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Abstract. In the case of coverage biased random testing of programs,
random generation is used to first draw a set of paths from the control
flow graph of the program. Then, some solver is used for trying to derive
input values that leads the program to traverse these paths at run time.
A well-known problem is that not all paths of the control flow graph
correspond to feasible runs. Such paths must be rejected and other paths
must be drawn. This is a severe limitation in the case of programs with
a high ratio of infeasible paths.

We propose a new technique that uses the information about the infea-
sible prefixes already detected to prevent any of their extensions from
being drawn. Based on uniform drawing from all the paths, our drawing
algorithm remains uniform among the paths that do not have a known
infeasible prefix. As the number of infeasible paths is often large, their
elimination from the subsequent drawings is a substantial improvement
w.r.t. the classical rejection method. Preliminary experiments are re-
ported and commented.

Keywords: structural random testing · uniform drawing of paths · in-
feasible paths.

1 Introduction

We consider the problem of drawing uniformly at random paths of a bounded
length from a given graph, avoiding some finite set of infeasible paths. This set
is dynamically defined: after each drawing the set of infeasible paths may be
extended to exclude additional paths from future drawings. The set of infeasible
paths is not known beforehand but evolves with the drawings.

Our motivation comes from the domain of computer program testing. In
structural testing, a piece of program code is represented by its Control Flow
Graph (CFG) and the quality of a test set for this program is expressed as
some covering of structural elements (vertices, edges, subsets of paths, etc) of
its CFG. A set of paths is selected that satisfies a given coverage criterion.
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Then for each path the program is processed by symbolic execution to obtain a
logical formula, called the path condition, that states the constraints between the
input parameters that must hold for a program run to follow that path. A path
condition has the form Φ1 ∧ Φ2 · · · ∧ Φq. Finding a tuple of values that satisfy
this formula, usually with some SMT solver, provides a test case.

In structural random testing [27], this set of paths is selected by random
uniform drawing in the set of all paths of length less that some bound fixed by
the tester [2, 11]. In contrast to other approaches (input-based random testing
or fuzzy testing [22, 15], concolic testing [29, 14, 26, 9]), all paths have the same
probability to be drawn. It offers a natural alternative when exhaustiveness is
out of reach. Moreover, it provides a probabilistic measure of the quality of a
test set (see for instance [11]).

A well-known drawback of testing methods based on selection of paths, being
randomised or not, is that not all paths in the CFG correspond to actual runs
of the program : infeasible paths traverse contradictory conditions and no tuple
of input values can make the execution follow these paths. Infeasibility appears
during symbolic execution: when traversing a branch of a conditional statement,
a new conjunct Φ representing the condition for traversing the edge at that point
in the path is added to the current path condition, possibly falsifying it. The
path condition is built step-by-step and one can discard a path as soon as its
shortest infeasible prefix is detected.

This leads to the following classical rejection method [11] where drawing
is performed uniformly at random among all the paths of the CFG, discard-
ing an infeasible path as it comes and drawing a new one hoping for a better
chance. However, it is very likely for a piece of code to have infeasible paths
and their number can greatly outnumbers the feasible ones. In such cases, the
efficiency of the rejection method is severely affected. Moreover, as the ratio
feasible/infeasible paths is usually unknown before drawing, it is difficult to an-
ticipate the problem.

In this paper, we present a new method, which uses the information about
infeasible prefixes for the drawing itself, precluding the drawing of any path
that extends one of the infeasible prefixes that have been already detected. This
method provides uniform drawing among all paths without known infeasible
prefixes. When the number of infeasible paths is large, this yields a substantial
improvement w.r.t. the classical rejection method.

A by-product of this new method is that adding feasible paths already drawn
to the set of forbidden prefixes makes it possible to draw uniformly at random
without replacement paths of bounded length, presenting some similarities with
the work described in [21] for non redundant generation for weighted context-
free grammars. In the case of program testing, this gives a way to enumerate all
feasible paths of given length when their number is not too large.

