
Scott : A method for representing graphs as
rooted trees for graph canonization

Nicolas Bloyet123, Pierre-François Marteau1, and Emmanuel Frénod23

1 IRISA, Université Bretagne Sud, Campus de Tohannic, 56000 Vannes, France
2 LMBA, Université Bretagne Sud, Campus de Tohannic, 56000 Vannes, France

3 See-d, Parc Innovation Bretagne Sud, 56000 Vannes, France
firstname.lastname@univ-ubs.fr

Abstract. Graphs increasingly stand out as an essential data structure
in the field of data sciences. To study graphs, or sub-graphs, that char-
acterize a set of observations, it is necessary to describe them formally,
in order to characterize equivalence relations that make sense in the
scope of the considered application domain. Hence we seek to define a
canonical graph notation, so that two isomorphic (sub) graphs have the
same canonical form. Such notation could subsequently be used to index
and retrieve graphs or to embed them efficiently in some metric space.
Sequential optimized algorithms solving this problem exist, but do not
deal with labeled edges, a situation that occurs in important application
domains such as chemistry. We present in this article a new algorithm
based on graph rewriting that provides a general and complete solution to
the graph canonization problem. Although not reported here, the formal
proof of the validity of our algorithm has been established. This claim is
clearly supported empirically by our experimentation on synthetic com-
binatorics as well as natural graphs. Furthermore, our algorithm supports
distributed implementations, leading to efficient computing perspectives.

Keywords: graph canonization, graph isomorphism, graph rewriting,
labeled graph

1 Problem statement and related works

We address in this article the canonization of general graphs, in particular labeled
graphs. Graph structures are adapted to represent a population of interactive,
distributed entities such as networks, molecules, social relations, etc.

A graph can be described by an enumeration of its elements contained in a
set of vertices and a set of edges. However, such an enumeration is not unique,
because one cannot presuppose the existence of an ordering relation defined on
these two sets. Due to this non uniqueness, two identical graphs can have differ-
ent representations, i.e. encodings. Beyond the obvious theoretical interest that
it raises, being able to decide on the structural equality of graphs has a great
application impact in practice. This leads to the definition of the so-called graph
isomorphism (GI) problem.



2 Nicolas Bloyet et al.

Definition 1. Graph Isomorphism: Let G = (VG, EG) and H = (VH , EH)
be two graphs. An isomorphism f : VG → VH from G to H is a bijection from
VG to VH preserving the edges in G and H, namely such that any two vertices
u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H .

G ' H ⇐⇒ ∃ f, ∀ u, v ∈ VG, (u, v) ∈ EG ⇔ (f(u), f(v)) ∈ EH

If f exists, then G and H are isomorphic, and we write G ' H. Determining
the existence (or non-existence) of f is the most basic way to answer the GI
problem. Determining an expression of f is a task at least as complex which
also addresses the GI problem. Despite numerous works on the GI problem ([3]
[25]), its complexity class remains poorly known ([21], [1]): it is not proved that
this problem is NP-complete, although no polynomial algorithm solving the
GI problem for the general case has been discovered yet. This problem has its
own complexity class ([5], [13]), and recent work [2] seems to indicate that this
problem is quasi-polynomial.

1.1 Canonical form of a graph

Another way to solve this problem is to compute, for any graph G, a canonical
representative. This representative (usually a graph that is isomorphic to G) is
unique for the entire isomorphism class associated to G 4.

Definition 2. Canonization function

Canon : G→ G/ '
G ' H ⇐⇒ Canon(G) = Canon(H)

As the graph canonization (GC) problem provides a solution to the GI prob-
lem, it is obviously at least as complex as the GI problem. In the general case,
it is more expensive to calculate a canonical form than to test the existence of
an isomorphism. Indeed, it is often possible to rule on isomorphism before the
complete execution of the algorithm in charge of solving GC.

