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On Siegel’s problem for E-functions

S. Fischler and T. Rivoal

October 13, 2019

Abstract

Siegel defined in 1929 two classes of power series, the E-functions and G-functions,
which generalize the Diophantine properties of the exponential and logarithmic func-
tions respectively. In 1949, he asked whether any E-function can be represented as a
polynomial with algebraic coefficients in a finite number of confluent hypergeometric
series with rational parameters. The case of E-functions of differential order less
than 2 was settled in the affirmative by Gorelov in 2004, but Siegel’s question is
open for higher order. We prove here that if Siegel’s question has a positive answer,
then the ring G of values taken by analytic continuations of G-functions at algebraic
points must be a subring of the relatively “small” ring H generated by algebraic
numbers, 1/π and the values of the derivatives of the Gamma function at rational
points. Because that inclusion seems unlikely (and contradicts standard conjectures),
this points towards a negative answer to Siegel’s question in general. As intermediate
steps, we first prove that any element of G is a coefficient of the asymptotic expansion
of a suitable E-function, which completes previous results of ours. We then prove
that the coefficients of the asymptotic expansion of a confluent hypergeometric series
with rational parameters are in H.

1 Introduction

Siegel [20, p. 223] introduced in 1929 the notion of E-function as a generalization of the
exponential and Bessel functions. We fix an embedding of Q into C.

Definition 1. A power series F (z) =
∑∞

n=0
an
n!
zn ∈ Q[[z]] is an E-function if

(i) F (z) is solution of a non-zero linear differential equation with coefficients in Q(z).

(ii) There exists C > 0 such that for any σ ∈ Gal(Q/Q) and any n ≥ 0, |σ(an)| ≤ Cn+1.

(iii) There exists D > 0 and a sequence of integers dn, with 1 ≤ dn ≤ Dn+1, such that
dnam are algebraic integers for all m ≤ n.
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Siegel’s original definition was in fact slightly more general than above and we shall
make some remarks about this in §2.1. Note that (i) implies that the an’s all lie in a certain
number field K, so that in (ii) there are only finitely many Galois conjugates σ(an) of an
to consider, with σ ∈ Gal(K/Q) (assuming for simplicity that K is a Galois extension of
Q). E-functions are entire, and they form a ring stable under d

dz
and

∫ z

0
. A power series∑∞

n=0 anz
n ∈ Q[[z]] is said to be a G-function if

∑∞
n=0

an
n!
zn is an E-function. G-functions

also form a ring stable under d
dz

and
∫ z

0
; they are not entire in general but they can be

analytically continued in suitably slit planes.
The generalized hypergeometric series is defined as

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
:=

∞∑

n=0

(a1)n · · · (ap)n
(1)n(b1)n · · · (bq)n

zn (1.1)

where p, q ≥ 0 and (a)0 := 1, (a)n := a(a + 1) · · · (a + n − 1) if n ≥ 1. The parameters aj
and bj are in C, with the restriction that bj /∈ Z≤0 so that (bj)n 6= 0 for all n ≥ 0. We shall
also denote it by pFq[a1, . . . , ap; b1, . . . , bq; z]. Siegel proved that, for any integer p ≥ 1, the
confluent hypergeometric series

pFp

[
a1, . . . , ap
b1, . . . , bp

; z

]
(1.2)

is an E-function (in the sense of this paper) when aj ∈ Q et bj ∈ Q \ Z≤0 for all j. The
simplest example is 1F1[1; 1; z] = exp(z). If aj ∈ Z≤0 for some j, then the series reduces
to a polynomial. Any polynomial with coefficients in Q of hypergeometric functions of the
form pFp[a1, . . . , ap; b1, . . . , bp;λz], with parameters aj, bj ∈ Q and λ ∈ Q, is an E-function.

The E-functions

L(z) :=
∞∑

n=0

( n∑

k=0

(
n

k

)(
n+ k

n

))zn
n!
, H(z) :=

∞∑

n=0

( n∑

k=1

1

k

)zn
n!
, J0(z) :=

∞∑

n=0

(iz/2)2n

n!2

are not of the hypergeometric type (1.2), even with z changed to λz for some λ ∈ Q, but
we have

L(z) = e(3−2
√
2)z · 1F1

[
1/2; 1; 4

√
2z
]
,

H(z) = zez · 2F2

[
1, 1; 2, 2;−z

]
,

J0(z) = e−iz · 1F1[1/2; 1; 2iz].

(See [1, p. 509, 13.6.1] and [18].) These puzzling identities, amongst others, naturally
suggest to study further the role played by hypergeometric series in the theory of E-
functions. In fact, Siegel had already stated in [21] a problem that we reformulate as the
following question.

