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MODULAR TRANSFORMATIONS OF APPELL-LERCH SERIES

BY MEANS OF MORDELL INTEGRALS

CHANGGUI ZHANG

Abstract. The goal of this paper is to establish a general modular trans-

formation formula for the first order Appell-Lerch series in terms of one fi-
nite number of Mordell integrals. Generalizing the classic tranformation laws

known for the theta functions of Jacobi, this formula contains Lerch’s and

Mordell’s results on the same subject.
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1. Introduction

In his paper [11], Mordell gave a series of results previously obtained in several
works on the analytic theory of numbers. Here are two of those results:

(1.1)

∫ ∞
−∞

eπiτt
2−2πtz

e2πt − 1
dt =

f( zτ | −
1
τ ) + iτ f(z | τ)

τϑ1(z | τ)
,

(1.2)

∫ ∞
−∞

teπiτt
2

e2πt − 1
dt = −2 Ω(τ) +

2

τ2
√
−iτ Ω(−1/τ) +

1

4
ϑ30(0 | τ) ;

see [11, (3.1) & (2.18)]. In the above, =(τ) > 0; the path of integration may be
taken as the real axis of t indented by the lower half of a small circle described
about the origin as centre; f is the integral function defined by the series

(1.3) if(z | τ) =

±∞∑
m odd

(−1)
1
2 (m−1)e

1
4m

2πiτ+mπiz

1 + emπiτ
;

and Ω(τ) denotes the generating function of the sequence {F (n)}n≥0 with respect
to the variable q = eπiτ , where F (n) equals to the number of uneven classes of
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positive, definite binary quadratic forms of given determinant −n. In addition,
ϑ0 = ϑ00 and ϑ1 = ϑ11 are the theta functions defined by the following relations:
(1.4)

ϑ0(z | τ) =

∞∑
n=−∞

en
2πiτ+2nπiz , ϑ1(z | τ) = −i

±∞∑
m odd

(−1)
1
2 (m−1) e

1
4m

2πiτ+mπiz .

By following [4, (43.1) p. 52], the integral in (1.1) is called Mordell integral, and
it will be denoted as follows:

(1.5) φ(z | τ) =

∫ ∞
−∞

eπiτt
2+2πtz

e2πt − 1
dt .

This is intimately connected with theta functions and mock theta functions on
one hand and with the Riemann zeta function on the other. See also [6, 18–20]
and [5, p. 170].

As said in [11] by himself, Mordell’s formula stated in (1.1) can be deduced from
the following result obtained by Lerch [9, 10]:

(1.6)

√
i

τ
ϑ0(z | τ) Ψ(v | τ) = R(z, z + v | τ)− 1

τ
e
πi
τ (v2−z2)R(

z

τ
,
z + v

τ
| − 1

τ
) ;

see [11, (7.8)]. Recall on the one hand that Mordell there defined the above function
Ψ(v | τ) by the integral along the real axis

(1.7) Ψ(v | τ) =

∫ ∞
−∞

e−
πi
τ (t+ i

2−iv)
2

e2πt + 1
dt .

A simple calculation shows that Ψ may be expressed by means of the above integral
φ as follows:

(1.8) Ψ(v | τ) = −eπiτ (v−1)2φ(−v
τ

+
1

τ
| − 1

τ
) = e

πi
τ v

2

φ(
v

τ
+ 1 | − 1

τ
) .

On the other hand, the function R(z, v | τ) = R1(z, v | τ) is given by the below series
for k = 1:

(1.9) Rk(z, v | τ) =

∞∑
n=−∞

ekn
2πiτ+2knπiz

1− e2nπiτ+2πiv
,

what is currently called Appell-Lerch series of order k.
Several particular cases of the Mordell integrals may be found in the works

[13–15] of Ramanujan. In [1], Andrews considered functions explicitly appeared in
the “Lost” Notebook, and gave for them basic modular type transformations, one
of which may be expressed as follows :

(1.10) c(τ) Ψ(
2− τ

4
| τ

2
) =

τ

i
R2(

τ

4
,

1

2
| τ)− 2e−

πi
2τ R2(− 1

2τ
+

1

4
,− 1

2τ
| − 1

τ
) ,

where c(τ) = ϑ0( 1
2 | −

2
τ ) e−

πiτ
8 . It should be noted that (1.10) is for a couple of

second order Appell-Lerch series while both (1.1) and (1.6) concern the first order
cases.

