0.y + 1ol 3 + [lwoll s + ol + \wel>- (2.33) |{est:lin

Proof. We solve (2.20)-(2.28) like a cascade system: first, (2.22)-(2.23) admits a unique solution (¢, &)
with

i

Wz, 0.) + 1@l 2. 0.2y < C (Il o) + I all e o) + 1ol + Lol ) (2:34) [{estibod

Next, we solve equation (2.21) with the boundary and initial conditions (2.24)-(2.26). First we
consider a lifting operator R, such that for any a,b € R?, R(a,b) € C®(R3) satisfies

a+bx(y—nh on 0B(0),
R(a,b) _ {O (y 0) o GQ( )

Then ¥ = & — R(/,&) satisfies
I p . Atp

9P Ag
ot po P0

V(dive) =F=fo+ pﬂmz(z?, &) + A:“v (divR(Z, w)) _ R,

0 0
v=0 on (0,7)x 0F(0),
’5(0, ) = 5[) = Uug — R(fo,&)g) in ]:(O)

By using a standard Galerkin method (see [8, Chapter 7, Theorem 1, p.354]) and by using the regularity
result of Lamé operator (see, for instance, [4, Theorem 6.3-6, p.296]), under the condition that dF(0)
is of class C*, we can show the following result: if

F e L*0,T; H) N HY0,T; L%, o€ H>nN HL,
with the condition
+
Po
then there exists a unique solution v € H?(0,T; H*, L?) with the estimate

A _
F(0,) + pﬁAvo + V (divig) =0 on 8F(0), (2.35) [{13:38}
0
911z, 02010 2) < € (IF s 0,732 2) + [50) 13-

We note that condition (2.35) is equivalent to (2.31) and (2.32). We can use the relation @ = 94+R (¢, o)
and the above estimate of ¥ to deduce the following estimate of w:

iz, 0722y < C (Il omi2, 1) + I fall g 0.1 + I all s o)+ lwoll s + 1ol +leol ) (2:36)  [Tregiu?

Now, with the help of equation (2.20) satisfied by p, we obtain

10 11 0,753y + 101l wree (0,1 12) + 1Pl 2 0,7522) < O(”f1HL2(O,T;H3) + 1 f1llzee 0,1 m2) + 1 f1ll 5 0,722
+ all 2o,z + @l Lo 0,703y + 120l 10,11 + H/70HH3>- (2.37) |{est:flu

Thus, we have proved the existence of solution in appropriate space for the system (2.20)-(2.28).
Thanks to (2.34), (2.36) and (2.37), we have also obtained our required estimate (2.33). O
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2.3. Estimates of the nonlinear terms. For 7" > 0 and R > 0, we define the following subset of
ST:

St ={(.1.0.8) € St (7.0, L0)lls; < R} (2.38)
In what follows, R is fixed and the constants that appear can depend on R.

Assume (p, ﬂ,lZ@) € St r. Then there exists a unique solution (?L, Q) € H3(0,T) of the following
equations

K=Ql in (0,7),
Q' =QAWw) in (0,7), (2.39)
Q(0) =T, 7(0) = ho — ha,

and we can then define X by (2.6). From (2.38), there exists C' = C(R) > 0 such that

1Ql a3y <O, |Q — I3]0,y < CT,

IAll Lo (o, < |ho — ha| + CTY2. (2.40)

In particular, taking dy small enough in (2.2), there exists 71 = T1 (R, o, dist(h1,092)) > 0 and ¢; > 0
such that

o~ o~

diSt(B(h(t) + hl), aQ) >c >0 Vie [O,Tl]. (2.41)

From now on, we assume 7' < T} and the constants may depend on 77.
Combining (2.6) and (2.38), we also deduce

IVX — Tl g o 1%) < CcTY/?, (2.42)

In particular, using the embedding H3(F(0)) — W1°(F(0)) and (2.41), there exists T5 < T such
that X : F(0) — F(h(t) + h1) is invertible and its inverse is denoted by Y.
In the same spirit, using the initial condition on p (see (2.29)), we have

P+ — pollLee 0,1 m3) < T'2R. (2.43)

Using the embedding H?(F(0)) < L*(F(0)) and (2.2) with §y small enough, there exists T3 < T
such that
P_~, —_3p
P« <P 2.44
5 SPHPS S (2.44)

In particular, combining this with (2.38), for any « € R,

< CT/?, (2.45)
H(0,T)

(0 +2)* | oo 0,313y < C, H/ (p+ p)'ndl
8B(0)

From the above construction and assuming 7" < T3, we can define the terms Fi, Fb, F3, Fy by
(2.16)-(2.19). To estimate these terms, we first give some estimates of X and Y:

Lemma 2.3. Assume (p, ﬂ,ZZ)) € St.r. There exists a positive constant C depending only on R,
F(0) such that, for all 0 < T < Tj,

T2, (2.46)

C
B 0%Y,

+ Pty

<C. (247)

Lo (0,T;H)

%Y,
ot

81:p893i

L= (0,T;H?

{ball fo

£

{13:43}

-~

0O E

[

est:h

12:07

~
-
=]
<
®
R
n
P}

-~
=
(%)
o
(@)
o
M.

{15:06}

~
=
=
o
o
'_l

i)
=
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Proof. From (2.42) and the fact that L°°(0,T; H?) is an algebra, we deduce (2.46). This yields in
particular that

0 8Yl Z 82Y, Xp
Y, 83:@ 8xp8xl
and using (2.48), we deduce the estimate on 8;?;; (X).