Question (Siegel). Is it possible to write any E-function as a polynomial with coefficients
in Q of hypergeometric functions of the form pFp[a1, . . . , ap; b1, . . . , bp;λz], with parameters
aj , bj ∈ Q and λ ∈ Q?
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It must be understood that λ and p can take various values in the polynomial. Siegel’s
original statement is given in §2.1 along with some comments. Gorelov [10, p. 514, The-
orem 1] proved that the answer to Siegel’s question is positive if the E-function (in the
above sense, not Siegel’s original one) satisfies a linear differential equation with coeffi-
cients in Q(z) of order ≤ 2. He used the pioneering results of André [2] on E-operators.
Gorelov’s theorem was reproved in [18] with a method also based on André’s results, but
somewhat different in the details. It seems difficult to generalize any one of these two
approaches when the order is ≥ 3, though Gorelov [11] also obtained partial results in the
case of E-functions solution of a linear inhomogeneous differential equation of order 2 with
coefficients in Q(z), like H(z) above.

In this paper, we adopt another point of view on Siegel’s question. Let us first define
two subrings of C; the former was introduced and studied in [6].

Definition 2. G denotes the ring of G-values, i.e. the values taken at algebraic points
by the analytic continuations of all G-functions.

H denotes the ring generated by Q, 1/π and the values Γ(n)(r), n ≥ 0, r ∈ Q \ Z≤0.

Here, Γ(x) :=
∫∞
0
tx−1e−tdt is the usual Gamma function that can be analytically

continued to C \ Z≤0. We can now state our main result.

Theorem 1. At least one of the following statements is true:

(i) G ⊂ H;

(ii) Siegel’s question has a negative answer.

We provide in §2.2 another description of the ring H, and explain there why the inclu-
sion G ⊂ H (and therefore a positive answer to Siegel’s question) seems very unlikely; as
Y. André, F. Brown and J. Fresán pointed out to us, this inclusion contradicts standard
conjectures.

The paper is organized as follows. In §2, we comment on Siegel’s original formulation
of his problem and make some remarks on the ring H. In §3, we prove that any element
of G is a coefficient of the asymptotic expansion of a suitable E-function (Theorem 3). In
§4, we prove that the coefficients of the asymptotic expansion of hypergeometric series pFp

with rational parameters are in H (Theorem 4). We complete the proof of Theorem 1 in
§5 by comparing the results of the previous sections.

Acknowledgements. We warmly thank Yves André, Francis Brown and Javier Fresán
for their comments on a previous version of this paper, and in particular for explaining to
us why the inclusion G ⊂ H cannot hold under the standard conjectures on (exponential)
periods.
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2 Comments on Theorem 1

2.1 Siegel’s formulation of his problem

In [21, Chapter II, §9], Siegel proved that the hypergeometric series of the type (1.2) with
rational parameters are E-functions, and named them “hypergeometric E-functions”. He
then wrote on page 58: Performing the substitution x 7→ λx for arbitrary algebraic λ and
taking any polynomial in x and finitely many hypergeometric E-functions, with algebraic
coefficients, we get again an E-function satisfying a homogeneous linear differential equa-
tion whose coefficients are rational function of x. It would be interesting to find out whether
all such E-functions can be constructed in the preceding manner.

Siegel obviously considered E-functions in his sense, which we recall here: in Defini-
tion 1, (i) is unchanged but (ii) and (iii) have to be replaced by

(ii′) For any ε > 0 and for any σ ∈ Gal(Q/Q), there exists N(ε, σ) ∈ N such that for any
n ≥ N(ε, σ), |σ(an)| ≤ n!ε.

(iii′) There exists a sequence of integers dn 6= 0 such that dnam are algebraic integers for
all m ≤ n and such that for any ε > 0 there exists N(ε) ∈ N such that for any
n ≥ N(ε), |dn| ≤ n!ε.

Again, by (i), there are only finitely many σ to consider for a given E-function. We have
chosen to formulate his problem for E-functions in the restricted sense of Definition 1
because the proof of Theorem 1 is based on results which are currently proven only in this
sense. However, a fortiori, Theorem 1 obviously holds verbatim if one considers E-functions
in Siegel’s sense. Note also that the function 1 − z is equal to the hypergeometric series

1F1[−1; 1; z] so that Siegel could have formulated his problem in terms of hypergeometric
series only, as we did. Despite the apparences, the E-function sinh(z) = 1

2z
(ez− e−z) is not

a counter-example to Siegel’s problem because 1
2z
(ez − 1) = 1F1[1; 2; z]; there is no unicity

of the representation of E-functions by polynomials in hypergeometric ones.
Moreover, the series in (1.2) may be an E-function even if some of its parameters are

not rational numbers. For instance, for every α ∈ Q \ Z≤0,

1F1

[
α + 1
α

; z

]
=

∞∑

n=0

(α + 1)n
(1)n(α)n

zn =

∞∑

n=0

α + n

α
· z

n

n!
=
(
1 +

z

α

)
ez

is an E-function. Thus, even though Siegel did not consider such examples, the notion
of “hypergeometric E-functions” could be interpreted in a broader way than he did in
his problem. Galochkin [9] proved the following non-trivial characterization, where E-
functions are understood in Siegel’s sense. (See [17] for a different proof for E-functions in
the sense of the present paper).