The paper is organised as follows: Section 2 illustrates our approach to struc-
tural random testing and recalls the recursive method for generating combina-
torial structures; Section 3 describes our new drawing algorithm and gives some
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Function gcd(int x, int y)

1 let a = x;
2 let b = y;

3 while a 6= b do
4 while a > b do
5 a← a− b;
6 while b > a do
7 b← b− a;

8 return a;

1

a := x

2

3

b := y

8

45

67

9

a ≠ b
a > b

b > a

a := a−b

b := b−a

a ≤b b≤a

a = b Skip

Fig. 1: The gcd program and its associated CFG

complexity results; Section 4 reports results of a set of experiments. Section 5
contains a brief comparison with related works and concludes.

2 Preliminaries

2.1 Introducing infeasibilities

We first illustrate the problem on a simple example. Then we recall some char-
acteristics of infeasible paths and sub-paths.

Consider the program from [1] for computing the greatest common divisor:
its pseudocode and associated CFG are given in Figure 1.

The CFG contains three groups of infeasible paths:

– paths that enter the external loop but not any of the internal ones,
– paths that traverse the first internal loop, do not enter the second one and

finally enter the external loop again,
– paths that exit the external loop, enter it again and do not enter the first

internal loop.

Here, the dependencies between the three loops are simple: the set of feasible
paths of gcd is a regular language 1. In the CFG there are 15478 paths of maximal
length l = 30 but only 792 are feasible ones. Although this program is fairly small
and the sources of infeasibility of its paths are simple, it illustrates pretty well the
problem of infeasible paths for white-box testing: when drawing a path uniformly
in the CFG, its probability of being feasible would only approximately be 0.05.

1 Here finite-state automata techniques or abstraction techniques as those in [1] allow
to build a (larger) graph with only feasible paths. See Fig. 3.
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This ratio decreases for larger values of l (0.003 and 0.000003, for l = 50 and
100 respectively). A well-know fact in structural testing: the longer the path,
the more likely it is infeasible.

We leave to some external procedure to decide whether a path is acceptable or
not, keeping our drawing routine generic: it is only notified about the prefixes of
paths to exclude. Infeasibility, as characterized above, is merely a specialisation
that fits program testing. In the sequel, we use the word infeasible prefix/path
for any prefix/path that must no longer be drawn, whatever the reason. The
only property of path infeasibility we use is that it is prefix-based: a path is
infeasible because it starts with a prefix declared as such and any extension
of that prefix is infeasible. The set of infeasible prefixes can be extended after
each drawing, but it would make no sense to declare some prefix as infeasible
after having allowed some of its extensions: we rely on the fact that notifications
report shortest infeasible prefixes.

2.2 Our prototype for structural random testing

Drawing paths in CFG using a specialisation of the classical recursive method
for random generation of combinatorial structures [Wilf, Flajolet, and many
others] has been first published in [10]. The work in [11] describes coverage-
based random exploration of large models described as graphs (CFG, Extended
FSM, etc) and [23] investigates several methods of drawing paths uniformly at
random in very large models. The method is implemented in the Rukia package 2

yielding effective drawing of paths of several hundred edges in graphs with billion
of vertices. Related works are reported in [4], [6] and [7].

Rukia is a tool for drawing paths in any kind of graphs and does not take
into account the semantics of this graph. For structural program testing we have
developed the Auguste prototype that relies on Rukia for the drawing.

In its former version Auguste works as follows: in a preamble it constructs
the CFG (or some variants of it), translating it to Rukia. Then it asks Rukia

for some number of paths, checks each of them for feasibility with the Z3 SMT
solver 3, discards all infeasible paths, and iterates until reaching the desired
number of feasible paths. Rukia simply draws the requested number of paths,
each one independently from the others, before returning the resulting set.

In the new prototype, Auguste and Rukia have a client/server relationship:
Rukia has been modified to react to a set of commands: loading a graph, drawing
paths in the current graph, handling a new infeasible prefix or providing the
current number of paths in the graph. Auguste uses the same preamble as before
but asks paths one at a time: whenever it detects that a drawn path is infeasible,
it notifies Rukia with the shortest infeasible prefix in that path as a request to
exclude extensions of that prefix from future drawings. Rukia drawing routine
has been modified to handle infeasible prefixes, still being uniform on all paths
without known infeasible prefixes. The system is depicted in Fig. 2.