Writing

From the expression (2.6), we have %(VX(t, ) = Q(t)Vu(t,-), and using
;(VY(X)) = —VY(X);)(VX)VY(X)

we obtain the estimate of the second term in (2.47).
Finally, we write

0 |0 (0Y o [ 0%, 82Yl 8 0X,
L X — el Z(=Z2e
OYm [815 (8.%'1( ))] ; ot (axp(?xz > 8ym Z 8:61,83:@ 8 OYm

and from the previous estimate, we have
%Y, 0 (0X,
X
* |Zp: dzy0m o <8ym>

<C.

Jous L5 (5.9

Thus, using (2.48), we deduce the estimate of the last term in (2.47). O

g1
Lee(0,T5HY) Lo (0,T;H)

Next we give some properties on Fi, Fb, F3, Fy.

Proposition 2.4. There exist o« > 0 and a positive constant C' depending on R, ky, kq, p and the
other physical parameters, and on F(0) such that, for all 0 < T < T, for all

(ﬁa a?Zw%(ﬁl7al7zlaal)a(2)27172722762) S 'ST,R7

I1F1 (5, @, L, @, Q) 20,73 H3)n Lo (0,73 H2)nHL (0,13 12) < CT,
1P, 6,8, @)l o722y < C (T2 + llwio x ol + ool *Vpollan )
1F5(5, 0, b, 6,3, Q)| s 0.7y < C (T + lwo % Lo| + o] + [lpo — Bll . + lluol| ) ,
IF4(5, %, 6,8, Q)| ooy < CT,
and
IR a2, 8Y Q) = (PP W, 2,07, Q)| (o msmsynwee 15 (0.7:12)
<CTe|(pt ut, @t — (370 260 | sy s
IR @t 0,5, QY — Fa(p”, w2, 2,35%, Q) |y o.r2,m2y < CT|(B1, 0, 04,8 — (5°,02, 2,87 ||s,.,
IFs(pt, at bt 2@t QY — Fy(, 02, b2 2,57, Q) |l o) < CTOI( 4, 043" — (5%, 62, 2,07 | sy
IFs(p @t 0@t QY) — Fu(p”, 0, 2,57, Q) | oo,y < CT|(" 0", 0,8 ) — (7%, 0%, 2,87 ||s, -

where Q, Q', Q2 E, hl, h? e H3(0,T) are given by (2.39).



12 STABILIZATION OF A RIGID BODY MOVING IN A COMPRESSIBLE VISCOUS FLUID

Proof. Using the definition (2.16) of Fy, (2.43), (2.29), (2.38), (2.46) we have the following estimates

IFL | 20.7:03) < CIB + D)l oo 0,15 IVl 120 7.1 | ((VY)Q) T = Ts || oo (0,119
+ Cll(p+ 2 = po)ll Lo (o.1;m3) |l divull 20 1,13y < CT,

ou

R ou
ot

ot

1(VY)Q)" = Ts|l oo o)

< Cl(p+ D)l L0113 {HV
L2(0,T;L2)
L°°(0,T;H2)}

L2(0,T;L2)

\8«VYLX»QV

+IVal L20,7;m%)

ot
op _
/2| 9P - Y(X)Q)'
R N L oz (YN
_ o
+Cl5+7 = poll oo i) ||div o < COT®, (2.49) [{time de
Ot || 20,111

1| oo o m2) < CA+ Pl e 0.1 | V| oo (0.7:152) | ((VY)Q) T = Ts | oo (0,721
+ ClIF+ P = poll oo o5y | div Tl oo o 752y < CTH2

Let us now estimate the L?(0,T; H?) norm of Fy. Here we only estimate some terms in (2.17), the
other terms can be estimated similarly. Using (2.45), (2.29), (2.38), (2.46), (2.47),

1 0%u; oYy, Y]
H ( X : (X) - 5mp51p>

P+ 0 OymOy; \ Oxyp du L2(0,T;H?)
1 9, Y, . DY
<Cll—— ‘ 4 T (X)L (X) = Gmplip < COT*,
p+p Loo(0,T;H3) 6ym8yl L2(0,T;H?) 8$p 8.’1}p Lo (0,T;H?)
1 0w 8%, 1 0 0%Y;
p+p oy Oy L2(0,T;H?2) P+ Plieeo.r;m3) | OY1 ll Lo 0,3 m2) 1] O Lo°(0,T;H?2)
<CT?,
N O0p Y]
G+py gt
Ay O L2(0,T;H?)
e op Y,
<OTY1G+ o | 5 5 () <ore.
YillLee(0,1;H2) 1| OFj Lo (0,T;H?)

For the estimate of the H'(0,T; L?) norm of F,, we also only give the estimates the L2(0,T; L?)
norm of some terms of the time derivative F5. Again, the other terms can be estimated similarly.
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First, we write

0 1 0%, Y, Y,

ot {ﬁ+paym8yl ( Oz (X)aT:p(X) a 5mp51p>]

— — X)—(X) — 0
77 00 Bunt e Xy, )~

1 R ) ) 1 0%, 0 (0Yy, .. 0V
X X - Um ~ ~ X e X y
* (ﬁ+ ,0> MOYmOy, (axp( )axp( ) =9 pélp) * <p+p> ymOy1 Ot (axp( )axp( ))

a{ L om0 ]__ L Opom O ) 1 OO
ot | p+p oy 0x2 ~ (p+p)? 0t Oy Oz p+ p Oty Ox2

1 om0 [0
- Gu OO )
+ﬁ+paylat<axg( )>

1/% est}| Using (2.45), (2.29), (2.38), (2.46), (2.47), we deduce that the above terms is estimated in L?(0,T; L?)

