
HAL Id: hal-02314683
https://hal.science/hal-02314683v2

Submitted on 28 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lessons Learned from the Development of a Mobile
Learning Game Authoring Tool

Pierre-Yves Gicquel, Iza Marfisi-Schottman, Sébastien George

To cite this version:
Pierre-Yves Gicquel, Iza Marfisi-Schottman, Sébastien George. Lessons Learned from the Development
of a Mobile Learning Game Authoring Tool. Games and Learning Alliance Conference, GALA, Nov
2019, Athens, Greece. pp.201-210, �10.1007/978-3-030-34350-7_20�. �hal-02314683v2�

https://hal.science/hal-02314683v2
https://hal.archives-ouvertes.fr

1

Lessons Learned from the Development of a Mobile

Learning Game Authoring Tool

Pierre-Yves GICQUEL1, Iza MARFISI-SCHOTTMAN1 and Sébastien GEORGE1

1 Le Mans Université, EA 4023, LIUM, 72085 Le Mans, France

{ pierre-yves.gicquel, iza.marfisi, sebastien.george}@univ-lemans.fr

Abstract. Students and schools are increasingly equipped with smartphones

and tablets. These mobile devices can enhance teaching in many ways. Mobile

Learning Games (MLGs) for example, have shown great potential for increas-

ing student’s motivation and improving the quality of situated learning. For the

past few years, the research community has been working on authoring tools

that allow teachers to create and distribute their own MLGs. The development

of these authoring tools is challenging and time consuming and even more so if

the objective is for these tools to actually be used in classrooms. The Design-

Based Research (DBR) paradigm was precisely developed to address these cen-

tral issues of Technology Enhanced Learning. It involves co-designing and test-

ing with end-users from the beginning of the project. Although DBR increases

the acceptance of new educational tools, it also adds several challenges, includ-

ing the complexity of involving teachers and students in real-world situations

and creating several versions of the tools that will be improved iteratively. In

this paper, we aim at providing design principles and practical guidance on the

way to develop such authoring tools, based on our experience. We conclude on

lessons learned from this project and discuss some systematic issues we faced.

Keywords: game-based learning, authoring tool, mobile learning, situated

learning, design-based research

1 Designing Mobile Learning Game Authoring tools

Authoring tools for Mobile Learning Games (MLGs) provide teachers with a simple

way of designing and using applications that fit their specific needs. Teachers espe-

cially like using MLGs for educational outing and field trips. Indeed, MLGs combine

all the ingredients necessary to attract students’ attention and engage them in learning

activities [1]–[3]: game mechanics such as competition, rewards and exploration,

situated learning in real contexts and the physical effort necessary to go to the right

place. Several MLG authoring tools have recently been proposed [4], [5]. The con-

ception, development and administration of such authoring tools are arguably chal-

lenging and time-consuming tasks for researchers.

The first challenge is related to the complex nature of MLGs itself. Despite an ac-

tive research community, no MLG model has reached a consensus and the know-how

required to select the best game mechanics to create pedagogically effective MLGs

Draft: Pierre-Yves Gicquel, Iza Marfisi-Schottman, Sébastien George, “Lessons Learned

from the Development of a Mobile Learning Game Authoring Tool », Proceedings of the

Games and Learning Alliance Conference, GALA, 27th to 29th of November 2019, Athens,

Greece, pp 201-210.

2

remains difficult to pinpoint. In addition, the main objective of authoring tools is to fit

the needs of a large number of users. The MLG model used by the authoring tool

therefore needs to be as generic as possible while still providing enough structure and

guidance to help teachers.

Moreover, designing authoring tools that actually meet the needs of real teachers is

very challenging. Many researchers such as Virvou and Eythimios [6] were confront-

ed to the difficulty of adapting the user interface to the needs of teachers because they

waited for the end of the project to involve end-user. The use of Design-Based Re-

search (DBR) seems like a good alternative to maximize the acceptability of author-

ing tools in class [7] [8]. This movement started in the 1990s and was developed to

address several central issues of Technology Enhanced Learning (TEL) such as the

need to find solutions with the end-users (teachers and students) and the need to study

learning phenomena in the real world rather than in a laboratory.