2 http://rukia.lri.fr
3 https://github.com/Z3Prover/z3
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Fig. 2: The Auguste prototype for program testing

2.3 Drawing paths with the classical recursive method

We consider a graph G with (unique) root s0 and (unique) final vertex sf . We
assume that s0 has no incoming edge and sf has no outgoing edge and we want
to draw uniformly at random path of length n from s0 to sf . In the recursive
method, before any drawing Rukia computes a table f(s, l), where s is a vertex
and l a length, that stores the number of paths from s to sf of length l. In
particular, f(s0, n) is the number of paths of length n from s0 to sf . The length
of a path is defined as its number of edges. Note that paths are never empty and
always start with s0.

The computation of f is based on the following relations:

f(si, j) =
∑

si→sk∈G
f(sk, j − 1) f(s, 0) = 0 for s 6= sf f(sf , 0) = 1 (1)

Given G, n, s0, sf and the table f , Algorithm 1 draws a path p of length n
from s0 to sf uniformly at random.

Algorithm 1 : drawing uniformly at random a path p of length n

s = s0; p = s0; l = n;
while (l > 0) {

draw s′ among the successors sk of s with probabilities f(sk, l − 1)/f(s, l);
s = s′; p = p.s′; l = l − 1;
}

The memory space requirement for the table f(s, l) is O(n × q) where n is
the length of the paths and q is the number of vertices of G. The number of
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arithmetic operations for its construction is also O(n × q) 4. This construction
is performed once. Then the time complexity of each drawing is linear in n.

Drawing a path of length ≤ n from s0 to sf uniformly at random (u.a.r.)
is done by adding in G an edge from sf to itself, implicitly padding at the end
paths that are shorter than n. In the sequel we therefore only consider path with
the exact requested length.

In the previous version of our prototype, when an infeasible path is drawn
it is simply discarded and a new drawing is performed. This is the classical
drawing with replacement model for which numerous mathematical results exist,
for instance about the expectation of the number of drawings for collecting the
full collection of paths (“Coupon Collector Problem”, see for instance [13]).

In the next section we describe a method for drawing u.a.r. paths of length
≤ n given some finite set F of infeasible prefixes where:

– no path with a prefix in F can be drawn.
– F can be extended with a new prefix before the next drawing.

3 A new approach: taking into account detected
infeasibilities when drawing

The underlying idea of the new drawing algorithm is that instead of using the
number of suffixes starting from the last vertex of the prefix currently built, in
some cases it uses the number of suffixes of the prefix itself, hence generalizing
counting to prefixes. This makes it possible to give a probability zero to draw
paths with detected infeasible prefixes.

Suppose that a path of length n is drawn but detected as containing an
infeasible prefix p.s.s′ 5(with no shorter infeasible prefix). Let l the length of
p.s and K = f(s′, n − l − 1). All K paths with prefix p.s.s′ must be excluded
from the future drawings. A naive attempt of solution would be to decrement
K from the values stored in f(x, n − |r.x|), for all subprefixes r.x of p.s.s′, up
to the modification of f(s0, n), as if the corresponding paths never existed. In
particular f(s′, n − l − 1) becomes 0, preventing s′ to be chosen to extend p.s
in Algo 1. Alas this attempt is incorrect since an entry f(x,m) is shared by all
prefixes from s0 to x of length n−m. Counting must now be prefix dependent.

Given F the current set of infeasible prefixes, we apply this idea by comple-
menting f with a table fF similar to f but with prefixes instead of vertices as first
component. A reasonably efficient implementation is obtained by maintaining a
trie data structure along the detections of infeasibilities. More precisely:

4 If we were to use very large numbers, as Rukia can do, we should consider the
binary complexity of operations, yielding a O(n2 × q) complexity for memory and
construction of the table and O(n2) for the drawing. For program testing we stay
beyond such limits as feasibility of very long paths is unlikely [30, 25].