by CT*.
Finally, to obtain the L>°(0,T; H') estimate of the term I, we use the following inequality [15,
Lemma 4.2]:
sup B0l < O(I Bz + 1Bl oriza) + B0l ).
te(0,T)
and since

1F2(0) |1 < llwo % wollzrr + llaved > Vool
we deduce the result for Fs.
It remains to estimate F3 and Fy. We only consider F3, the analysis for Fy is the same. From (2.18),
we can see that the time derivative of F3 involves the following terms (and similar ones)

@x 0, (k,QTh), kel / (Q’VWY(X) + QV%?VY(X) + QvagtW(X)>n dr

8B(0)

0
—ay / (p+ ,5)7_15?11 dr.
0B(0)
Almost all the terms can be estimated in a direct way in L2(0,T) by using (2.40), (2.45), (2.29), (2.38),
(2.46). We have nevertheless to take care of

ot
/ QV VY (X)n dr.

9B(0)
For this term, we use standard interpolation result (see, for instance, [2, Lemma A.5]) to obtain
du oul'* ou |[**
v <c|v v ,
ot L8/3(0,T;H/4) ot L>(0,T;L?) ot L2(0,T;H")

where C' is independent of T'. Using a trace result and (2.29), (2.38), we deduce an estimate of F§ in
L?(0,T) of the form CT®. To end the estimate of F3, we use that

1F3]| oo,y < |F5(0)] + T2 F3 )| 2 0.1 -
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We have the following estimate:

[ Gvpoynar|=| [ gnar)=| [ -gmar|<c [ -l
5(0) 5(0) 5(0) 8B(0)
Thus,
[F5(0)] < C (Jwo x Lo + [Col + [lpo = Pl + [[uollzr2) -
The estimates for the differences can be done in a similar way and we thus skip the corresponding
proof. O
2.4. Proof of Theorem 2.1.

Proof. We are going to establish the local in time existence of (2.7)-(2.19). In order to do this we use
a fixed-point argument.
Assume p > 0, &g satisfying the smallness assumptions introduced in the above section and let us

> 35
consider (po, uo, ho, Yo, wo) satisfying (2.1), (2.2). Recall that from (2.44), we have g < po < Ep and
thus, using Sobolev embeddings, there exists C1 > 0 depending on p, dyp and the geometry such that

C (llwo x wollzr + lavpd Vol + o x Lol + 6ol + llpo = Pl + Iluolls ) < Cady  (2:50)
where C is the constant appearing in Proposition 2.4 and where we have set

d0 = [lpo — Bll s + l[uoll s + |71 — hol + o] + |wo| < do.

We now fix R > 0 as B
R =2C1C1d, (2.51)

where (', is the continuity constant in estimate (2.33). We take T' < T3, where T3 = T3(R) is the time
obtained in the above section.
Let us define the following mapping

N: ST,R — ST,R (2.52)
(7,7, 6,3) = (5,0, £, D). (2.53)

For (p,4,£,&) € S, we define X by (2.6), h and Q by (2.39) and Fi, Fy, F3, Fy by (2.16)-(2.19).
u,

Then (p, Z,@) is the solution of

% +podivi = Fy(p,u,0,5,Q) in (0,T) x F(0), (2.54)

O _ P pg 21 (@) = BGLLS,Q) i (0.T) x F(0), (2.55)
ot po P0

m@ = F3(ﬁa aaEZ@Q) in (OaT)v (256)

J&' = Fy(p,u,0,3,Q) in (0,T), (2.57)

U=0+®x (y—hy) on (0,T)x dB(0), (2.58)

=0 in (0,T) x 0Q. (2.59)

p(0,) = po(-) =P, @(0,") =up(-) in F(0), (2.60)

00) =4y, @(0) =wo (2.61)

{est:F20

¢

{radius

t

{10:12}

{fixedpo
{fixedpo

{fixedpo

FEEE

{fixedpo

{fixedpo
{fixedpo

{fixedpo

i

{fixedpo
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In order to show that A is well-defined, we apply Proposition 2.2 to the above system. First we note
that (1.14)—(1.16) yield the compatibility conditions (2.30)—(2.32). More precisely, the first condition
is exactly condition (1.14). Using the expression of F» in (2.17), we have

o~~~ 1
|:F2(:07 U,E,W,Q)] (07 ) = —wo X ug + %vPO?

where po = ap]. Thus, (1.15) yields the second condition.
On the other hand, using the expressions of F3 and Fj in (2.18) and (2.19), we have

[Fs(ﬁ, @ZQQ)] (0,-) = —m(wo x £o) — o(ug, po)n dl’ — kqly,
05(0)

Fi325.Q) 0.9 =~ [ (v-ho) x olun. popnar.
aB(0)
These expressions of F3(0,-) and Fy(0,-) show that (1.16) gives the third condition (2.32). We thus

deduce from Proposition 2.2 the existence and uniqueness of (p,u,?,©) € Sp. Combining (2.33),
Proposition 2.4, (2.50) and (2.51), we obtain

o~ T~ R
158, 2.8) 57 < 5 +CT™.