Theorem (Galochkin). Let p ≥ 1, a1, . . . , ap, b1, . . . , bp ∈ (C \ Z≤0)
2p be such that ai 6= bj

for all i, j. Then, the hypergeometric series pFp[a1, . . . , ap; b1, . . . , bp; z] is an E-function if
and only if the following two conditions hold:
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(i) The aj’s and bj’s are all in Q;

(ii) The aj’s and bj’s which are not rational (if any) can be grouped in k ≤ p pairs
(aj1, bj1), . . . , (ajk , bjk) such that ajℓ − bjℓ ∈ N.

It follows that hypergeometric E-functions with arbitrary parameters are in fact Q-
linear combinations of hypergeometric E-functions with rational parameters. Hence, there
is no loss of generality in considering the latter instead of the former in Siegel’s problem.

Another generalization of Siegel’s problem is the following. When q ≥ p ≥ 1, r :=
q − p+ 1 ≥ 1, aj ∈ Q and bj ∈ Q \ Z≤0, the function

pFq

[
a1, . . . , ap
b1, . . . , bq

; zq−p+1

]
:=

∞∑

n=0

(a1)n · · · (ap)n(rn)!
(1)n(b1)n · · · (bq)n

zrn

(rn)!
(2.1)

is an E-function. The special case q = p is that of confluent hypergeometric series, but
this family includes also Bessel’s function

J0(z) :=

∞∑

n=0

(−1)n
(z/2)2n

n!2
= 1F2

[
1, 1
1

; (iz/2)2
]
.

We recall that J0(z) = e−iz · 1F1[1/2; 1; 2iz] so that J0(z) is an example for Siegel’s problem
but this is not known for other parameters in the function (2.1) in general. It is natural
to ask the following question: is it possible to write any E-function as a polynomial with
coefficients in Q of functions of the form (2.1) with z replaced with λz, λ ∈ Q? It must be
understood that λ, p, q and q − p can take various values in the polynomial.

2.2 The ring H

For x ∈ C \ Z≤0, we define the Digamma function

Ψ(x) :=
Γ′(x)

Γ(x)
= −γ +

∞∑

n=0

( 1

n+ 1
− 1

n+ x

)
,

where γ is Euler’s constant limn→+∞(
∑n

k=1 1/k − log(n)), and the Hurwitz zeta function

ζ(s, x) :=
(−1)s

(s− 1)!
Ψ(s−1)(x) =

∞∑

n=0

1

(n+ x)s
, s ∈ N, s ≥ 2.

The polylogarithms are defined by

Lis(z) :=
∞∑

n=1

zn

ns
, s ∈ N∗ = N \ {0},

5



where the series converges for |z| ≤ 1 (except at z = 1 if s = 1). The Beta function is
defined as

B(x, y) :=
Γ(x)Γ(y)

Γ(x+ y)

for x, y ∈ C which are not singularities of Beta coming from the poles of Γ at non-positive
integers.

In this section, we shall prove the following result.

Proposition 1. The ring H is generated by Q, γ, 1/π, Lis(e
2iπr) (s ∈ N∗, r ∈ Q,

(s, e2iπr) 6= (1, 1)), log(q) (q ∈ N∗) and Γ(r) (r ∈ Q \ Z≤0).
For any r ∈ Q \ Z≤0, Γ(r) is a unit of H.

Proof. We first prove that for any r ∈ Q \ Z≤0, Γ(r) is a unit of H. Indeed, if r ∈ N∗,
then Γ(r) ∈ N∗ and 1/Γ(r) ∈ Q ⊂ H. If r ∈ Q \ Z, then by the reflection formula [4, p. 9,
Theorem 1.2.1], we have

1

Γ(r)
=

1

π
sin(πr)Γ(1− r) ∈ H

because 1/π ∈ H, sin(πr) ∈ Q ⊂ H and Γ(1− r) ∈ H.

From the identity Γ′(x) = Γ(x)Ψ(x) we obtain that, for any integer s ≥ 1 and any
r ∈ Q \ Z≤0,

Ψ(s)(r) =
Γ(s+1)(r)

Γ(r)
−

s−1∑

k=0

(
s

k

)
Γ(s−k)(r)

Γ(r)
Ψ(k)(r).

Since Γ(r) is a unit of H, we have ψ(r) ∈ H and it follows immediately by induction on

s that ζ(s, r) = (−1)s

(s−1)!
Ψ(s−1)(r) ∈ H for any s ≥ 2 and any r ∈ Q \ Z≤0. In particular

γ = −Ψ(1) and the values of the Riemann zeta function ζ(s) = ζ(s, 1) (s ≥ 2) are all in H.
Note that γ is not expected to be in G but that ζ(s) ∈ G for all s ≥ 2.