Although DBR is a powerful paradigm for addressing these needs, it also brings

major technical challenges for the development of TEL tools. First of all, DBR im-

plies the co-design of tools with the end-users in an iterative way. Researchers there-

fore need to develop not one, but several prototypes, in close collaboration with the

end-users. In the case of MLG authoring tools, this means that the authoring tool and

the underlying MLG model will be modified, several times, until they meet the teach-

ers' needs. DBR also emphasizes the fact that the tools should be tested in real-world

learning environments. The MLGs, designed by teachers with the authoring tool,

therefore need to support many simultaneous connections during field trips. Finally,

DBR strongly depends on the help of teachers. If they want to benefit from their full

collaboration, researchers must provide robust tools that teachers will be able to use,

long after the research project is over.

As we have shown, the design of MLG authoring tools with DBR raises many

technical challenges. Yet, to our knowledge, very few researchers have provided

theoretical or practical guidelines for the development of such tools. In this paper, we

propose design principles and an example of software architecture, based on our expe-

rience developing a MLG authoring tool, named MOGGLE, with DBR.

In the second section of this paper, we will detail the constraints related to develop-

ing authoring tools and supporting DBR. In the third section, we propose several

design principles that are adapted to these constraints and illustrate them with the

architecture we set up for MOGGLE. Section four provides elements of validation of

our proposition through the numerous iterations and modifications that MOGGLE

was put through before reaching a final version. Finally, in section five, we conclude

on lessons learned from the development of MOGGLE, and discuss systematic issues

we faced at different stages of the project.

2 Challenges Brought by Design Based Research

Design-Based Research is “a systematic but flexible methodology aimed to im-

prove educational practices through iterative analysis, design, development, and im-

plementation, based on collaboration among researchers and practitioners in real-

3

world settings, and leading to contextually-sensitive design principles and theories”

[12]. The use of DBR is paramount for designing tools that meet the needs of teachers

and that will actually be used in class. However, DBR also comes with a set of con-

straints that complicates the development of these tools. In this section we identify the

constraints that DBR sets on the development of MLG authoring tools.

2.1 User-Centered Design

DBR gives a central position to the end-users. The design of MLG authoring tools

should therefore be carried out with teachers, who will use the authoring tool to create

MLGs, and students, who will play these MLGs. Usability and utility are therefore a

central concern. In terms of usability, the authoring tool should be simple enough for

teachers to create MLGs rapidly. In order to feel at ease with these tools and confi-

dent enough to use them in class, teachers also need to be able to control what the

final MLG will look like for the students. This is especially true when designing

MLGs, that are new to them. This implies developing a preview or testing system

that can immediately show what the final MLG will look like. In addition, like any

educational material, MLGs need to be adjusted before reaching the satisfactory final

version. The authoring tool therefore needs to offer the means to modify MLGs to

facilitate incremental design. Finally, authoring tools need to offer maximum utility to

teachers. In other terms, they should allow them to create MLGs that are adapted to

their educational field trips. Such educational outings are used in many domains such

as geology, botany, history, archaeology but also arts and sports. For many of these

domains, it is important for the MLGs to offer specific activities such as plant and

rock identification or augmented reality. The authoring tool therefore needs to offer

the possibility of adding new types of domain specific activities.

2.2 Iterative Design

DBR supports the idea that the theoretical learning model and the learning tools are

gradually improved through iterative co-design and testing with end-users. In the

context of MLG authoring tools, two models are at stake: the MLG model and the

authoring tool model. Indeed, there are many different ways of designing an authoring

tool based on the same MLG model. Given the fact that DBR encourages multiple

iterations to reach a satisfying version of these models and the limited resources

available for research projects, the initial models need to be highly modular and

expandable in order to build on them and not start from scratch each time.