Despite this algorithmic overhead, the GC problem has many advantages.
Since the canonical form of a graph G is unique, it only needs to be computed
once: afterwards we can directly compare the canonical forms of candidate iso-
morphic graphs very efficiently. This additional complexity is therefore very
rapidly profitable as long as we have to perform a lot of matching tests on a
large population of (sub-) graphs.

In various application such as chemistry, one seeks to identify substruc-
tures (sub-graphs) that have a minimal statistical importance in a population of
graphs. These substructures may be refereed to as fragments or patterns among
others naming, and convey some domain-dependent knowledge (e.g. the ben-
zenic cycle in chemistry). It is important to identify and uniquely characterize

4 equivalence class of the equivalence relation ”is isomorphic to”



Representing graphs as rooted trees for graph canonization 3

(up to an isomophism) rapidly these substructures to either index and retrieve
data represented by graphs or design relevant graph embeddings approaches [4]
suited for subsequent machine learning (in particular deep learning) techniques.

For very specific domains, heuristics have been developed to achieve dedi-
cated canonization of graphs structures. This is the case for the SMILES nota-
tion [24] or InChI [9] commonly used in organic chemistry, which are intended
to provide unique entries for molecules. The main limitation of these type of
graph canonization lies in the invocation of chemical invariants, namely domain
specific knowledge (that is external to the graph notation), to remove all nota-
tional ambiguities. These heuristics can only canonize whole and valid chemical
compounds, and are thus not applicable in the general case.

1.2 Existing canonization algorithms

There is a significant gap between the theoretical and practical handling of the
GI/GC problems: if polynomial complexity algorithms exist for a large number
of restricted classes of graphs (bounded degree [15], planar graphs [10], etc.),
and if it is theoretically known that the general case is likely to be processed in
quasi-polynomial time ([2]), the best implemented algorithms so far solve these
problems for partially labeled graphs with an exponential complexity.

A complete state of the art of these implementations is proposed in [18], as
well as a benchmark on complex isomorphism cases built using [8]. The algo-
rithms Saucy ([7], [6]), Conauto ([14]), Bliss ([11], [12]) and Nauty/Traces
([16], [20], [17]) are evaluated in a context that is close to the worst possible case.

We are interested here in solving the GC problem in the most general case,
i.e. for graphs for which the vertices and the edges are labeled. Among the ex-
isting algorithms, only Bliss, Nauty and Traces achieve a canonical form for
partially labeled graphs (for which only the vertices are labeled). They handle
the GC problem by finding an equitable coloring of vertices (no two adjacent ver-
tices have the same color, and the numbers of vertices in any two color classes
differ by at most one)5, from which they induce an ordering on the set of ver-
tices with the help of search trees (using a backtracking process). A progressive
pruning allows for a drastic reduction of the solution space. Once this order-
ing is obtained, it is straightforwardly possible to enumerate canonically all the
elements of a graph.

However, when the edges are labeled, the above-mentioned coloration proce-
dure is not defined, and it is not possible to apply these algorithms other than
by carrying out a deep rewriting such as to transform labeled graphs into graphs
with unlabeled edges.

1.3 Proposed algorithm (SCOTT)

To overcome the limitation of the existing algorithm that solve the GC prob-
lem, we propose the following algorithm, Scott (Structure Canonization using

5 https://en.wikipedia.org/wiki/Equitable coloring

https://en.wikipedia.org/wiki/Equitable_coloring


4 Nicolas Bloyet et al.

Ordered Tree Translation), that is based on graph rewriting. To our knowledge,
such approach to the GC problem has not been proposed yet.

Scott implements a way to transform, in a reversible manner, an arbitrary
graph to a tree, a class of graph for which a canonical symbolic encoding can
be easily obtained. The order relation necessary to ensure the canonicity of the
process is directly connected to the image tree. This encoding will go beyond a
simple signature or hashing value: it will ensure the reversibility of the process
allowing to get back to the original graph (up to an isomorphism). Hence, in
addition to solving the GC problem for arbitrary graphs, it will also offer an
effective way of encoding graphs.