We have for any x ∈ C \ Z≤0 and any n ∈ N,

Ψ(x+ n) = Ψ(x) +

n−1∑

k=0

1

k + x
, (2.2)

and the identity Γ′(x) = Γ(x)Ψ(x) also implies by induction that, for any x ∈ C \ Z≤0, we
have

Γ(s)(x) = Γ(x)Ps

(
Ψ(x), ζ(2, x), . . . , ζ(s, x)

)
(2.3)

for some Ps ∈ Q[X1, . . . , Xs]. Furthermore, set p, q ∈ N, 0 < p ≤ q, and µ := exp(2iπ/q).
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Then,

Ψ
(p
q

)
= −γ − log(q)−

q−1∑

n=1

µ−np Li1(µ
n), (2.4)

Li1(µ
p) = −1

q

q∑

n=1

µnpΨ
(n
q

)
, p 6= q (2.5)

ζ
(
s,
p

q

)
= qs−1

q∑

n=1

µ−np Lis(µ
n), s ≥ 2 (2.6)

Lis(µ
p) =

1

qs

q∑

n=1

µnp ζ
(
s,
n

q

)
, s ≥ 2. (2.7)

We refer to [4, p. 14] for details. From (2.5) and (2.7), we deduce that Lis(µ
p) ∈ H for

any s ≥ 1 (with (s, µp) 6= (1, 1)); then (2.4) implies in turn that log(q) ∈ H. The numbers
log(q) and Lis(µ

p) are also in G.
The set of Identities (2.2)–(2.7) shows that H coincides with the ring generated by Q,

γ = −Ψ(1), 1/π, Lis(e
2iπr) (s ∈ N∗, r ∈ Q, (s, e2iπr) 6= (1, 1)), log(q) (q ∈ N∗) and Γ(r)

(r ∈ Q \ Z≤0).

Other units of H can be easily identified, which are also units of G (see [6, §2.2]):
the values of the Beta function B(x, y) at rational numbers x, y at which it is defined
and non-zero. It follows that π = Γ(1/2)2 = B(1/2, 1/2) and more generally Γ(a/b)b =
(a − 1)!

∏b−1
j=1B(a/b, ja/b), a, b ∈ N∗, are units of H. By the Chowla-Selberg formula [15,

p. 230, Corollary 2], periods of CM elliptic curves defined over Q are also units of H.
If Siegel’s problem has a positive answer, Theorem 1 yields G ⊂ H: any element of

G can be written as a polynomial, with algebraic coefficients, in the numbers γ, 1/π,
Lis(e

2iπr), log(q) and Γ(r) of Proposition 1. This seems extremely doubtful: we recall that
G contains all the multiple zeta values

ζ(s1, s2, . . . , sn) :=
∑

k1>k2>···>kn≥1

1

ks11 k
s2
2 · · · ksnn

,

where the integers sj are such that s1 ≥ 2, s2 ≥ 1, . . . , sn ≥ 1, all values at algebraic points
of (multiple) polylogarithms, all elliptic and abelian integrals, etc. For now, we have proved
that G∩H contains the ring generated by Q, 1/π and all the values Lis(e

2iπr), log(q) and
B(x, y), and it is in fact possible that both rings are equal.

It is interesting to know what can be deduced from the standard conjectures in the do-
main, such as the Bombieri-Dwork conjecture “G-functions come from geometry”, Grothen-
dieck’s periods conjecture, its extension to exponential periods by Fresán-Jossen, and the
Rohrlich-Lang conjecture on the values of the Gamma function; see [3, Partie III] and [8,
p. 201, Conjecture 8.2.5]. In a private communication to the authors, Y. André wrote the
following argument, which he has autorised us to reproduce here. It shows that G ⊂ H

cannot hold under these standard conjectures:
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Because of the presence of γ, the inclusion G ⊂ H does not contradict Grothendieck’s
period conjecture but it certainly contradicts its extension to exponential motives. More
precisely, in the description of H given in Proposition 1, we find γ (a period of an expo-
nential motive Eγ, which is a non-classical extension of the Tate motive [8, §12.8]), 1/π (a
period of the Tate motive), Lis(e

2iπr) (periods of a mixed Tate motive over Z[1/r]), log(q)
(a period of a 1-motive over Q), and Γ(r) whose suitable powers are periods of Abelian va-
rieties with complex multiplication by Q(e2iπr). On the one hand, let M be the Tannakian
category of classical mixed motives over Q generated by all these motives. On the other
hand, consider a non CM elliptic curve over Q and E its motive. The periods of E are
in G: indeed, it is enough to consider the Gauss hypergeometric solutions centered at 1/2,
and to observe that the periods of the fiber at 1/2 of the Legendre family can be expressed
using values of the Beta function at rational points by the Chowla-Selberg formula, and
in particular are algebraic in π and Γ(1/4). If G ⊂ H, the periods of E are in H. By
the exponential periods conjecture, E would be in M , which is impossible since the motivic
Galois group of M is pro-resoluble, while that of E is GL2.

We conclude this section with a question of J. Fresán: at which differential order can
we expect to find a counter-example to Siegel’s problem? Based on the above remarks,
it seems unlikely, for any fixed integer s ≥ 1, that all the values Lis(α) are in H, where
α ∈ Q, |α| < 1. From the proof of Theorem 3 below, we deduce that if Lis(α) /∈ H, then
the E-function

∞∑

n=2

( n−1∑

k=1

αk

ks

)
zn

n!

is such a counter-example. It is of differential order at most s+2 because it is in the kernel
of the differential operator P (θ − 2) + zQ(θ − 1) + z2R(θ) ∈ Q[z, d

dz
], where θ := z d

dz
and

P (x) := (x+ 2)(x+ 1)s+1, Q(x) := (x+ 1)(αxs − (x+ 1)s), R(x) := αxs.