2.3 Tests in Real-World Situations

Finally, the last important constraint that is brought by DBR, is the fact that learning

tools need to be tested in real-world situations. This means that the MLGs designed

by the teachers, with the authoring tools, need to be robust enough to withstand field

trips with 30 or more students, who will probably not use the MLGs as they were

initially intended to be. Furthermore, the genericity of MLG authoring tools needs to

4

be tested with teachers in several different domains. Given the complex organization

of field trips, it is not rare for several tests to overlap. It should therefore be possible

to set up independent instances of MLG authoring tools for each user group.

In the next section, we propose several design principles that support these three ma-

jor constraints and illustrate them with the software architecture uses for MOGGLE.

3 Design Principles to Support Design-Based Research

MOGGLE (MObile, Geolocated Games for Learning) is composed of two applica-

tions: MOGGLE-Editor (referred to as Editor) that allows teachers to create their

MLGs and MOGGLE-Player (referred to as Player), which allows students to play

these MLGs (Figure 1). The instances of MLGs are stocked in a shared database.

Fig. 1. MOGGLE MLG authoring tool

The first key decision, taken at the beginning of the project, was to use only web

technologies to develop the Editor and the Player. There are several reasons for this

choice. First of all, web applications can be accessed from all types of devices and

operating systems (PC, Mac, Android, IOS, Windows tablets…). This is very advan-

tageous, given the fact that the types of devices available in schools are very hetero-

geneous. Secondly, web applications do not require complex installation. Users simp-

ly need to have access to the Internet and connect themselves via their usual web

browser. This definitely facilitates the use of tools for teachers and students in a learn-

ing context. One might think that the need to have a connection can be a constraint

but some web technologies allow connection breaks by using a cache system (local

storage) while allowing data to be transferred when the connection is restored. Fur-

thermore, from an ergonomic point of view, responsive web apps are getting closer

and closer to native applications. Finally, web applications can be updated very easily

without requiring any actions from the end-users. Knowing that DBR implies many

iterations and updates, this seemed like an important advantage. The choice of web

technologies was justified for MOGGLE but seems well adapted for the development

of any TEL tool, especially if they are designed with the DBR paradigm. We there-

fore propose to only rely on Web technologies as our first design principle.

Below, we will propose seven other design principles to support the constraints de-

tailed in the last section. Note that we will not detail the basic design principles de-

5

rived from software engineering such as system versioning, server security or pro-

gramming design patterns.

3.1 User-Centered Design

Interactive preview of elements being designed

As mentioned in the previous section, it is important for teachers to able to preview

what their MLG will look like on students’ smartphones and test its interactions. Ide-

ally, this preview should be available while they are designing the elements, so that

they can adjust them directly in order to obtain the desired interface. We therefore

advocate the integration of an interactive preview of the MLG elements into the

MLG authoring tool.

This design principle was used for MOGGLE. As shown in the figure 2, teachers

can test the player interface (on the top right) while they are designing the MLG activ-

ities. To offer this interactive preview, we used the same web component for the

Player and the Editor’s preview system. The interactive preview is updated, in real

time, when the teachers fill in the form on the left. This was done with two-way data

binding. In HTML/JavaScript, data binding refers to the binding of a variable declared

in the main script directly to an HTML tag’s attribute (i.e. the attribute “value” of an

input tag <input value={{boundVariable}}>). When the attribute is modified, the

value of the variable is also modified. By using the same variable in another tag’s

attribute element, real time synchronization between functionally independent com-

ponents can be achieved.

Fig. 2. MOGGLE-Editor interface for creating an MCQ with the interactive preview

Incremental design

As for any type of educational content, teachers will need to adjust their MLG’s sce-

nario several times, until they reach the desired product. For instance, after testing the

6

MLG, the teacher might want to change an image or add educational feedback. It is

therefore important, in terms of user experience, to support incremental design by

providing functionalities to incrementally edit and test MLGs.

This design principle was implemented in MOGGLE using the dual server archi-

tecture presented in Figure 3. Each instance of MOGGLE is composed of two sepa-

rate virtual machines: the Editor server and the Player server. The Editor and the

Player both share the same MLG model and communicate through a unique MLG

database. When an element is created or updates in the Editor, it is immediately up-

dated in the database which is used by the Player. Teachers can therefore immediately

test the new versions of their MLGs, while editing them.