Mordell ended his paper [11] by some problems, the first one of which consists
of finding the general transformation formula for f(z | τ), i.e. a simple result for

f( z
γτ+δ |

ατ+β
γτ+δ ), where α, β, γ, δ are any integers satisfying αδ − βγ = 1. The

goal of our paper is to give a general transformation formula on any Appell-Lerch
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series of the first order. In this way, we will obtain a complete answer to the
above-mentioned problem of Mordell for f(z | τ).

The rest of the paper will contain six paragraphes that will be organized as
follows.

In §2, we will start by stating the main result of this paper, Theorem 2.1, which
gives one generalization of (1.6) to the case of an arbitrary modular matrix M =(
α β
γ δ

)
∈ SL(2;Z) with γ > 0. After that, it will be made clear in what manner

one can deduce from Theorem 2.1 the well-known linear transformation formula
of the theta function ϑ1 on the one hand and why and how one can remove the
restrictive condition γ > 0 from Theorem 2.1 on the other. See (2.17) for a more
general statement of Theorem 2.1.

A proof of Theorem 2.1 will be completed in §5, after having established results
about one first order non-homogenous q-difference equation in §3 and §4. Namely,
our approaches will be based on the analytic theory of singular q-difference equa-
tions. Since Appell et Hermite [2, 3, 7], the so-called Appell-Lerch series have been
considered in some way as one part of the general elliptic functions. The study of
such almost doubly periodic functions may be done inside the analytic theory of
singular irregular q-difference equations developped in [17, 21, 22]; see also [16] for
more details.

In §3, we will consider the first order q-difference equation (3.2) from which two
analytic functions will be constructed by following different summation procedures
about its unique divergent power series solution Ê(x; q); see (3.3). A Stokes analysis
about these sum-functions will lead us to obtain Theorem 3.1, which will be proved
in §4.

In §5, we will interpret the above-mentioned functions in terms of Appell-Lerch
series on the one side and of Mordell integral on the other side. This allows one to
deduce Theorem 2.1 from Theorem 3.1.

Some functional relations will be established in §6 for the automorphic factor
ÃM (z, v | τ) and the remaining term Ψ̃M (v | τ), both coming from the transforma-
tion formula stated in Theorem 2.1; see (2.17) and (6.2). And a more general
relation than (1.1) will be found in §7 for the above function f(z | τ), which is
defined in (1.3). In a forthcoming paper, we hope to be able to apply Theorem
2.1 to other functions coming from the number theory, like as the function Ω(τ)
considered in (1.2) by Mordell.

This work has been done in direct line with our previous work [23], all being
aimed at understanding the mock theta functions of Ramanujan.

2. Main result and commentaries

Throught the whole paper, we will write M =

(
α β
γ δ

)
∈ SL(2;Z), and let

τ ′ = τ ′M to be the modular variable associated with M by the relation τ ′ = Mτ =
ατ + β

γτ + δ
. As usual, it will always be assumed that =(τ) > 0; so, it follows that also

=(τ ′) > 0. Define

(2.1) z′ = Mz =
z

γτ + δ
, v′ = Mv =

v

γτ + δ
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for any complex numbers z and v, each of which may be given by an expression of
the form aτ + b where (a, b) ∈ C2.

For simplify, we will suppose that γ > 0. The cases for which γ ≤ 0 will be
discussed at the end of this paragraph; see (2.17).

Theorem 2.1. The following transformation formula holds for any complex num-
bers z and v such that v /∈ Z⊕ τZ:

R(z +
τ

2
+

1

2
, v | τ)− 1

γτ + δ
e(
γv(v−2z)
γτ+δ −v+v

′)πiR(z′ +
τ ′

2
+

1

2
, v′ | τ ′)

= ϑ0(z +
τ

2
+

1

2
| τ)

√
γ i

γτ + δ

γ−1∑
k=0

(−1)k e−k(k+1)πiτ ΨM ;k(v − z | τ) ,(2.2)

where the functions ΨM ;k, depending upon the entries γ, δ of the modular matrix
M , are given by the following integral along the real axis

(2.3) ΨM ;k(v | τ) =

∫ ∞
−∞

e−
γ

γτ+δ (s−vi+(k+ 1
2 )(τ+

δ
γ )i)

2πi ds

1 + e2γπs
.

Putting s = t
γ into the integral of (2.3) and considering the function Ψ(v | τ)

defined in (1.7) yields the following expression of ΨM ;k:

(2.4) ΨM ;k(v | τ) =
1

γ
Ψ
(
γv − (k +

1

2
)(γτ + δ) +

1

2
| γ(γτ + δ)

)
.