In particular, taking 7" small enough, we deduce that ./\~f is well defined.
Next we show that N is a contraction. Let (p!,at, ¢!, @), (p?,u?, ¢2,5%) € Sr.g. For j = 1,2, we
set N(p7,a?, 07,07) := (p?,u/,#7,&7). Using Proposition 2.2 and Proposition 2.4, we obtain
|7 @t 0,80 — (.8, 2. &%) |s, < CT?)(7", @', 01,&") — (7%, 8. 5°) s,
Thus N is a contraction in Sy, for T small enough.
Finally, using (2.51) and (2.39), we deduce
13, @ £,@) s + 1 = Bl| ooy < Coo = C(Hpo = Plls + lluollgs + |1 — hol + [Co| + |w0!>

that yields (2.3). O

- 3. GLOBAL IN TIME EXISTENCE OF SOLUTIONS
solution

3.1. A priori estimates. We have already established a local-in-time existence result in Theorem 2.1.
In order to obtain the global in time existence of the solutions, we need an appropriate a priori
estimates. We recall that || - |5  is introduced in (1.13). We also introduce the following notation to

shorten the notation: for Z = LP or Z = WkP, we set:
Wp(2) = WE=(0,T; Z(F(1))), H{(Z) = HY0,T; Z(F(), for k=12,
WO (2) = LE(Z) = L0, T: Z(F(1)),  HNZ) = L3(Z) = L*(0,T; Z(F(1)).
The main tool to prove the global in time existence of the solutions is the following proposition:

rori est| Proposition 3.1. Let hy € QY and p > 0. Assume the feedback law (1.10) with (ky, kq) satisfying
(1.17). There exist g, Co > 0 with g9 < 0¢ such that if (p,u, h,{,w) is a solution of system (1.1)—(1.10)

with
[(p, u, W)HS < €0, (3.1) |{smallne



16 STABILIZATION OF A RIGID BODY MOVING IN A COMPRESSIBLE VISCOUS FLUID

then the following estimate holds:
1,0, ), .+ 13/ Eph = )=o) < Co(I(po, 0, €0, w0)llg, , + ox = o )

Proof. The proof follows closely the idea of [1, Proposition 8]. We only repeat some parts of the proof

to estimate (h; — h). We define
p*(t,z) =p(t,z) —p
and we rewrite (1.1)-(1.9) as follows

/ *

aa” +u- Vot 4 pdiva = folp*,u,h,w) t € (0.7), z € F(t),
%—dlva (u,p*) = fi(p*, u, h,w) te(0,7), x € F(t),
= — / o (u, 0 )N dT + Ty (hy — h(t)) — Fal(t) + fo(p™,u, how) ¢ € (0,T),
OB (1)
Juw' = — / (x —h) x c*(u, p* )N dL' + f3(p*,u, h,w) te(0,7),
0B(t)
N =t te (0,7),
u(t,x) =0, te (0,7), x € 09,
u(t,x) = 0(t) + w(t) x (z — h(t)), t e (0,T), x € 0B(t),
p*(07 ) = po — P, U(O, ) =wup in ./—"(0),
h(0) = ho, £(0) =Ly, w(0) = wo,
In the above system (3.3)
ngv j:i’ ?p:@> Fd:@’ ﬁ:ga X é
p p p p p p
o*(u, p*) = 2aD(u) + Adivuls — p*p*ls, p* =ayp’ 2,
and
( fO(P*7U7 h,W) = _p* leU,
1 1
Al u,hw) =—(u-V)u— <— > div (2uD(u) + A div ul
) == V)u= (5= o) aw 2 )
+(p* = av(p* +p) ) Vo',
* % a(p* +p)?
fo(p*u,hyw) =— / <p p (e 5 P) N dT,
aB(1)
* 1 5)Y
hune) == [ @-nx (s - ) v ar
aB(1)

\

We take € small enough in (3.1) so that

pr+p =

w\’c\

After some calculations (that we skipped here), we obtain

foll2z gy + ol arzy + ol ey + 11022 gy + Il oy + 111 o

+ Hf?H%{l(O,T) + Hf3||?{1(o7:r) S CH(/%U,E,W)H%

0,1

Y

(3.2) |{est:apr

{full sy
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and
ap* 2 ou
0,9 “+|=(0
ot ot

C <||Po = Pl + lluollzs + 10of” + [ho — ha|* + I foll7eo 12y + 1l T (grny + I follFee + ||f3\|%;o) :

2
)| O + [ (0)
Hl

In particular, if we can show

1o, I, |+ I Fp(s = )0y < C (1ol ars) + 1ol aazy + 1ol gy + 1l i
2 2 2 2 dp* 2 Ou 2
g iy + 1l 2y + 12l o) + 1 sl o,m) + || 7 (05 L2+Hpo Plls + 50 o
+ l[uollga oy + 1ho = b2 + 1€/(0) 2 + ol + o/ () + el + Il (o, w, )%, |
+lpoubw)lf, ). (3:4) [Grequire
then
(e )3, + IV/Enlhr = 0) 2oy < C(Ipou o)l + 11w )G,

+ 0 = Bl -+ Nl + Tho = a2 + 6ol + o).