Fig.3. MOOGLE architecture

Integration of Domain-Specific External Services

MLG authoring tools aim to be used in a large variety of real-world learning envi-

ronments. In order for these tools to be widely acceptance by teachers, they must be

adaptable to their numerous educational needs. We therefore propose the following

design principle: the architecture of MLG authoring tools should allow the inte-

gration of domain-specific external services.

Implementing this design principle into MOGGLE was a necessity. This tool was

developed in the context of the ReVeRIES project1, for which the main objective was

to create outdoor botanical games. One of the most important skills in botanical sci-

ence is the ability to identify the species of a tree. In order to create MLG activities

that would help students master tree identification, we integrated the FOLIA applica-

tion2 [9] into MOGGLE. FOLIA performs tree recognition based on pictures of a leaf,

using shape extraction algorithms. The integration of FOLIA offered several engineer-

ing challenges. First of all, it was not possible to run FOLIA on the client side because

it is a binary executable file. It also requires multiple dependencies that need to be

compiled manually. In order to avoid unnecessary dependencies and a tedious compi-

lation process for each new deployment, we chose to encapsulate FOLIA in a Docker

container accessible as a web service (figure 3). Docker containers are similar to vir-

tual machines, they encapsulate an operating system and applications and can be run

1 http://reveries-project.fr/

2 https://apps.apple.com/fr/app/folia/

7

on a host system with precise resources allocation (CPU, RAM, disk space). This

method can easily be applied to other existing services such as speech recognition or

Augmented Reality to create domain specific MLG activities without compromising

the security, robustness and genericity of the authoring tool.

3.2 Iterative Design for Mobile Learning Game Authoring Tools

Extensible Data Model and Document-Based Data Persistence

DBR encourages iterative co-design. As shown in section 2, it is therefore crucial for

the MLG model to be designed with future extensions in mind. Such extensions inevi-

tably require the flexibility of the data persistence mechanism. Relational databases

are not well adapted for handling structural modifications. Indeed, their schemas are

fixed at the beginning and are very time consuming to modify. NoSQL databases, on

the other hand, do not store the data in fixed schemas. Instead of using tables, they

store the data in documents. A document is an association of key-values, similar to

JSON, with loose constraints on the existence of keys and on the type of the values.

Thus in a NoSQL database, it is possible to add new kinds of documents without

impacting what previously exists. As a design principle we therefore propose that

MLG authoring tools should use extendable MLG models and a document-based

data persistence system.

In the case of MOGGLE, we used a highly modular and adaptable MLG model,

described in previous work [10], and the document-oriented database MongoDB that

offers a high-level performance on a large number of documents.

Modular Interfaces

As seen previously, iterative co-design will refine the MLG model but also the Edi-

tor’s and Player’s user interfaces. The interfaces should therefore offer maximum

modularity by minimizing functional dependencies between its different parts.

This design principle was implemented in MOGGLE by using web components to

represent each level of granularity of a MLG. At the lowest level, MLGs are com-

posed of elementary resources (images and videos) that can be combined into multi-

media documents. These resources and documents can then be used to create situated

activities such as multiple-choice questions, free text questions or tree identification

exercises. These activities can then be associated to a point of interest, at a specific

location, in order to create MLG units. Finally, these units are organized to form a

MLG. Each level being independent, it is easy to modify the design process of a MLG

according to the user needs. Technically, this design process is supported by the use

of web-components that allow the definition of custom elements which are usable

directly as HTML tags (e.g. <div/>,). We defined tags for each level of

granularity above, the high-level tags (e.g. <mlg-unit/>) being structured with generic

fillers, to avoid functional dependencies with lower level tags.