Furthermore, this algorithm can be executed in a distributed way, allow-
ing for a horizontal scalability, contrarily to the algorithms of the state of the
art: although demonstrating a very good execution time due to their optimized
implementation, these algorithms remain sequential.

2 Canonical notation of rooted trees

We detail hereinafter some theoretical properties on graphs, particularly trees,
to introduce the hypothesis and mechanisms that we use in the next section to
develop our algorithm.

2.1 Definitions and properties

Let Σ be an alphabet, namely a set of symbols, and Σ∗ the set of symbolic
sequences of any length, ordered by the lexicographic order, denoted (Σ∗,≤).

We define trace functions that associate a label (a sequence of symbols)
to any element of a graph G = (VG, EG) ∈ G, such as σV : VG → Σ∗ and
σE : EG → Σ∗.

We note T ⊂ G, the set of trees. t = (Vt , Et) ∈ T iff t verifies the following
properties: i) t is fully connected and acyclic, ii) t has exactly n − 1 edges,
where n = |Vt|, iii) For any pairs of vertices, there exists a unique path of
minimal length connecting them.

More specifically, we are interested in the rooted planar trees tρ for which
one of the vertices ρ ∈ Vt is identified as a root. We can associate with each
vertex ν ∈ Vt of this tree a level N characterizing its minimal distance (without
differentiating the different linkage modalities, i.e. edge label, if any) to ρ, the
level 0 designating the leaves that are farthest from the root. Each vertex ν is
thus exclusively connected with a single vertex of directly higher level noted
ρν ∈ Vt and the set of vertices of level directly lower to ν is noted Λν ⊂ Vt which
is de facto the set of children vertices of vertex ν.

Each vertex ν is thus itself the root of a subtree that we denote tν =
(Vtν , Etν ), with Vtν ⊆ Vt and Etν ⊆ Et.

Theorem 1 (Neveu [19]). If a fully ordered relation is defined on the set of
rooted trees, then any rooted tree admits a canonical notation.



Representing graphs as rooted trees for graph canonization 5

It is proved [19] that a planar representation of a rooted tree admits an unam-
biguous (canonical) notation in the form of a sequence of words, so that two trees
with the same notation are equal. This notation for which we give an example in

r

A

B

C

D

E

Neveu(tr) = { r, A : a, B : b, BD : d, BE : e, C : c }

≤

level
N

or
d
er

re
la
ti
on

σT (tr) = (A : a , (D : d, E : e) B : b, C : c )r

tr

a

b

c

d

e

Fig. 1: Encoding of a rooted tree tr using a sequence of symbols, according to
the (edge-extended) Neveu’s notation, and by the proposed alternative trace
function σT (2 ).

Fig. 1, on the other hand, is canonical only if the representation itself is canon-
ical, and therefore there should necessarily exist an ordering between vertices
of the same level (sibling trees). We detail below the systematic construction of
this ordering in the framework of labeled trees. We also propose an alternative
notation (to the Neveu’s one) through a tree-defined trace function σT to avoid
too much redundancy.

2.2 Ordering on the set of labelled trees

To be able to provide for any tree a canonical notation similar to the one illus-
trated above, we need to provide an ordering on the set of trees. In other words,
for all level N , all the subtrees associated with the vertices of level N needs to
be ordered, with respect to both edges and vertices labels.

Proposition 1. The subtrees tν that belong to a level N are lexicographically
ordered.

Proof. We make the assumption that a vertex (respectively an edge) is fully
identified by its label, so that a permutation of two vertices (or edges) holding
the same label will not modify the tree in question, which is true in a trivial way
for an encoding of the same type as the one proposed by Neveu [19], because the
trace produced by an in depth or in width traversal of the tree will be identical
after such a permutation.