The condition (3.1) with ¢ small enough combined with the above relation yields (3.2). The proof of
(3.4) is done below. O

The proof of (3.4) (that is necessary to finish the proof of Proposition 3.1) is done in a precise way
in [1, Section 4] in the case k, = 0 and kg = 0. The presence of the corresponding terms only changes
the two lemmas on time regularity (Lemma 13 and Lemma 14 in [1]). Here we state these two lemmas
in our case and give the idea of their proofs with a particular attention to the feedback term. Then
using these two lemmas and the elliptic results [1, Section 4], we can deduce (3.4) and thus end the
proof of Proposition 3.1.

ime regl| Lemma 3.2. Let k=0,1. For every € > 0, there exists a constant C > 0 such that

10 e 2y + el sy + Nl + w1y + Wl asco ) + Iollwsgon
+ Iy/Eplh = )=o) < & (107 22y + 1l o ) + Il 0.7

+ C(HfOHH;a(Lz) + 1l a2y + 2l me o,y + 113l e o)
+1lpo = Pllzz + l[uollzz + |h1 = hol + [fo] + |wo
|
L2

0]+ |G|+ O+ WO+ o £)E2 + ot ). (3.5) [Tsupoaos

L2
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Proof of Lemma 3.2. Case k = 0. We multiply equation (3.3); by p*p*/p, (3.3)2 by u, (

(3.3)4 by w:
t
/ < —[p** + Juf > dx—i—/ / (2E/D(w) > + N divul?) dzds
F) 0 Fs)

m J k —
TP 4+ 1w + 2Ol — bR + Fa [ 107 ds

¢ t
:/ /(fop*p*/p+f1-u)dxds+/(f2.g+f3_w)d8
0 F(s)
t

0
+// 27]p ]2dlvu+dlv<’u‘ >)dafds

0 F(s)

w‘ﬁ?ﬂ

t
0
Following standard calculation, we have

¢

2,,
// (\p \2dlvu+dlv(|’2 )) dx ds < CH(p,uﬁw)H
0

F(s)

F(0) F(0)

It only remains to estimate

/

Tr —
k
Ol = hP ds < [ 2l = hs) ds

o L

Tr s

< HE;HLOO(O,T) (Tf\hl — hol? +/ /E(z) dz

0 \0
By using Holder’s inequality and (1.17), we obtain

T
k k
/21’(s)|h1 — h(s)]*ds < C|hy — hol* + ?d / 0] ds.
0 0

Combining (3.6), (3.7), (3.9) and Young’s inequality, we deduce the result for k = 0.

p* 2 |uo|? m, 9
h 2d “1po —p|*d L ody + — e
s)|h1 — h(s)| 8+/2p\po Pl y+/ 5 y+2!o| +

2

3.3)3 by ¢ and

J
E\WO\Q. (3.6) |{express

(3.7) |{1-RHS3-

ds) . (3.8) |{est:spr

(3.9) |{1-RHS4}



STABILIZATION OF A RIGID BODY MOVING IN A COMPRESSIBLE VISCOUS FLUID 19

Case k = 1. By differentiating (3.3) with respect to t, we obtain:

i 8af)t>+(u-v)aapt paiv 5 = G te 1), @ e F),
% ?9?) — divo* (gu 88pt —- G te(0,T), z e F(),
e = / 0" (?Z 85; ) N dT + [kp(h1 = h(1))) = kal'(t) + G t € (0,T),

aB(t)

ou 0p*
"n_ _ | 2

OB(t)
hl _ E t 6 (07T)7
ou
o (ta) =0, te(0.7), z €99
aqz(t 2) =0 (t) + W' (t) x (z — h(t)) + Ga, te (0,7), z € 0B(t).

\

(3.10) |{full sy

where

=0 (2w)y = @ [ e mar

ot ot ot ot
AB(t)
Go= L [ V(=m0 N+ [ £ (0" )N ar,
aB(t) BB(t)
G4 = —(ﬁ : V)u

op* 0
As in the first case, we multiply equation (3.10); by @a—pt, equation (3.10)y by 6—1;, equation (3.10)3
p

by ¢, and equation (3.10)4 by w’. After some computations, we find

. 2 t 2
/(’27 gu )dm—l—// (2,;‘11)(?;) 8? )dmds
F(¢) P 0 F(s)

t

div —
1v 8
FDICOF + 51 OF +Ea [ 16()7ds
0

t t t
_ P Op° . Ot o [(Ou 9
_/ (Gop Y + Gy >dxds+/G2 0+ G3 w)d8+/ / Gy-0 <8t’ 8t)NalFals
0 0 0

0B(s)

2 p—
+A

ap* |2

ot

/ * * |2 / 1 oul?
. . u
+/ 27? d1vud1:ds+/ / §d1V (’675 u) dx ds
0 F(s) 0 9F(s)
t 9 o .
7 ' E dp* Ou iy (2 1 1(n |12
+ [Ee) i~ no)) - syas+ [ (QP L +5]50 )dy+2w<o>| + 1O
0 F(0)

(3.11) |{express
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We have the following estimates as in [1, Lemma 13]:

I1Goll72 2y + 1G1 1172 (12 +HG2IIL2(0T +1Gsl 220, + 1Gall 22 L2(0800)

ap*|” .. i ou
—|—// (‘(%‘ leU—I—d1V< 3 u)) dzr ds

<o (51, 3,

It only remains to estimate the term coming from the feedback:

H of ||

H o1z ||
L7(L?)