8

3.3 Tests in Real-World Situations

Server Fallback Mechanism

A very important constraint brought by DBR is the necessity to provide teachers with

a consistent access to the application. When performing daily changes on a code, even

proper testing cannot guarantee against a failure of the server. Such failures could

have serious consequences on the collaboration with end-user: if teachers lose access

to the MLGs they spent hours designing, they will likely be reluctant to use the sys-

tem again. As a design principle we therefore propose to set up a fallback mecha-

nism in case of server crash.

In MOGGLE, we use a PM2 Monitor (figure 3) as process manager and fallback

mechanism in case of server failure. PM2 monitors the state and the resources used by

a process in real time. Additionally, PM2 can detect when a process is in failure state

and perform a proper restart of this process.

Separate Group-Based Web Portals

Teachers put a significant amount of effort into understanding how to design MLGs.

It is therefore important not to change the version of the tools they use during this

process. The use of distinct group-based web portals allows to perform incremental

changes on the MLG authoring tool without disturbing the end-users. Each web portal

is accessible through a unique URL which is provided to a group of users (usually

teachers from the same school). This way, two groups are able to work at the same

time on two distinct versions of the authoring tool. We therefore advocate the use of

separate web portals for each users’ group.

This design principle was implemented in MOGGLE through the use of virtual

machines. Each new machine, associated with a unique subdomain of our main do-

main reveries-project.fr (e.g. I).

4 Iterative Experimental Validation of MOGGLE

In this section we provide elements of experimental validation of MOGGLE regard-

ing the DBR constraints we identified.

The first constraint was the User-Centered Design. We integrated a preview system

for the MLG elements in the Editor and propose an incremental MLG design process,

meaning that teachers can easily test the MLG being designed and modify them until

they reach satisfaction. We gathered elements of validation for these principles

through a qualitative evaluation of MOGGLE involving five teachers from various

domains: history, geography, mathematics and foreign language. They were asked to

design a MLG adapted to their teaching domain after a short introduction to MOG-

GLE. They all managed to create a MLG adapted to their specialty in less than an

hour, with minimal assistance from the experimenter. The iterative MLG design pro-

cess we proposed, proved to be useful since the teachers directly tested their games

and updated them. The integration of domain specific tools was evoked by the history

teacher. She questioned the possibility to integrate Augmented Reality layer of visual-

ization to provide reconstitution of ancient buildings.

9

The second constraint is to use an iterative design in MLG authoring tool. We pro-

posed a modular design pattern for the client side in order to simplify modifications

resulting of these iterative circles. This modular design pattern based on web compo-

nent was proven useful for integrating new features. The integration of Youtube vide-

os was added after using MOGGLE with a natural park manager and the scoring

mechanism was changed after another iteration. Other features, such as the integration

of sound files in multimedia documents, were removed because they were never used.

The modular design pattern, and the generic data structure we proposed, allowed us to

add and remove these features with only minor changes.

The third constraint was to be able to test MOGGLE in real-world learning envi-

ronments. We proposed the use of group-based web portal for that feature. These

portals were deployed for each user group which facilitated the test of MOGGLE with

several groups at the same time. We are currently in the process of deploying portals

for two new groups of teachers. The ability to deploy up-to-date web portals on de-

mands proved to be very useful to offer a private space to end-users but also for test-

ing purposes.

5 Lessons Learned and Perspectives

In this article, we identify the three main constraints related to the design of Mobile

Learning Game (MLG) authoring tools with Design-Based Research (DBR) and pro-

pose design principles. These design principles result from our experience in develop-

ing MOGGLE, a MLG authoring tool, designed in collaboration with several groups

of teachers and that went through many iterative cycle of refinement.

The first design principle we propose is to rely only on web technologies. This

design principle, justified in detail section 3. From this quite generic principle we

derive seven design principles (Table 1). We illustrate technological implementation

of each principle in terms of software architecture.