It is thus possible that a counter-example to Siegel’s problem already exists at the order 3.
However, the function H(z) :=

∑∞
n=0(

∑n
k=1

1
k
) z

n

n!
is an example of order 3 to the prob-

lem (see the Introduction) and this shows that one must be careful and not draw hasty
conclusions here.

3 Elements of G as coefficients of asymptotic expan-

sions of E-functions

3.1 Definition of asymptotic expansions

As in [7], the asymptotic expansions used throughout this paper are defined as follows.
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Definition 3. Let θ ∈ R, and Σ ⊂ C, S ⊂ Q, T ⊂ N be finite subsets. Given complex
numbers cρ,α,i,n, we write

f(x) ≈
∑

ρ∈Σ
eρx
∑

α∈S

∑

i∈T

∞∑

n=0

cρ,α,i,nx
−n−α(log(1/x))i (3.1)

and say that the right hand side is the asymptotic expansion of f(x) in a large sector
bisected by the direction θ, if there exist ε, R,B, C > 0 and, for any ρ ∈ Σ, a function
fρ(x) holomorphic on

U =
{
x ∈ C, |x| ≥ R, θ − π

2
− ε ≤ arg(x) ≤ θ +

π

2
+ ε
}
,

such that
f(x) =

∑

ρ∈Σ
eρxfρ(x)

and ∣∣∣fρ(x)−
∑

α∈S

∑

i∈T

N−1∑

n=0

cρ,α,i,nx
−n−α(log(1/x))i

∣∣∣ ≤ CNN !|x|B−N

for any x ∈ U and any N ≥ 1.

This means (see [16, §§2.1 and 2.3]) that for any ρ ∈ Σ,

∑

α∈S

∑

i∈T

N−1∑

n=0

cρ,α,i,nx
−n−α(log(1/x))i (3.2)

is 1-summable in the direction θ and its sum is fρ(x). Using a result of Watson (see [16,
§2.3]), the sum fρ(x) is then determined by its asymptotic expansion (3.2). Therefore the
expansion on the right hand side of (3.1) determines f(x), up to analytic continuation.
The converse holds too: [7, Lemma 1] asserts that a given function f(x) can have at most
one asymptotic expansion in the sense of Definition 3. Of course we assume implicitly
(throughout this paper) that Σ, S and T in (3.1) cannot trivially be made smaller, and
that for any α there exist ρ and i with cρ,α,i,0 6= 0.

3.2 Computing asymptotic expansions of E-functions

In this section, we state [7, Theorem 5] which enables one to determine the asymptotic
expansion of an E-function. We refer to [7] for more details.

Let E(x) =
∑∞

n=1 anx
n be an E-function such thatE(0) = 0; consider g(z) =

∑∞
n=1

an
zn+1 .

Denoting by F : C[z, d
dz
] → C[x, d

dx
] the Fourier transform of differential operators, i.e. the

morphism of C-algebras defined by F(z) = d
dx

and F( d
dz
) = −x, there exists a G-operator

D such that FDE = 0, and we have ( d
dz
)δDg = 0 where δ is the degree of D. We denote

by Σ the set of all finite singularities of D and let

S = R \ {arg(ρ− ρ′), ρ, ρ′ ∈ Σ, ρ 6= ρ′} (3.3)
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where all the values modulo 2π of the argument of ρ−ρ′ are considered, so that S+π = S.
We fix θ ∈ R with −θ ∈ S (so that the direction θ is not anti-Stokes, i.e. not singular,

see for instance [13, p. 79]). For any ρ ∈ Σ we denote by ∆ρ = ρ − e−iθR+ the closed
half-line of angle −θ + π mod 2π starting at ρ. Since −θ ∈ S, no singularity ρ′ 6= ρ of D
lies on ∆ρ: these half-lines are pairwise disjoint. We shall work in the simply connected cut
plane obtained from C by removing the union of these half-lines. We agree that for ρ ∈ Σ
and z in the cut plane, arg(z − ρ) will be chosen in the open interval (−θ − π,−θ + π).
This enables one to define log(z − ρ) and (z − ρ)α for any α ∈ Q.