L2,(L2) £2(0,T) 12(0,7)

Hpsu b)E Moty ) (312) [19:32)

JEe) 0 = b)) ds = [ Es)(h — h(s)) - (s)ds = [ Fols)t(s) - ) s
0 0 0

and proceeding as in (3.8), we have the following estimates

t T
/[k:p(.s)(h1 —h(s))]"- ¥ (s)ds (m hol? + /|e 2ds) kd/\f’(s)|2d5. (3.13) |{2-RHS8}
0 0

We can estimate ||¢ H%Q(O ) With (3.5) for k = 0. With this remark and combining (3.11), inequality
(3.13) and the above estimates we deduce (3.5) for k = 1. O

ime reg2| Lemma 3.3. Let k = 0,1. There exists a constant C > 0 such that

du
ot

ap*
ot

+ 1 e 0.7y + 1 e 0,17
HE(L2)

C(IIP*IIW;m(Lz) + llull g ey + 1llwre oy + 1€l aeory + 1V Fp(Pr = B)ll L 0,1

+ [1foll a2y + Al g o2y + el o,y + 13l eom)
op ou
20 | o) I

+ [to] + 1€ O)] + lwo| + (o, € IZ® + 1oy, b, 0) 1 T). (3.14) [{est:tim

+ ||| 500 +'
HE(L?) WD

+ llpo — pllz2 + + [[uol| g +




STABILIZATION OF A RIGID BODY MOVING IN A COMPRESSIBLE VISCOUS FLUID 21

L (3.3)2 by 22, (3.3)3 by ¢ and

0 0
Proof of Lemma 3.53. Case k = 0. We multiply equation (3.3); by — 5

op-
ot
(3.3)4 by w'. After standard computations, we find

2+ ou
ot

e

F(s)

t
2
) dx ds + / (2m|D(u)* + A divul?) da;+/(m£’y2+J|w’\2) ds
F(t) 0

t
+ Fall(t))? — 2/ Ey(hy —h) - € ds
0

¢ ¢
éC’(/ / | div( (2D (u)|* + A| div ul?) u)|dxd8—|—/ / <p*p* div ?;; paap divu> dx ds
0

0 F(s) F(s)

//’675 (u-Vp)dzds+ [ |[Vuol*de + Ealto|”
0 F(s) F(0)

t t
+/ / (Ifol? + [A1?) dx+ | fo]* + | f5]? ds+/
0 (s) 0

/ Gy 0" (u,p*) Ndl dS). (3.15) |{express

0B(s)

The terms in the right-hand side of (3.15) can be estimated as in Lemma 14 in [1]. We only estimate

- /t Ep(h1 — h) - € ds = —F,(t)(h1 — h) - £(t) +/ (E;(hl Ryt —Epwy?) ds (3.16) [{for arn
0
0

and thus

}—/Otk:p(hl —h)-0 ds

t
<C <h1 — hol? + kplh1 — A2+ |6 + / z(s)st) .
0
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2 % 2

O (3.10) by 21

Case k = 1. We multiply (3.10); by —5- 52

dl\/ E

2 2
_ ou ou
)dxds—i— / (2/1‘1@((%) " >d:c
F(t)

t _
+/<?WW+£WV>“+%MW®P—W@W
0
t

t

(3.10)3 by ¢ and (3.10)4 by w”. Following

t

[ (%

2 2

2
Ou Y

ot

82 *
o2

- /k;(s)(hl —h(s))-£"(s)ds + /kp(s)ﬁ(s) A"(s)ds

0 0
(10 By + sy oy + Ve + 160 o
ol )+ LAl )+ Doy + Wby
ap 2 ou 2
0, 0,
=gl + | 57000 o)
IO+ O + ol + (o, L), + Npm by ). (317) [Corpress

We estimate the additional term due to the feedback:

+Mﬂm+‘

!/<@@xmhw»w%@+mwwwwwwnw
0

T t
m
<c|im —h0]2+/]£(s)]2ds +4/W(s)y2ds, (3.18) [{derivat
0 0

and this allows us to prove this case. O

3.2. Proof of Theorem 1.1.

Proof. We combine Theorem 2.1 and Proposition 3.1 to establish our result. Note that we can take
dp small enough in Theorem 2.1 so that (2.2) yields

hgy € Qo and pg > 0.
Since h; € QY there exists n > 0 such that
dist(h1,08) > 1+ 2n.

We can assume that dyp < n where dy is the constant in (2.2).
Let us fix

k(T
0 = min | o, 8—0, <0 , N kp(T%) , (3.19) |{choice
“ g (1 b ) Co
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where the constants dg, C, are appeared in Theorem 2.1, gy, Cy are introduced in Proposition 3.1.
Since (po, uo, ho, fo,wo) satisfies (1.18)-(1.19) and 6 < Jp, we can apply Theorem 2.1 to obtain the
existence of solution of system (1.1)—(1.10) in (0, 7%) and

I, 6. 0)lg, . + 1 = Bllzqory < Cu (o0, w0, 0,05, , + 11 = hol)
In particular, from (1.19) and (3.19),
1o, 0,0) 5, . + 11 = Bl ooz < Cud < 20 < . (3.20)

Thus dist(h(t),0Q) > 1 +n for ¢ € [0, T,] and Proposition 3.1 gives

(vl + IV Enln = W)l ey < Co (oo, o, forc)llgy, + Ia —hol) . (3.21)
Using that (p,u, h,¢,w) is solution of (1.1)—(1.10), one can check that
(p(Ts; ), w(Ts, ), M(TL), 6(Th), w(T3))
satisfies the compatibility conditions (1.14)-(1.16) and, from (3.20), we have
1(o(Tss ), (T, ), (L), (Tl 5y, o, + [P1 = P(T)] < Do

We can thus apply again Theorem 2.1 to extend our solution on (7%, 27}) and using (3.21), we find

s, s, . + I/ Enlhr — W)l qr, 2y
Cs <||(P( e )y (T, ), (L), (Tl gy, .+ 1P1 = h(T*)|)
C.Cy
< -9 s — . .
=X kp(T*) (H(pOauO’EO)wO)HSO’O + ‘h’l ho‘) (3 22)