Vertices, as well as edges, can thus be expressed in the form of sequences of
symbols, produced by traces function σV : Vt → Σ∗ and σE : Et → Σ∗. Such



6 Nicolas Bloyet et al.

symbolic sequences are ordered by the lexicographic order relation, but what we
have to order at a level N is not a set of detached vertices, but subtrees rooted
on those vertices, otherwise our ordering would just ignore underneath levels.
We thus seek a recursive trace function for rooted (sub)trees σT : T→ Σ∗. Let
Π be the concatenation operator taking two arguments: a subset ε of a set E
ordered by a total order relation ≤, and a concatenation symbol in Σ, as defined
by Eq. 1.

Π : E ×Σ → Σ∗

∀ε ⊆ E , ∀ · ∈ Σ, Π(ε, ·) =
·⊕

ei ∈ ε | ei−1 ≤ ei

ei = e1 · e2 · . . . · e|ε| (1)

σT : T→ Σ∗

σT (tν) = Π

( ⋃
λ ∈ Λν

{
σT (λ) : σE(λ, ν)

}
, ·
)
· σV (ν) (2)

At some point vertices are leaves, which means that Λν = ∅. In this spe-
cific case σT (tν) ≡ σV (ν), making those leaves ordered, allowing recursively to
transmit this ordering property to the above levels.

We illustrate in Fig. 1 the encoding given by the above σT function when
applied to the example. For convenience and to be consistent with Neveu’s no-
tation we use the comma ”,” as a concatenation symbol between several trees
(instead of the usual dot symbol used in the definition above, Eq. 2).

Proposition 2. The trace function σT gives a canonical representation for each
tree t ∈ T.

Proof. The trace σT being defined, we are able to order the subtrees of any level
N , and so to apply Neveu’s notation for any rooted tree. But, we can notice that
the above definition of σT is applicable to each rooted tree on its main root ρ. If
two tree traces are equal, then all of its subsequent elements are equal as well,
which means these sets of elements can be permuted without any impact on the
isomorphism class of the tree. Thus, all members of an isomomorphism class will
have the same canonical representation through σT . Finally, we determine the
identity of the root ρ as the node leading to the minimum trace. A tree t ∈ T is
thus canonically encoded by its minimum encoding through the trace function
σT . ut
Proposition 3. A tree t ∈ T can be compressed into a single vertex of label
σT (t).

As our trace function can encode without any loss a tree under the form of
a symbol sequence, and since those sequences can be used as vertex labels in a
graph, there is no loss of information when compressing a (sub-)tree into a single
vertex holding this label, even in the context of an unrestricted graph.



Representing graphs as rooted trees for graph canonization 7

3 Proposition: Scott algorithm

Scott addresses the canonization of unrestricted graphs, namely fully labeled
graphs. We do not provide here the formal proof of validity of the algorithm
that will be detailed elsewhere. However, the canonical trace that is produced
by Scott is empirically assessed and applied in the scope of some benchmarking
(see next section), as well as supported by results known from the bibliography.

3.1 Steps summary

Scott relies in three main steps consisting in:

Step. 1 Organize the vertices by levels according to the identification of a root.
Step. 2 Rewrite, in a reversible way, edges inducing cycles in a acyclic way.
Step. 3 Get a canonical encoding of the resulting tree.

r

A B

C D

E

A B

C

D

E

a b
c

d e

h

f

g

i

#{2}*{3} *{3}

§

*{1}

*{1}

a b

c cd f e

g

gi h

(((*{1}:g)C:d, ((E:i , *{1}:g ,§:h)D:f)#{2}:f, *{3}:c)A:a, (((E:i , *{1}:g ,§:h)D:f)#{2}:e , *{3}:c)B:b)r

#{2}
f

0

1

2

3

A B

D

C

E

a b

d c

g e
f

h

i

r r

1 2

3

D

E §*{1}

gi h

f

N

Fig. 2: Scott steps applied to a simple example

We aim to associate for all connected graph a tree representative of its class
of isomorphism. The interest of using a reference graph, here a tree, as a canon-
ical representative, lies in its encoding properties. While numerous degrees of
freedom (dof) exist in an unrestricted graph to achieve a canonical encoding,
much less dof exist in a tree, hence a greater efficiency is expected.