5 Prefixes are never empty, always starting with s0. The notation p.s.s′, where p can
be empty, emphasizes the arc s.s′ that can lead to an infeasibility.
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– entries in fF are built lazily, only for prefixes of infeasible prefixes; for other
prefixes, the standard f table is accessed with the last vertex of the prefix;

– fF is implemented with maximal sharing, using a trie (“prefix tree”) CF
where keys are the elements of F and all their prefixes. The value fF (p, l)
of such a prefix p is the current number of paths from p to sf of length l.
This value takes into account all extensions of p that can have been possibly
removed because of the infeasible prefixes already detected.

When an infeasible prefix is notified, a decrease of the current number of
paths propagates in the trie from the new infeasible prefix up to s0 (viewed as
a prefix with a single vertex). Hence s0 will be included in CF . Elements of F
appears at the leaves of the trie with associated value 0. The propagation can
put to 0 the value of existing nodes of the trie, as if the corresponding prefixes
were infeasible. This prevents the drawing algorithm from entering “dead ends”
whose extensions are all infeasible at some later point.

Initialisation of CF Initially F = ∅ but for its representation, CF , we use a
trie with the unique key s0 mapped to value f(s0, n) so that we can start the
drawing with some prefix in CF .

Drawing in presence of infeasible paths Using f , CF and fF , the new
drawing algorithm becomes

Algorithm 2 : drawing uniformly at random a path p of length n with fF

let count(p.x, l) = if p.x ∈ CF then fF (p.x, l) else f(x, l);

s = s0; p = ε; l = n;
if count(s0, n) == 0 then fail(”no more path to draw”);
while (l > 0) {

draw s′ among the successors sk of s with proba. count(p.s.sk, l − 1))/count(p.s, l)
s = s′; p = p.s′; l = l − 1;
}

With Algo. 2, as long as the current prefix is drawable and stays within CF
it is feasible, thanks to the fact that we are notified with shortest infeasible
prefixes. In addition to returning a path, Rukia now provides the length of its
longer prefix included in CF : feasibility check of any shorter prefix of that path
can be skipped 6. Rukia also provides fF (s0, n), the current number of paths
still drawable, i.e. free of any known infeasible prefix.

6 Checking for feasibility is performed by the system that calls Rukia; that system
might record itself the longest feasible prefix detected in each drawn path but that
information is now provided by Rukia at no cost.
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Adding an infeasible prefix: Handling a new infeasible prefix mainly amounts
to grafting a new branch in the trie using standard textbook algorithms, and
propagating the decrease of the value K along that branch up to the root.

Let F , CF , fF and f as above, and let r a prefix of a path drawn with CF
that is detected as infeasible, F ′ = F ∪ {r} and CF ′ its trie.

We observe that Algo. 2 guarantees that neither r nor one of its subprefixes
is in F , otherwise r would not have been drawn at all.

Algorithm 3 : Updating CF to CF ′

let K = count(r, n− |r|);
Graft a branch in CF using the subprefixes of r for keys and labelling nodes p.x with
value f(x, n− |p.x|) for prefixes not already in CF ;
For r and all its subprefixes, substract K from their value in CF .

We first add to the trie all the subprefixes of r not already existing, before up-
dating the values of all nodes of the branch for r up to the root. By construction
r have associated value 0 in CF ′ and is no longer drawable.

Pruning the trie: The decrease of K upwards in CF can set 0 for value of
a prefix not in F but whose extensions are all infeasible at some later point.
Future drawing of such prefix will be now impossible with Algo. 2. Any subtree
in CF with a 0 value can be pruned (leaving only the uppermost such vertex),
thereby decreasing the size of the trie. When removing feasible paths in addition
to infeasible ones, this gives a halting condition for an enumeration of all feasible
paths: no vertex left in the trie!