Now let us fix ρ ∈ Σ. Combining theorems of André, Chudnovski and Katz (see [2,
p. 719]), there exist (non necessarily distinct) rational numbers tρ1, . . . , t

ρ
J(ρ), with J(ρ) ≥ 1,

and G-functions gρj,k, for 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(ρ, j), such that a basis of local

solutions of ( d
dz
)δD around ρ (in the above-mentioned cut plane) is given by the functions

f ρ
j,k(z − ρ) = (z − ρ)t

ρ
j

k∑

k′=0

gρj,k−k′(z − ρ)
(log(z − ρ))k

′

k′!
(3.4)

for 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(ρ, j). Since ( d
dz
)δDg = 0 we can expand g in this basis:

g(z) =

J(ρ)∑

j=1

K(ρ,j)∑

k=0

̟ρ
j,kf

ρ
j,k(z − ρ)

with connection constants ̟ρ
j,k; Theorem 2 of [6] yields ̟ρ

j,k ∈ G.
We denote by {u} ∈ [0, 1) the fractional part of a real number u, and agree that all

derivatives of this or related functions taken at integers will be right-derivatives. We let

yα,i(z) =

∞∑

n=0

1

i!

di

dyi

(Γ(1− {y})
Γ(−y − n)

)
|y=α

zn ∈ Q[[z]] (3.5)

for α ∈ Q and i ∈ N. We also denote by ⋆ the Hadamard (coefficientwise) product of
formal power series in z, and we consider

ηρj,k(1/x) =

k∑

m=0

(ytρj ,m ⋆ gρj,k−m)(1/x) ∈ Q[[1/x]] (3.6)

for any 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(j, ρ). Then [7, Theorem 5] is the following result,

where Γ̂ = 1/Γ.

Theorem 2. In a large sector bisected by the direction θ we have the following asymptotic
expansion:

E(x) ≈
∑

ρ∈Σ
eρx

J(ρ)∑

j=1

K(j,ρ)∑

k=0

̟ρ
j,kx

−tρj−1
k∑

i=0

( k−i∑

ℓ=0

(−1)ℓ

ℓ!
Γ̂(ℓ)(1− {tρj})ηρj,k−ℓ−i(1/x)

)(log(1/x))i
i!

. (3.7)
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3.3 G-values as coefficients of asymptotic expansions

We can now state and prove the main result of this section.

Theorem 3. For any ξ ∈ G, there exists an E-function E(z) such that for any θ ∈ [−π, π)
outside a finite set, ξ is a coefficient of the asymptotic expansion of E(x) in a large sector
bisected by θ.

Proof. Let ξ ∈ G; we may assume ξ 6= 0. Using [6, Theorem 1], there exists a G-function

h(z) holomorphic at z = 1 such that h(1) = ξ. Let g(z) = h(1/z)
z(z−1)

. This function has a Taylor

expansion at ∞ of the form
∑∞

n=1
an

zn+1 , and E(x) =
∑∞

n=1
an
n!
xn is an E-function. Using

the results of [7] recalled in §3.2 we shall compute (partially) its asymptotic expansion at
infinity in a large sector bisected by the direction θ, for any θ ∈ [−π, π) outside a finite
set; we shall prove that the coefficient of ex in this expansion is equal to ξ. With this aim
in mind, we keep the notation of §3.2, including D and θ.

We let ρ = 1 (eventhough we still write ρ for better readability), and consider a basis
of local solutions of ( d

dz
)δD around ρ with functions f ρ

j,k and gρj,k as in §3.2. By Frobenius’
method, upon shifting tρj by an integer we may assume that gρj,0(0) 6= 0. Moreover, upon

performing Q-linear combinations of the basis elements and a permutation of the indices,
we may assume that tρ1 < . . . < tρJ(ρ) so that the solutions f ρ

j,k have pairwise distinct

asymptotic behaviours at 0, namely f ρ
j,k(s) ∼

gρj,0(0)

k!
st

ρ
j (log s)k. At last, dividing each f ρ

j,k

with gρj,0(0) we may assume that gρj,0(0) = 1 for any j.
Now consider the expansion

g(z) =

J(ρ)∑

j=1

K(ρ,j)∑

k=0

̟ρ
j,kf

ρ
j,k(z − ρ). (3.8)

Let T = {(j, k), ̟ρ
j,k 6= 0}. Since g is not identically zero, T is not empty. Let j0 ∈

{1, . . . , J(ρ)} be the minimal value such that (j0, k) ∈ T for some k, and let k0 be the
maximal value such that (j0, k0) ∈ T . Then on the right hand side of Eq. (3.8), the
leading term as z → ρ is given by (j, k) = (j0, k0), so that

g(z) ∼
̟ρ

j0,k0

k0!
(z − ρ)t

ρ
j0 (log(z − ρ))k0 (3.9)

since gρj0,0(0) = 1. Now recall that g(z) = h(1/z)
z(z−1)

with h(1) = ξ 6= 0 and ρ = 1; therefore

g(z) ∼ ξ
z−1

. Comparing this with Eq. (3.9) yields tρj0 = −1, k0 = 0, and ̟ρ
j0,0

= ξ.
Let us consider the asymptotic expansion given by Theorem 2, and especially the coef-

ficient of ex that we denote by α. This coefficient comes from the multiple sum in Eq. (3.7).
In this sum, we have ̟ρ

j,k = 0 for any j < j0 and any k (by definition of j0), so that these
terms do not contribute to the value of α. For any j > j0 we have tρj > tρj0 = −1 so that
−tρj − 1 < 0 and the corresponding terms do not contribute either. Therefore the value of
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α is given only by the terms corresponding to j = j0 (with tρj0 = −1):

α =

K(ρ,j0)∑

k=0

̟ρ
j0,k

k∑

ℓ=0

(−1)ℓ

ℓ!
Γ̂(ℓ)(1)ηρj0,k−ℓ(0).