Root selection and levelling (step 1): the first step consists in finding a
root ρ ∈ VG. Its selection is based on a heuristics whose aim is to minimize the
size of the trace produced in the last step. The root is thus determined subse-
quently, among a pool of several candidates selected according to some invariant
characteristics (label, degree, cumulative neighbor’s degrees, etc.). In the worst
case all vertices can be candidates to be the root vertex. Once the root ρ has



8 Nicolas Bloyet et al.

been selected, all other vertices ν are organized following their respective mini-
mal distance N , refer to as level N , with ρ. The farthest vertex to ρ is associated
to level 0. After that step, each vertex is exclusively connected with vertices of
levels JN − 1, N + 1K.

Cycles rewriting (step 2): this step aims at transforming an unrestricted
connected graph into a tree by rewriting all cycles, without any loss of informa-
tion. A graph rewriting can be expressed by graphs morphisms [23] [22], referred
to as productions, that consist in mapping a subgraph identified as a left hand
side (LHS) to a right hand side (RHS) subgraph. On a graph whose vertices
are ordered by levels, only three configurations of edges lead to cycles, resolved
respectively by associated productions :

– ps: self-bound, an edge from a vertex to itself (e.g edge labelled h on Fig. 2)
– pc: co-bound, an edge from a vertex to a distinct vertex of the same level

(e.g edges labelled c and g on Fig. 2)
– pi: in-bound, several edges from vertices of the same level to a common

descendant (e.g edges labelled f and e on Fig. 2)

A B

σA σB

A B

∗1 ∗1σA σB

pc

c

a b
cb b c

LHSc RHSc

A

&

a

A

a

ps

LHSs RHSs

A B

σC

a
b

c

C

LHSi

A B

a b

c

σC

C

#1

c

#1

RHSi

c

σC

C
c

Self − bound Co− bound In− bound

pi

Fig. 3: Graphs morphisms used to rewrite cycles in any graph.

As pictured in figure 3, vertices of inferior level in the productions are trees,
which have been compressed into single vertices. This is possible because levels
are processed increasingly, so when applying productions at level N , all vertices
of level N − 1 have been already processed, and so are subtree roots. Within the
processing of a level, productions are grouped and executed by type: self-bounds,
then co-bounds and finally in-bounds. Finally, in the case of co-bound and in-
bound productions, additional vertices that are created are given a common
”anchor” label used to pair them together. This label is derived from tree traces
of the underlying levels (extended Neveu’s notation). According to the property
stating that two subtrees with the same canonical encoding can be permuted
without any impact on the isomorphism class, these labels are sufficient to ensure



Representing graphs as rooted trees for graph canonization 9

that possible ambiguous cases (two identical productions applied to two vertices
having the same anchor label) will lead to the same representative tree. To avoid
side effects, anchors created at level N need to be computed initially during the
processing of level N .

r

A B

C D

E

a b
c

d e

h

f

g
i

r

A B

C D

E

a b
c

d ef

g
i

§
h

*{1}

g

r

A B

C D

E

a b
c

d ef

i

§
h

*{1}

g

A B

C

D

E

#{2}*{3} *{3}

§

*{1}

*{1}

a b

c cd f e

g

gi h

#{2}

f

r

D

E §*{1}

gi h

f

*{1}

g

r

A B

C

a b

d e
f

*{3}

c

D

E §*{1}

gi h

*{3}

c

Fig. 4: Sequence of productions applied to a toy example.

We detail in Fig. 4 the actual ordering of productions applied to process the
toy example case.

Canonical encoding (step 3): the final step consists in applying the trace
function σT to the tree produced by the end of the previous steps. This tree is
characteristic of the isomorphism class of the input graph, and so is its trace
(extended Neveu’s notation) as well. Notice that since the anchor labels are
symbolic sequences only used as markers, they can be ordered once all anchors
have been processed and then be replaced by a unique index to keep the trace
short. Note also, that for an indexing application, hashing the trace can be
convenient to get small and fixed-size symbolic sequences as indexes.