Thus, combining (3.21) and (3.22), and using (3.19), we obtain

C.
(s, )5, .. + I Fpr =)l omy < Co [ 14+ ——== | (Il(p0, o, o, o), , + P = ol )
kp(T) ’
Ci
<a (1+>5<50.
kp(T%)
Applying Proposition 3.1, we deduce
(s, )lg, ..+ V(1 = W)lz=(2m) < Co (I1(po, o, bo,wo)llg, , + 01 = hol) . (3.28)
In particular dist(h(t),0Q) > 1+ n for t € [T, 2T]. Moreover, from (3.22) and (3.19),
Ci
H(p(QTM ')7”(2T*a '),E(QT*),W(2T*))||§2T*’2T* + |h1 - h(QT*)| < COW(S < €0 < do.
D *

Then, we repeat the argument on [jT%, (j + 1)7%], j € N* and we use that k, is non-decreasing to
conclude the proof. O

{00:23}

{useapri

{00:56}

{useapri
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- 4. PROOF OF THEOREM 1.2
behavior
This section is devoted to the proof of Theorem 1.2. First, from Theorem 1.1, we have

p—pe H (0,00 H*(F(t))), we H (0,00 H(F(t)), £ we H*0,00)
so that ([3, Corollary 8.9, p.214]),
tlirgo ”p(t, ) - EHHQ(}'(t)) =0, t]LIélo ||u(t, ')HHQ(}'(t)) =0, lim f(f) =0, lim w(t) =0. (41) {solid b

t—o00 t—o00

In the rest of the section, we show lim;_,~ h(t) = h; that completes the proof of Theorem 1.2. In
order to do this, we need the notion of weak solutions for the problem (1.1)-(1.9). First, we extend p
and v in R3 by the formula

p in F(t), u in F(t),
p=13" = pgin Bt), u= 4 l(t)+w(t) x (x—h(t)) =up in B(t),
0in R3\ Q. 0in R3\ Q.

Then we consider the following notion of weak solutions (see [9]).
ksol:def| Definition 4.1. A triplet (p,u,h) is a weak solution to (1.1)-(1.9) on (0,T) if
p=0, pelLl>0,T;L7(Q)NC(0,T); L' (), we L*0,T; Hy(%)),
w=AL(t) +w(t) x (x—h(t)) in Bt), h ={,

T
// [,Og(f + (pu) - V¢] dx dt =0,
0 R3

T
[ [ o5 + @000 %6+ 06) - ¥1020) div | asar o,
0 R

3

for any ¢ € C((0,T) x R?) and for any b € C1(R) such that V'(z) = 0 for z large enough;

/T/{(Pu).(;qf+(pu®u):]]])(¢)+apvdiv¢] drdi

0 R3

T T
= // (2uD(u) + Adivuls) : D(¢) dx dt + /w lydt, (4.2) |{continu
0

0 R3

for any ¢ € C°((0,T) x Q), with ¢(t,y) = Ly(t) +we(t) x (y — h(t)) in a neighborhood of B(t); for
a.e. t €10,T], the following energy inequality holds:

/<l)(zx>lu(t,$)|2+7a_lﬂ(tw)> dg;+/t/(2,u|D(u)|2+)\]divu|2) dz dt
Q 0 Q

¢
Lig@)*  a /
< _ 5 . :
<C / (2/)(07%) +’y—1p (0,2) | de+ [ w-£dt|;
0

{r(0)>0}
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and
p(0,) =po, (pu)(0,-) =g, h(0)= ho.

We now state a result on the weak compactness of the set of weak solutions to the problem (1.1)-(1.9)
obtained in [9, Theorem 9.1].

Theorem 4.2. Let (pn, un, hn) be a sequence of weak solutions to (1.1)-(1.9) on (0,T) x Q with the
initial condition (po n,uon, hon) and forcing term wy, for each n > 1. Assume that {wy} is a sequence
of bounded and measurable functions such that

wy, — w weakly * in L°°(0,T),
along with
pon — po in  LV(R?), (4.3)
Ponlon = qn —> ¢ in Ll(R3), (4.4)
where po, q satisfy the following compatibility conditions

lq|?

q=0 a.e. on the set {x € Q| py =0}, —— € L}(). (4.5)
Po
Moreover, let
lgo]* @ > / <1 a> | a >
= +——p)(0) ) dx — —— + )| dx 4.6
/ <2p0n 7-170) 2p0 410 (46)
{pon>0} {po>0}
and
hon — ho. (4.7)

Then there is a subsequence such that
pn—p in C([0,T); L' (R?)),
U, —u  weakly in  L*(0,T; H}(Q)),
hn, — h  uniformly in (0,7T).
where (p,u,h) is a weak solution of the problem (1.1)-(1.9) on (0,T") x Q with the initial conditions
(P0, ¢; ho)-
With the help of above result, we can now prove Theorem 1.2.
Proof of Theorem 1.2. From (1.21), there exist h* € Q° and {t,,} C R% such that
ty, — 00, 71113;@ h(tn) = h*.
Define

*

p = ]l]?(h*)ﬁ‘f' ]lg(h*)/?zs'
Writing
ptn, ) = p" = [p(tn) =PI F(e,) + PILF@) — Lrge) + o8[L50,) = Lgp-l,
and using (4.1), we deduce
ptn, ) 22 p* in LY(RY),
Pt Yultn,) 2220 in LY(R®),

ptn, ultn, )2 2220 in LY(R?).