Complexity: With respect to Algo. 1, the additional complexity in memory
space and time comes from the management of the trie. We consider, as in our
current implementation, the graph to have degree 2, by (unelegantly) represent-
ing switch statement by cascades of if. Otherwise, with a basic implementation,
we would have an additional δ factor, where δ is the degree of the graph.

The worst memory requirement for the trie occurs when after each drawing
the prefix elimination adds some vertices (at most n) to the trie and no pruning
occurs. This happens when enumerating paths in a graph with only feasible
paths: each drawing forbids exactly one path that is added (up to some sharing)
to the trie. For instance, consider drawing in a full binary tree of height n, with
the sequence of drawings reaching one leaf over two in a left-to-right traversal
of the tree. The largest trie is obtained after drawing half of the paths, before
pruning starts, and it contains all internal nodes and half the leaves of the full
binary tree of height n. Hence worst-case complexity is O(min(m×n, 342n− 1)).

In practice, pruning usually prevents to reach this worst-case, and even main-
tains low the size of the trie when the killing factors of the prefixes in G are high.
Using “Patricia trees” instead of tries would further reduce memory usage. For
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program testing, other optimizations could apply, like transmitting to Rukia a
compressed version of the CFG by collapsing all sequences of arcs with a unique
successor. This corresponds to considering, for the drawing, only sequences of
branching statements, the only sources of infeasibilities. From a path drawn
from Rukia, the original path in the CFG can be later recovered. None of these
optimizations are currently deemed necessary.

The time complexity of the preprocessing, namely the construction of the
table f(s, l) and the initialisation of the trie is unchanged. At each step of the
drawing, we have to check if the current prefix has an arc labeled with the newly
drawn vertex (pseudo function count) before accessing either f or fF . We also
have to consider the time complexity for the update of the trie after a notification
of an infeasible prefix. Time complexity is O(n).

4 Experiments

To assess our method we have checked its scalability and its efficiency on different
examples and different graph representations of the same piece of code.

Scalability of the new drawing method mainly depends on the memory size
of the trie structure. Actually, neither the additional lookup for the drawing nor
the update of the trie impact the time performance: in [11] the limiting factor
was the size of the counting table, which is related to the size of the graph and
the length of the paths. Our examples of programs are much smaller than the
large models that can be processed by Rukia. In all our experiments, time spent
in drawing is very negligible with respect to time spent in checking feasibility
with SMT solvers. Therefore scalability of the drawing is checked against the
maximum size (number of vertices) of the trie. As explained before, adding a
new infeasible prefix can in fact shrunk the trie.

Efficiency is to be compared with the drawing with rejection and replacement
method of Section 2.3 and may be expressed either as the ratio of feasible paths
when drawing a given number of paths, or as the number of drawings needed for
reaching a given number of feasible paths. We chose the latter formulation, closer
to what is used in program testing where the number of test cases is chosen by
the tester. In most experiments, we fixed it in an ad-hoc way in absence of a
priori knowledge of the number of feasible paths. In some experiments we trig-
gered the enumeration of all feasible paths. This was hardly doable for programs
with a high ratio of infeasible paths when using the drawing with rejection and
replacement method. For program testing this is not common practice but the
aim was to stress our new method.

We assume the SMT solver to be able to decide the satisfiability of any path.
In the experiments we have used the Z3 system, currently restricted to the logic
supported by the prototype described in [2] that generates the Control Flow
Graphs in the examples, and also some more elaborated variants of them as
described below.
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Fig. 3: A graph for the gcd that is free of infeasible paths

4.1 CFG or finer representations?

A high ratio of infeasible paths in a CFG hinders the application of structural
testing, abstract interpretation, or most static analysis methods, by impairing
the accuracy of their computations with information associated with paths that
do not correspond to any execution. In the line of [18–20], one can use symbolic
execution to statically unfold the CFG to obtain a larger graph from which part
of the infeasible paths are removed. We have used such a method to carry out
experiments with a variety of ratio of infeasibilities. Below, we briefly recall the
principles of this method, which was presented in [2].