3.2 Time complexity

The temporal complexity of the Scott algorithm is closely related to the nature
of the graphs in input: beyond the size of the graph, the number and type of
edges to be rewritten are the main factors to study. In the case of co-bounds, two
nodes are simply created, but in the case of in-bounds, it is all the descending
nodes from this edge that are duplicated, hence an exponential behavior if such
a case is observed at each level. Very regular graphs can add some complexity
as well, as virtually each node can be a root candidate. On the other hand, if
the input graph is initially close to a tree, corresponding to the best case for
Scott, the most expensive operation of the algorithm will be the sorting of the
subtrees, resulting in a quasi-linear behavior.

4 Application

We present below assesment metrics obtained on concrete cases, either synthetic
or from the application domain of chemistry, and therefore of varying complexity.
Calculations are performed, unless otherwise specified, on a dedicated computer
with 8 cores (Intel Atom C2750 @ 2.40GHz) and 16 GB of memory.



10 Nicolas Bloyet et al.

4.1 Shrunken multipedes graphs

As a first experiment, we evaluate Scott on complex combinatorial graphs
produced in the scope of a benchmark [18] dedicate to isomorphism decision.
Among the families of graphs used and made available in this benchmark, we
are interested in the ”shrunken multipedes” graphs, a class of graphs that are
built from the ”Cai, Fürer and Immerman” graphs.

It must be stressed that this family of graphs is specifically designed to
present non-trivial cases of isomorphisms (or non-isomorphisms). Consequently
their features are quite far from the ideal case for Scott, namely a graph that
would be nearly acyclic. In particular, the number of edges is large compared to
the number of vertices (with an average factor of 7.8), meaning that a lot of pro-
ductions applications are necessaries.We compute 157 graphs up to 500 vertices,
grouped into 79 isomorphism classes, each being correctly assigned a unique
canonical trace. We compare the performance of our algorithm against state of
the art algorithms that provide a canonical form, namely Traces, Nauty and
Bliss. We present in fig. 5 (a) the time necessary to compute the canonical
trace of one graph, in function of its vertice count. As there are several order of
magnitudes represented on the computing time, a log-axis is used.

200 300 400 500

10−1

101

103

105

number of vertices

ti
m
e
(s
)

(a) shrunken multipedes (combinatorics graphs)

scott
bliss
nauty
traces

0 200 400 600 800 1,000

0

20

40

60

80

number of vertices

ti
m
e
(s
)

(b) pubchem (chemical graphs)

scott
loess smoothing

Fig. 5: Elapsed time towards number of vertices for graphs of several origins.

We note that, while the best algorithms on this task demonstrate very good
performance, Scott is quite comparable with some of them beyond 380 vertices:
it is therefore reasonably usable in practice, even for graphs produced by a
combinatorial process, that are very far from conditions generally encountered
in practice. We also note that for a given number of vertices, the variability
of the processing time is lower for Scott, while it can reach several orders of
magnitude for other algorithms.



Representing graphs as rooted trees for graph canonization 11

4.2 Molecular graphs

We finally evaluate Scott on molecular graphs. Molecules are not complex
graphs, because the number of vertices rarely exceeds 500, and, above all, are
naturally quite close to trees. Indeed, cycles and branches exist in such graphs
and need to be processed, but the number of edges is generally close to the
number of vertices, and it is in any case of the same order. It is therefore a
category of graphs easily addressed by our algorithm.

We extract from PubChem a large set of molecules up to 1000 atoms (ver-
tices). We randomly sample the molecules formed by up to 500 vertices, so that
we do not have to process tens of millions of molecules. For more than 500 atoms,
the molecules become rare, and it is no longer necessary to sample them. By the
end of this sampling process, we hold a total of 4733 molecules ranging from 4
to 963 atoms.