Now recall that by definition, k0 = 0 is the maximal value of k such that ̟ρ
j0,k

6= 0.
Therefore the previous sum has (at most) one non-zero term: the one corresponding to

k = 0. Since Γ̂(1) = 1 and ̟ρ
j0,0

= ξ we have α = ξηρj0,0(0) = ξy−1,0(0)g
ρ
j0,0

(0) = ξ using
Eqns. (3.5) and (3.6). This concludes the proof that the coefficient of ex in the asymptotic
expansion of E(x) is equal to ξ.

4 Asymptotic expansion of the generalized hyperge-

ometric series

In this section, we prove the following result (recall that asymptotic expansions have been
defined in §3.1).

Theorem 4. Let θ ∈ (−π, π) \ {0}, and f(z) = pFp[a1, . . . , ap; b1, . . . , bp; z] be a hyperge-
ometric series with parameters aj ∈ Q and bj ∈ Q \ Z≤0. Then f(z) has an asymptotic
expansion

f(x) ≈
∑

ρ∈Σ
eρx
∑

α∈S

∑

i∈T

∞∑

n=0

cρ,α,i,nx
−n−α(log(1/x))i

in a large sector bisected by θ, with Σ ⊂ {0, 1}, S ⊂ Q and T ⊂ N both finite, and
coefficients cρ,α,i,n in H.

Proof. If one of the aj ’s is in Z≤0, the hypergeometric series is in C[z] and the conclusion
clearly holds with cρ,α,i,n in Q. From now on, as for the bj ’s, we assume that none of the
aj ’s is in Z≤0.

Let

R(s) = R(a, b; s) :=

∏p
j=1 Γ(aj + s)∏p
j=1 Γ(bj + s)

Γ(−s).

The poles of R(s) are located at −aj − k, k ∈ Z≥0, j = 1, . . . , p, and at Z≥0. We define
the series

Lp(a, b; z) =

p∑

j=1

∞∑

k=0

Residue
(
R(s)z−s, s = −aj − k

)
.

Set ν :=
∑p

j=1 aj −
∑p

j=1 bj , bp+1 := 1 and

ek,m := ek,m(a, b) :=

p+1∑

j=1

(1− ν + bj +m)k−m

∏p
i=1(ai − bj)∏p+1

i=1,i 6=j(bi − bj)
.
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We define a sequence Ck := Ck(a, b) by induction:

C0 := 1, Ck :=
1

k

k−1∑

m=0

ek,mCm,

and the formal series

Kp(a, b; z) := ez
∞∑

k=0

Ck(a, b)z
ν−k.

By [12, p. 283, Theorem], reproved in [19, p. 113, Theorem 4.1, Eq. (4.4)], we have in fact

Ck(a, b) =
∑

k1≥0,...,kp≥0,Kp=k

(1− ap)kp
∏p−1

j=1(aj+1 + bj+1 − aj)kj
∏p

j=1(Bj +Kj−1)kj∏p
j=1 kj !

,

where for any j, Bj =
∑j

m=1 bm and Kj =
∑j

m=1 km.
Note that Kp(a, b; z) ∈ ezzνQ[a, b][[1/z]].
In [14, p. 212], it is shown that as z → ∞ in the sector −3π

2
< arg(z) < π

2
, we have the

asymptotic expansion

pFp

[
a1, . . . , ap
b1, . . . , bp

; z

]
≈
∏p

j=1 Γ(bj)∏p
j=1 Γ(aj)

(
Lp(a, b; e

iπz) +Kp(a, b; z)
)
,

while if z → ∞ in the sector −π
2
< arg(z) < 3π

2
, we have

pFp

[
a1, . . . , ap
b1, . . . , bp

; z

]
≈
∏p

j=1 Γ(bj)∏p
j=1 Γ(aj)

(
Lp(a, b; e

−iπz) +Kp(a, b; z)
)
.

These two expansions satisfy Definition 3 above: they hold in a large sector bisected by
any θ ∈ (−π, 0), respectively any θ ∈ (0, π), and Lp(a, b; e

±iπz) and e−zKp(a, b; z) are
1-summable in the direction θ. Indeed, it is well-known that any hypergeometric series

pFp[a, b; z] admits an asymptotic expansion (1) in the sense of Definition 3, while Lemma 1
of [7] ensures that a function admits at most one expansion of this type in any given large
sector bisected by a given direction.

These asymptotic expansions are refined versions of Barnes and Wright’s fundamental
works [5, 22] and are consequences of the general expansion of Meijer G-function [14,
Chapter V]. Note that Meijer G-function is not related to Siegel’s G-functions, though
by specialization of its parameter the former provides examples of the latter. In the next
two subsections, we provide more explicit expressions for the function Lp(a, b; z) under the
assumption that the aj ’s and bj ’s are in Q \ Z≤0, in order to prove that all coefficients of
the asymptotic expansion belong to H.