When the CFG contains no loop, a large-enough unfolding yields a symbolic
execution tree with no infeasible paths (see Section 4.4). In the presence of
loops, symbolic execution usually results in an infinite tree, so unfolding has
to be bounded. Abstraction and subsumption are used to recover some loop
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structures during the unfolding: these loops are specialized versions (according
to a feasible prefix) of the loops in the CFG free of their infeasible paths. For the
CFG in Fig. 1, one gets a graph with 23 vertices that is free of infeasible paths:
see Fig. 3. When no such “optimal” graph is obtained, the expansion of the CFG
is glued to the original CFG at the vertices where the bound of expansion was
reached, so that no feasible path is lost and one can still draw paths that are
longer than the bound of expansion [3]. Some of the drawn paths stay in the
expanded part and are free of infeasible prefixes, other start in the expanded
part but end in the original CFG with less guarantee of feasibility. The bound
of unfolding is left up to the tester, a trade off between precision and efficiency,
but does not limit the length of paths for the drawing.

To summarize: original CFG have minimal size but possibly many infeasible
paths; unfolded graphs are much larger, with less sharing but less infeasible
paths. It is worth mentioning that the number of feasible paths is the same in all
cases. Both kinds of graphs are useful. One may perform drawing in the original
CFG for quick selection of many paths, or in its unfolded versions for a more
accurate representation of the set of execution paths. It is interesting to see how
our method fits these various representations of a program. In this paper the
unfolding also provides a simple way to get large but realistic graphs.

4.2 Description of the experiments

For each example, drawing is performed on: the CFG, the optimal representation
when it exists, and in partially unfolded graphs. In such a case, it means drawing
paths longer than the bound of the unfolding. Each experiment is performed five
times and we give the minimum and maximal value of each parameter when it
is not constant. We give values for the following parameters:

– l: the length of the paths to draw
– |G|: the number of vertices in the graph
– paths: the initial number of paths in G
– drawn: the number of drawings needed for reaching the objective, either a

given number of feasible paths or the enumeration of all feasible paths
– K (killing score): the maximum number of paths removed by a single infea-

sible prefix
– size: the maximum number of vertices in the trie
– saved: the ratio of calls to the SMT solver saved by knowing the longest

prefix within CF of each path drawn.

The value of parameter K may vary in each of the 5 repetitions of an exper-
iment. In practice we get the same value as long as we draw enough paths: K
is based on shortest infeasible prefixes and in experiments we can draw different
set of paths but get the same K if the corresponding shortest prefix appears at
least once in each experiment.

For the experiments with our former drawing, with rejection and replacement,
infeasible paths are simply discarded from the selected paths before drawing
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again from the same graph. When drawing without redundancy for enumeration
of the feasible paths, duplicates of feasible paths are also discarded. We give the
number of drawings for reaching the objective. Some of these experiments yield
a crash of the system by memory exhaustion in this version of Auguste, due
to some internal bookkeeping of infeasible prefixes and feasible paths that is no
longer needed in the new method; in such cases this gives a lower bound of the
number of drawings performed without having reached the objective.

4.3 Experiments with gcd

In this simple example we give results for drawing in the initial CFG of Fig. 1 and
its optimal unfolding of Fig. 3. For this last graph Rukia provides the number
of paths of length at most 30, i.e. the number of feasible paths of that length in
both graphs. We mention that our implementation adds an extra vertex: |G| is
one more than the number of vertices in the figures. In this experiment we ask
for the full collection of feasible paths without duplicates.

l |G| paths drawn K size saved

initial CFG 30 10 15478 1152 4672 1796 - 1880 80.1- 80.4 %

optimal CFG 30 24 792 792 1 1358 - 1444 76.0 - 76.2 %

Table 1: Results for the gcd example

As expected, in the optimal CFG we need exactly 792 drawings and each
drawing removes exactly one path for the future drawings. In the initial CFG,
the kind of infeasibility in this example leads to a high killing factor and a
rather low number of drawings (with respect to the total number of paths) before
obtaining the 792 feasible paths. We also have a high decrease in the number of
calls needed to the SMT solver for checking feasibility of drawn paths. With our
old drawing method, it requires between 4990 and 8000 drawings in the optimal
CFG (because of the duplicates) and more than 100 000 drawings in the initial
CFG to get the full collection.