We do not distinguish in the parsing cis and trans bonds, so we expect to
observe trace collisions for moelcules which are stereoisomerisms, just as the
classic Smiles notation. We would consider stereo-bonds as new edges modal-
ities to obtain the behavior of Isomeric Smiles. We finally obtain 4490 unique
traces through Scott execution, the same number of unique Smiles given in the
Pubchem request, attesting an identical behavior and none unexpected collision,
but without being restricted to whole and valid molecules.

In Fig. 5 b), we plot the median elapsed time obtained according to the num-
ber of vertices considered. A loess smoothing (Locally Weighted Least Squares
Regression) is thus achieved that shows a piecewise linear characteristic for this
type of graphs.

5 Discussion and Conclusion

Considerable work remains to be done at this stage of the implementation to
optimize our algorithm, which is not yet as fast with the best algorithms of
the state of the art. However, the proposed solution remains the only one to
deal natively with colored edges, and shows good possibilities for parallelization.
As it stands, our algorithm reaches, on some complex cases, the same level of
performance than state of the art approaches such as traces beyond a certain
number of vertices. Strikingly, our algorithm shows a very small variance of
the elapsed time compared to other algorithms. This is probably because our
algorithm does not integrate yet any optimized pruning strategy, which is the
case for most of the state of the art algorithms.

If the temporal complexity remains problematic for synthetic graphs resulting
from combinatorial methods, with an exponential execution time compared to
the number of vertices (just like the state of the art algorithms), it is much more
efficient on simpler graphs having a number of neighboring edges of the same
order of magnitude than the number of vertices. For such category of graphs, we
observe that the elapsed processing time for our algorithm follows a quasi linear
shape, which makes it quite effective in practice.



12 Nicolas Bloyet et al.

The main objective that is addressed by our algorithm is to formally iden-
tify using a sequence of symbols, that is unique within an isomorphism class,
(sub)graphs of reasonable size, ensuring that any subsequent comparison be-
tween subgraphs is trivial. Beyond adopting an approach based on graph mor-
phisms, rather than a backtracking principle, the main difference from the state
of the art solutions is that it can handle any kind of graphs since it is able to
natively process colored edges as well as colored vertices, which is essential for
addressing some application domain such as organic chemistry.

Perspectives: Backtracking-based algorithms, which represent the vast ma-
jority of the state of the art approaches on this problem, have over the years been
able to develop heuristics that can progressively prune the space of possible so-
lutions, greatly reducing their algorithmic complexity. Our implementation is
young and does not develop any similar heuristics, but it is very likely that such
heuristics exists. In particular, one can easily prune the number and the diver-
sity of fast invariants to evaluate, which allows to limit the potential roots to
consider (it is even possible to eliminate some of these roots even before the
complete computation of their associated tree). In the same way, it is likely
that an implementation of the algorithm with a more effective programming
language (compiled), like those used for implementing the state of the art al-
gorithms (C/C++) can bring a significant performance gain compared to the
Python that we are using at this stage.

The families of graphs Scott can be adressed to is also subject to further
works. In particular, each production used in the tree transformation can be
derived into several productions defined on directed graphs. Therefore, the algo-
rithm could be extended to directed graphs, but this point requires additional
experimentations.

Finally, although not reported here, the formal proof of the validity of the
algorithm has been obtained to support the main claims we have stated (stop
condition, completeness, adequation, reversibility, invariance to isomorphism).
These claims are perfectly empirically supported by our experimentation.

References

1. Vikraman Arvind and Piyush P Kurur. Graph isomorphism is in spp. In The 43rd
Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings.,
pages 743–750. IEEE, 2002.

2. László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of
the forty-eighth annual ACM symposium on Theory of Computing, pages 684–697.
ACM, 2016.

3. László Babai and Eugene M Luks. Canonical labeling of graphs. In Proceedings
of the fifteenth annual ACM symposium on Theory of computing, pages 171–183.
ACM, 1983.