{freisel

{freisel

{compati

{compati

T

{compati
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We set

Pon = p(tn)7
that satisfy (4.3), (4.4), (4.5), (4.6) and (4.7) with {po, > 0} = {po > 0} = . We also define

pn(t,z) = p(t +tn,x), up(t,z) =u(t+tn,x), hy(t)=h{t+1t,), Ca(t)=L{t+1n),

that is a weak solution to (1.1)-(1.9) in the sense of Definition 4.1 (since it is a strong solution) with
initial conditions (pon, Uon, hon) and with

From Theorem 1.1, we have that

Uy — U

hnﬁﬁ

wp(t) =

Uon = U(tn)a hOn - h(tn)a

kp(t)(hl - hn(t)) - kd&z(t)'

wyp, — W weakly *in L>°(0,T).
Thus, we can apply Theorem 4.2 and we deduce that up to a subsequence for T' > 0:
pn—p in C([0,T]; L' (R?)),

with (p, u, ﬁ) is a weak solution of (1.

p(0,-) =

and with

Moreover up to a subsequence,

/HID) U (t

The above limit and (4.8) yield

Consequently, (4.2) gives

/

RS

weakly in  L2(0,T; H} (Q)), (4.8)

in  L=(0,7),

D-(1.

p*,

@(t) =

9) such that
(p)(0,-) =0, h(0) = h*,

kp(8) (. — R(t)) — kal(t).

tn+T

My dt= [ DGt ey e 250

tn

D@ =0 in (0,T) x Q.
Thus, we deduce that u =0 in (0,7") x . In particular, we have E’(t) =0,Vte (0,7). This gives,

h=h*in (0,T).

T
a(p)? div ¢ dx dt = /kp ) - Ly dt,
0

for all ¢ € C°((0,T) x ), with ¢(t,y) = £y(t) + wg(t) X (y — h(t)) in a neighborhood of B(t). Then

we take

dive =0, ¢(t

so that

7'):

(h1 —

h*)¢(t) in B(t), with ¢ € C°((0,T)),

/\hl — h*Pkp(t)C(t) dt =0, ¥ ¢ € CP((0,T)).
0

Since, k, # 0, h* = hy.



1]

2]

STABILIZATION OF A RIGID BODY MOVING IN A COMPRESSIBLE VISCOUS FLUID 27

REFERENCES

M. Boulakia and S. Guerrero. A regularity result for a solid-fluid system associated to the compressible Navier-Stokes
equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(3):777-813, 2009.

Muriel Boulakia, Sergio Guerrero, and Takéo Takahashi. Well-posedness for the coupling between a viscous incom-
pressible fluid and an elastic structure. Nonlinearity, 32(10):3548-3592, 2019.

Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business
Media, 2010.

Philippe G. Ciarlet. Mathematical elasticity. Vol. I, volume 20 of Studies in Mathematics and its Applications.
North-Holland Publishing Co., Amsterdam, 1988. Three-dimensional elasticity.

Nicolae Cindea, Sorin Micu, Ionel Roventa, and Marius Tucsnak. Particle supported control of a fluid-particle
system. J. Math. Pures Appl. (9), 104(2):311-353, 2015.

B. Desjardins and M. J. Esteban. On weak solutions for fluid-rigid structure interaction: compressible and incom-
pressible models. Comm. Partial Differential Equations, 25(7-8):1399-1413, 2000.

S. Ervedoza, M. Hillairet, and C. Lacave. Long-time behavior for the two-dimensional motion of a disk in a viscous
fluid. Comm. Math. Phys., 329(1):325-382, 2014.

Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Math-
ematical Society, Providence, RI, 1998.

Eduard Feireisl. On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal., 167(4):281—
308, 2003.

Eduard Feireis] and Sarka Necasovd. On the long-time behaviour of a rigid body immersed in a viscous fluid. Appl.
Anal., 90(1):59-66, 2011.

Bernhard H. Haak, Debayan Maity, Takéo Takahashi, and Marius Tucsnak. Mathematical analysis of the motion of
a rigid body in a compressible Navier-Stokes-Fourier fluid. Mathematical News / Mathematische Nachrichten, 2018.
Matthias Hieber and Miho Murata. The LP-approach to the fluid-rigid body interaction problem for compressible
fluids. Fvol. Equ. Control Theory, 4(1):69-87, 2015.

Akitaka Matsumura and Takaaki Nishida. Initial-boundary value problems for the equations of motion of compress-
ible viscous and heat-conductive fluids. Comm. Math. Phys., 89(4):445-464, 1983.

Alexandre Munnier and Enrique Zuazua. Large time behavior for a simplified N-dimensional model of fluid-solid
interaction. Comm. Partial Differential Equations, 30(1-3):377-417, 2005.

Yoshihiro Shibata and Miho Murata. On the global well-posedness for the compressible Navier-Stokes equations
with slip boundary condition. J. Differential Equations, 260(7):5761-5795, 2016.

Takéo Takahashi, Marius Tucsnak, and George Weiss. Stabilization of a fluid-rigid body system. J. Differential
Equations, 259(11):6459-6493, 2015.

Juan Luis Vazquez and Enrique Zuazua. Large time behavior for a simplified 1D model of fluid-solid interaction.
Comm. Partial Differential Equations, 28(9-10):1705-1738, 2003.



	1. Introduction and main result
	Notation

	2. Local in time existence of solutions
	2.1. Lagrangian change of variables
	2.2. Analysis of a linear problem
	2.3. Estimates of the nonlinear terms
	2.4. Proof of local-in-time existence

	3. Global in time existence of solutions
	3.1. A priori estimates
	3.2. Proof of Theorem 1.1

	4. Proof of Theorem 1.2
	References