Table 1. Design principles for the development of Mobile Learning Game authoring tools

DBR Constraints Proposed design principles MOGGLE software architecture

User-centered design Interactive preview of ele-

ments being designed

Web components & data binding

Incremental MLG design Shared database

Integration of domain specific

external services

Web services & Docker

Iterative design Extensible data model &

document-based database

Extensible MLG model & Mon-

goDB

Modular design patterns on

the client side

Web components

Test in real-world

situations

Server Fallback Mechanism PM2

Separate Group-Based Web

Portals

Separate virtual machines for each

user group

10

However, we faced some systematic issues, related to the incredibly fast evolution

of web technologies between the project beginning and today [11]. At the beginning

of the project, in early 2016, we choose Polymer 1.0 that was recently released by

Google and was very promising for the use of web-components. Polymer 2.0 was

released in the beginning of 2017 with no backward compatibility and Polymer 3.0

was released in 2018 equally without backward compatibility. Due to limitations in

human resources we had to keep using Polymer 1.0 even though it is now deprecated.

A related systematic issue is the unpredictability frameworks trends. VueJS and

ReactJS (which are also component-oriented framework) now largely surpass Poly-

mer, although initially these two frameworks were not as promising. The question of

framework evolution and deprecation creates many concerns in the web developer

community while few publications focus on this question. This question raises im-

portant practical challenges in TEL and would deserve further investigations.

References

1. I. Marfisi-Schottman and S. George, “Supporting Teachers to Design and Use Mobile

Collaborative Learning Games”, in Proceedings of the International Conference on Mobile

Learning, Madrid, Spain, 2014, pp. 3-10.

2. N. Bianchi-Berthouze, “Understanding the Role of Body Movement in Player Engage-

ment”, Hum. Comput. Interact., vol. 28, no 1, pp. 40-75, 2013.

3. F. Bellotti, B. Kapralos, K. Lee, P. Moreno-Ger, and R. Berta, “Assessment in and of Seri-

ous Games: An Overview”, Adv Hum-Comp Int, vol. 2013, p. 1:1–1:1, janv. 2013.

4. Karoui, I. Marfisi-Schottman, and S. George, “Mobile Learning Game Authoring Tools:

Literature Review, Synthesis and Proposal”, in Proceeding of the Game and Learning Alli-

ance Conference, Utrecht, Netherlands, (2016), pp. 281-291.

5. Karoui, I. Marfisi-Schottman, and S. George, “JEM iNVENTOR: a Mobile Learning Game

Authoring Tool based on a Nested Design Approach”, in Mobile Learning European con-

ference, Larnaca, Cyprus, (2017), pp. 1-4.

6. M. Virvou, and A. Eythimios, “Mobile educational features in authoring tools for personal-

ised tutoring.” Computers & Education 44(1) pp. 53-68, (2005).

7. A. Collins, D. Joseph, and K. Bielaczyc, “Design Research: Theoretical and Methodologi-

cal Issues”, J. Learn. Sci. 13(1), pp. 15-42, (2004).

8. E. Sanchez, R. Monod-Ansaldi, C. Vincent, and S. Safadi-Katouzian, “A praxeological

perspective for the design and implementation of a digital role-play game”, Educ. Inf.

Technol., 22(6), pp. 2805-2824, (2017).

9. S. Bertrand, G. Cerutti, and L. Tougne, “Bark Recognition to Improve Leaf-based Classifi-

cation in Didactic Tree Species Identification”, in International Conference on Computer

Vision Theory and Applications, VISAPP, Porto, Portugal, (2017), pp. 435-442.

10. I. Marfisi-Schottman, P.-Y. Gicquel, A. Karoui, and S. George, “From Idea to Reality:

Extensive and Executable Modeling Language for Mobile Learning Games”, in Proceed-

ings of the European Conference on Technology Enhanced Learning (EC-TEL), Lyon,

France, 2016, pp. 428-433.

11. A. Pano, D. Graziotin, and P. Abrahamsson, “Rationale leading to the adoption of a JavaS-

cript framework”, arXiv preprint arXiv:1605.04303 (2016).

12. F. Wang, M. J. Hannafin, “Design-based Research and Technology-enhanced Learning

Environments”, Educational Technology Research and Development, Vol. 53, No. 4, pp. 5-

23. (2005)

11