4. Nicolas Bloyet, Pierre-François Marteau, and Emmanuel Frénod. Étude lexi-
cographique de sous-graphes pour l’élaboration de modèles structures à activité–cas
de la chimie organique. In Extraction et Gestion des Connaissances: Actes de la
conférence EGC’2019, volume 79, page 3. BoD-Books on Demand, 2019.



Representing graphs as rooted trees for graph canonization 13

5. Kellog S Booth and Charles J Colbourn. Problems polynomially equivalent to graph
isomorphism. Computer Science Department, Univ., 1979.

6. Paolo Codenotti, Hadi Katebi, Karem A Sakallah, and Igor L Markov. Conflict
analysis and branching heuristics in the search for graph automorphisms. In 2013
IEEE 25th International Conference on Tools with Artificial Intelligence, pages
907–914. IEEE, 2013.

7. Paul T Darga, Karem A Sakallah, and Igor L Markov. Faster symmetry discovery
using sparsity of symmetries. In Design Automation Conference, 2008. DAC 2008.
45th ACM/IEEE, pages 149–154. IEEE, 2008.

8. Yuri Gurevich and Saharon Shelah. On finite rigid structures. The Journal of
Symbolic Logic, 61(2):549–562, 1996.

9. Stephen R Heller and Alan D McNaught. The iupac international chemical iden-
tifier (inchi). Chemistry International, 31(1):7, 2009.

10. John E Hopcroft and Jin-Kue Wong. Linear time algorithm for isomorphism of
planar graphs (preliminary report). In Proceedings of the sixth annual ACM sym-
posium on Theory of computing, pages 172–184. ACM, 1974.

11. Tommi Junttila and Petteri Kaski. Engineering an efficient canonical labeling
tool for large and sparse graphs. In 2007 Proceedings of the Ninth Workshop on
Algorithm Engineering and Experiments (ALENEX), pages 135–149. SIAM, 2007.

12. Tommi Junttila and Petteri Kaski. Conflict propagation and component recursion
for canonical labeling. In International Conference on Theory and Practice of
Algorithms in (Computer) Systems, pages 151–162. Springer, 2011.

13. Johannes Kobler, Uwe Schöning, and Jacobo Torán. The graph isomorphism prob-
lem: its structural complexity. Springer Science & Business Media, 2012.

14. José Luis López-Presa, Antonio Fernández Anta, and Luis Núñez Chiroque.
Conauto-2.0: Fast isomorphism testing and automorphism group computation.
arXiv preprint arXiv:1108.1060, 2011.

15. Eugene M Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. Journal of computer and system sciences, 25(1):42–65, 1982.

16. Brendan D McKay et al. Practical graph isomorphism. 1981.
17. Brendan D McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal

of Symbolic Computation, 60:94–112, 2014.
18. Daniel Neuen and Pascal Schweitzer. Benchmark graphs for practical graph iso-

morphism. arXiv preprint arXiv:1705.03686, 2017.
19. Jacques Neveu. Arbres et processus de galton-watson. In Annales de l’IHP Prob-

abilités et statistiques, volume 22, pages 199–207, 1986.
20. Adolfo Piperno. Search space contraction in canonical labeling of graphs. arXiv

preprint arXiv:0804.4881, 2008.
21. Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer

and System Sciences, 37(3):312–323, 1988.
22. Pedro Pablo Perez Velasco. Matrix Graph Grammars. 2008.
23. Pedro Pablo Perez Velasco and Juan de Lara. Matrix Approach to Graph Trans-

formation: Matching and Sequences. Lecture Notes in Computer Science, 4178:122,
2006.

24. David Weininger. Smiles, a chemical language and information system. 1. intro-
duction to methodology and encoding rules. Journal of chemical information and
computer sciences, 28(1):31–36, 1988.

25. Viktor N Zemlyachenko, Nickolay M Korneenko, and Regina I Tyshkevich. Graph
isomorphism problem. Journal of Soviet Mathematics, 29(4):1426–1481, 1985.


	Scott : A method for representing graphs as rooted trees for graph canonization