4.4 Experiments with tcas

This example is a derived version of the program tcas from the Siemens bench-
mark for testers [12]. The original program consists of several auxiliary functions
and a main function that reads input parameters before calling the function of
interest. Documentation mentions the presence of an infeasible path. None of
the functions contains a loop or a recursive call and the code of most of them
reduces to a unique expression.

For this experiment, we gathered the code in a unique function that takes the
input values as parameters, processing auxiliary functions as macros to obtain
some textual in-lining. The resulting piece of code has no loop but it contains
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many lazy boolean operators, resulting in a complex flow of control: in the CFG
the flow of control associated with the lazy operators is made explicit by intro-
ducing vertices for each atomic expression and adding the needed edges. This
increases the size of the CFG with respect to the size of the source code. In this
case the resulting CFG has 88 vertices.

This CFG can be unfolded in a symbolic evaluation tree with only feasible
paths: exactly 123 paths of length at most 47. We test our method again this
corner case, by asking for all paths of length 47, without duplicates. We also
compare the drawing effort when using either an incomplete unfolding or an
approximate length. Table 2 shows the results for the following experiments:

– tcas-opt: Draw all 123 feasible paths of length 47 in the Symbolic Execution
Tree

– tcas-CFG: Draw all 123 feasible paths of length 47 in the initial CFG

– tcas-40: Draw all 123 feasible paths of length 50 after unfolding the CFG up
to depth 40 instead of the optimal 47. The resulting graph is quite large and
contains infeasible paths

– tcas-40 (60) and CFG-40 (60): Draw 60 feasible paths (allowing duplicates)
of length 50 in tcas-40 and in the CFG. These requests are closer to what
would be actual test requests.

l |G| paths drawn K size saved

tcas-opt 47 1677 123 123 1 282 - 322 58.6 - 60.0 %

tcas-CFG 47 88 179720 752 - 758 7562 1729 - 1812 87.4 - 87.9 %

tcas-40 50 1232 386 298 4 1017 - 1174 79.0 - 80.1 %

tcas-40 (60) 50 1232 386 161 - 171 4 1051 - 1149 68.1 - 71.7 %

CFG-40 (60) 50 88 181512 579 - 601 7562 1697 - 1787 85.7 - 85.9 %

Table 2: Results for the tcas example

For tcas-opt: as we have only feasible paths, each drawing reaches a target
but removes only one path (K = 1). In tcas-CFG, the killing score K is much
higher leading to a reasonable number of drawings for collecting the 123 feasible
paths. The unfolded graph used in row 3 of Table 2 is much larger than the CFG,
with the same number of feasible paths. Here 175 infeasible paths were drawn in
addition to the 123 targets. The last two rows give the number of drawings for
collecting only 60 of the 123 targets. We observe that the number of drawings is
not too high, even when one draws in the raw CFG with 123 targets disseminated
among 181512 paths. Rukia also provides the number of remaining paths in the
graph (if they were all feasible): this gives an hint on how far we are from the
full collection of feasible paths. For row 4 there are around 140 such paths and
for row 5 it varies between 185 and 242. In this last case, much of the cleaning
in the set of paths is already performed.
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In practice, for this small example, it takes less time to draw in the initial
CFG, with its many infeasible paths, than to first build the optimal represen-
tation before drawing paths in it. In addition to this positive result, we also
observe the important ratio of calls to the SMT solver that can be saved, a very
important gain in performance for the overall system.

Below are the corresponding drawing numbers with our previous method: with-
out infeasible prefixes and duplicates elimination. All other parameters from
Table 2 are either the same or do not apply to the old method.

– tcas-opt: between 491 and 906 drawings, depending on the experiment, to
find all 123 paths

– tcas-CFG: crash after 130 400 drawings with only 62 distinct feasible paths
found

– tcas-40 (60): 194 drawings for finding 60 feasible paths among the 386;
– CFG-40 (60): 83 301 drawings for finding 60 feasible paths among all paths.