1When the aj ’s and bj’s are in Q as in our application, pFp[a, b; z] is an E-function and Theorem 2
above proves the existence of this expansion. But the proof of this theorem does not need this assumption
for the hypergeometric series, so that the general case follows as well.
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4.1 R has simple poles

If the aj’s are pairwise distinct modulo Z, then the poles of R(s) are simple, and we have

Lp(a, b; z) =

p∑

j=1

∞∑

k=0

(−1)k
Γ(aj + k)

∏p
i=1,i 6=j Γ(ai − aj − k)

k!
∏p

i=1 Γ(bi − aj − k)
z−aj−k.

When the aj ’s and bj ’s are in Q \ Z≤0,
∏p

j=1
Γ(bj)

∏p
j=1

Γ(aj )
Lp(a, b; z) is thus equal to a finite sum

∑

j

z−ajfj(z)

with fj(z) ∈ H[[1/z]]. Note that the element 1/π ∈ H appears through the use of the
reflection formula 1

Γ(s)
= 1

π
sin(πs)Γ(1− s) for rational values of s.

4.2 R has multiple poles

We assume that the aj ’s and bj ’s are in Q \ Z≤0. Up to reordering the aj ’s, we can group
them in ℓ groups as follows: for m = 0, . . . , ℓ− 1, we have

ajm+1, ajm+2, . . . , ajm+1
equal modZ, ajm+1 the smallest one in the group,

where the ajm are pairwise distinct mod Z for m = 1, . . . , ℓ, and 0 = j0 < j1 < j2 < · · · <
jℓ = p.

Then, for every j ∈ {jm + 1, . . . , jm+1}, we have

Γ(aj + s) = (ajm+1 + s)aj−ajm+1
Γ(ajm+1 + s).

Set dm := jm − jm−1 ≥ 1, cm := ajm−1+1 and

P (s) :=

ℓ−1∏

m=0

(
jm+1∏

j=jm+1

(ajm+1 + s)aj−ajm+1

)
∈ Q[s].

Hence,

R(s) = P (s)Γ(−s)
∏ℓ

m=1 Γ(cm + s)dm∏p
m=1 Γ(bm + s)

.

To compute the residue of R(s)z−s at s = −cn − k for given n ∈ {1, . . . , ℓ} and k ∈ Z≥0,
we write

Γ(cn + s) =
Γ(cn + s+ k + 1)

(cn + s)k(cn + s+ k)

and define

Φcn,k(s) := z−sP (s)Γ(−s)
∏ℓ

m=1,m6=n Γ(cm + s)dm
∏p

m=1 Γ(bm + s)
· Γ(cn + s+ k + 1)dn

(cn + s)dnk
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which is holomorphic at s = −cn − k. We thus deduce from

R(s)z−s =
Φcn,k(s)

(cn + s+ k)dn

that

Residue
(
R(s)z−s, s = −cn − k

)
=

1

(dn − 1)!
Φ

(dn−1)
cn,k

(−cn − k).

It follows that
∏p

j=1
Γ(bj)

∏p
j=1

Γ(aj )
Lp(a, b; z) is equal to a finite sum

∑

j,ℓ

z−aj log(z)ℓfj,ℓ(z)

with fj,ℓ(z) ∈ H[[1/z]]. This concludes the proof of Theorem 4.

5 Application to Siegel’s problem

We now complete the proof of Theorem 1. Assume that Siegel’s question has an affirmative
answer, and let ξ ∈ G. Theorem 3 provides an E-function E(z) and a finite set S ⊂ (−π, π)
such that for any θ ∈ (−π, π) \ S, ξ is a coefficient of the asymptotic expansion of E(z) in
a large sector bisected by θ. Now an affirmative answer to Siegel’s question yields n pFp

hypergeometric series f1, . . . , fn with rational parameters, n algebraic numbers λ1, . . . , λn,
and a polynomial P ∈ Q[X1, . . . , Xn], such that E(z) = P (f1(λ1z), . . . , fn(λnz)). Choose
θ ∈ (−π, π) \ S such that θ + arg(λi) 6∈ πZ for any i ∈ {1, . . . , n}. Then Theorem 4
implies that for any i, the asymptotic expansion of fi(λiz) in a large sector bisected by
θ has coefficients in H. The same holds for E(z) = P (f1(λ1z), . . . , fn(λnz)) because H

is a Q-algebra. Since such an asymptotic expansion is unique (see §3.1), the coefficient ξ
belongs to H. This concludes the proof.
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21 (1993), Soc. Math. France, Paris.

[17] T. Rivoal, A new proof of Galochkin’s characterization of hypergeometric G-functions,
preprint (2018), 12 pages.

[18] T. Rivoal, J. Roques, Siegel’s problem for E-functions of order 2, preprint (2016), 14
pages.

[19] H. Volkmer, J. J. Wood, A note on the asymptotic expansion of generalized hypergeo-
metric functions, Analysis and Applications 12.1 (2014), 107–115.
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