Automatic Sleep Stages Classification Combining Semantic Representation and Dynamic Expert System - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Automatic Sleep Stages Classification Combining Semantic Representation and Dynamic Expert System

Adrien Ugon
  • Fonction : Auteur
  • PersonId : 971609
Carole Philippe
  • Fonction : Auteur
  • PersonId : 996537
Marie-Amélie Dalloz
  • Fonction : Auteur
Andrea Pinna

Résumé

Interest in sleep has been growing in the last decades, considering its benefits for well-being, but also to diagnose sleep troubles. The gold standard to monitor sleep consists of recording the course of many physiological parameters during a whole night. The human interpretation of resulting curves is time consuming. We propose an automatic knowledge-based decision system to support sleep staging. This system handles temporal data, such as events, to combine and aggregate atomic data, so as to obtain high-abstraction-levels contextual decisions. The proposed system relies on a semantic reprentation of observations, and on contextual knowledge base obtained by formalizing clinical practice guidelines. Evaluated on a dataset composed of 131 full night polysomnographies, results are encouraging, but point out that further knowledge need to be integrated.
Fichier principal
Vignette du fichier
SHTI-264-SHTI190343.pdf (314.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02314668 , version 1 (13-10-2019)

Identifiants

Citer

Adrien Ugon, Carole Philippe, Amina Kotti, Marie-Amélie Dalloz, Andrea Pinna. Automatic Sleep Stages Classification Combining Semantic Representation and Dynamic Expert System. MEDINFO 2019: Health and Wellbeing e-Networks for All, Aug 2019, Lyon, France. pp.848-852, ⟨10.3233/SHTI190343⟩. ⟨hal-02314668⟩
117 Consultations
115 Téléchargements

Altmetric

Partager

More