One clearly notes the benefit of our method when the ratio of feasible paths
is low, even when the objective is only 60 feasible paths.

4.5 Experiments with bsearch

This experiment is inspired by an example from the Pathcrawler tutorial [28]
(a tool for concolic testing [5]): it is a dichotomic search of an element in a
sorted array. As Auguste does not currently handle formulae for stating that an
arrays is sorted, our program performs a kind of dichotomic walk in the array
between two bounds given as input parameters. Depending on the value of the
current element, it explores the left sub-array or the right sub-array. Drawing is
performed in the CFG and in an unfolded version. Here we chose an unfolding
bound of 30 and a maximal path length of 50. The resulting graph becomes
about 50 times larger but with only one third of the initial set of paths. We first
ask for 300 different feasible paths, then for 3000 such paths, not knowing the
number of feasible paths.

l |G| paths drawn K size SMT saved

CFG-300 50 17 21247 831 - 883 4607 6495 - 6632 73.5 - 74.6 %

b30-300 50 855 8148 738 - 817 31 6061 - 6523 71.8 - 73.2 %

CFG-3000 50 17 21247 4883 4607 10841 - 11022 85.7- 85.9 %

b30-3000 50 855 8148 4787 31 10732 - 10950 85.6 - 85.8 %

Table 3: Results for the bsearch example

In row 3 of Table 3 when asked for 3000 different feasible paths, the system
stops after having collected 2594 feasible paths and the additional information
(from the trie) that there are no more paths to draw. We now know that there
exist only 2594 different feasible paths.
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Below are the corresponding numbers with the old drawing method:

– CFG-300: 2726 drawings;
– b30-300: 944 drawings, with 632 infeasible and 12 feasible paths drawn more

than once;
– CFG-3000: Crash after 130 300 drawings with 2590 feasible paths found
– b30-3000: 83 369 drawings with 56 854 infeasible, other ones were duplicates.

We ask for 2594, not 3000, feasible paths otherwise the system would not
stop, searching forever additional feasible paths that do not exist.

5 Conclusions, related works and perspectives

In this paper, we present a significant improvement of the structural random
testing method presented in [10] and [11]. The aim of this method is to ensure
a probabilistic uniform coverage of the paths of the program (or model) under
test. It has been successfully implemented via some specialisation of the classical
recursive method for random generation of combinatorial structures. However,
as for any method based on control flow graphs of programs, a serious prob-
lems comes from the existence of infeasible paths: such paths are detected after
drawing, using SMT solvers, and are useless for defining test data.

We have developed an algorithm that enriches the data structures used by
the classical recursive method in such a way that detected infeasibilities are
collected and ignored in the following drawings. This opens the way to practical
applications of the method, avoiding lot of useless drawings, and in some cases
masses of them. In order to confirm the practical interest of our technique by
realistic experiments, we are currently working at the extension of the considered
programming language to a more significant subset of C and at the integration
of our system into the Frama-C platform.

As far as we know, in the area of uniform generation of combinatorial struc-
tures, the closest piece of work is [21] where non redundant drawing is performed
in languages described by weighted context-free grammars using a tree of prefixes
similar to the trie structure we use.

Combinatorial methods are more and more used in the area of random testing
of programs or random exploration of models. One can cite: [4] on the uniform
sampling of timed automata and [6] for networks of automata; or [7] where the
authors provide a way of approximating vertex coverage via some sampling.

None of these works address the issue of infeasibility. An interesting perspec-
tive is to study how our approach to uniform sampling with bounded length is
transposable to other notions considered in [6], namely Boltzmann sampling and
Parry sampling, which are relevant in Monte Carlo model checking [16, 24]: it
would open interesting perspectives for program model checking [17]. Besides, a
very recent paper [8] addresses the issue of drawing uniformly behaviours from
parallel compositions where synchronisations introduce forbidden traces in the
product automaton. The problem presents some similarities with infeasibilities,
but the proposed technique is very different from ours: another interesting per-
spective is to compare their domains of application.
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