Our first commentary concerns the fact that the transformation formula given

in (2.2) contains Lerch’s formula (1.6). Indeed, if γ = 1 and M =

(
0 −1
1 0

)
, one

has τ ′ = − 1
τ . Since δ = 0, it follows from (2.4) that

ΨM ;0(v | τ) = Ψ
(
v − τ

2
+

1

2
| τ
)
.

Thus, replacing (z, z′) with (z − τ
2 + 1

2 , z
′ − 1

2 −
τ ′

2 ) in (2.2) yields that

R(z, v | τ)− 1

τ
e

1
τ v(v−2z)πiR(z′, v′ | τ ′) = ϑ0(z | τ)

√
i

τ
Ψ(v − z | τ) ,

what is clearly the same as the basic transformation formula stated in (1.6).
Our second commentary focus on whether the above transformation formula

(2.2) is related with the general modular relations on the Jacobi’s theta functions.
For this, we consider the theta function ϑ1 defined in (1.4); see also [12, (76.1)]. By
making use of [12, (78.32)], in which q2 will be replaced with q = e2πiτ , it follows
that

ϑ1(v | τ) = −i q 1
8 eπiv (q, qe2πiv, e−2πv; q)∞ .

Thus, one gets the following decomposition relation:

(2.5)
1

ϑ1(v | τ)
=
i q−

1
8 e−πiv

(q; q)3∞

∞∑
n=−∞

(−1)n−1q
1
2n(n−1)

1− qn e2πiv
.

In the above, the notation (...; q)∞ is defined as follows: for any given n complex
numbers x1, ..., xn,

(x1, ..., xn; q)∞ =

∞∏
k=0

(1− x1qk)...(1− xnqk) .



MODULAR TRANSFORMATIONS OF APPELL-LERCH SERIES 5

As usual, let η(τ) to denote the Dedekind etafunction. By using the definition
of Rk(z, v | τ) in (1.9) with k = 1, the above decomposition formula in (2.5) can be
read as follows:

1

ϑ1(v | τ)
= −i e

−πiv

η(τ)3
R(−τ

2
+

1

2
, v | τ)

or, equivalently:

(2.6) R(−τ
2

+
1

2
, v | τ) = i eπiv

η(τ)3

ϑ1(v | τ)
.

Thanks to [12, (74.92], one knows that

(2.7) η(τ ′) = ε(α, β, γ, δ)

√
γτ + δ

i
η(τ) .

In addition, if one defines

(2.8) ε1,M = ε1(α, β, γ, δ) = −i ε(α, β, γ, δ)3 ,
it is well-known that the function ϑ1 satisfies the following fractional transformation
formula [12, (80.8)]:

(2.9) ϑ1(v′ | τ ′) = ε1,M

√
γτ + δ

i
e
γv2

γτ+δπi ϑ1(v | τ) .

Now, put together (2.7) and (2.9) into (2.6), and consider the relation between ε
and ε1,M given in (2.8). This implies the following transformation formula for the

first order Appell-Lerch series R(z, v | τ) at the half-period z = −τ
2

+
1

2
:

(2.10) e−πiv
′
R(−τ

′

2
+

1

2
, v′ | τ ′) = (γτ + δ) e−

γv2

γτ+δπi−πiv R(−τ
2

+
1

2
, v | τ) .

Furthermore, a direct computation gives that the Appell-Lerch series R(z, v | τ)
satisfies the functional relation:

(2.11) R(z, v | τ)− e2πiv R(z + τ, v | τ) = ϑ0(z | τ) .

As ϑ0(− τ
′

2 + 1
2 | τ

′) = ϑ0(− τ2 + 1
2 | τ) = 0, the relation in (2.10) can be written into

the following form:

(2.12) eπiv
′
R(
τ ′

2
+

1

2
, v′ | τ ′) = (γτ + δ) e

γv2

γτ+δπi+πiv R(
τ

2
+

1

2
, v | τ) .

It is obvious to see that this last modular relation in (2.12), which is equivalent
to the classical transformation formula (2.9) for ϑ1, can also be deduced from (2.2)
by putting there z = 0, for again ϑ0( τ2 + 1

2 ) = 0.
Our last commentary will be about the remaining cases in which the entry γ

is zero or negative in the matrix M . When γ = 0, one has α = δ = 1 or −1,
which, according to (2.1), implies that (τ ′, z′, v′) = (τ + β, z, v) or (τ − β,−z,−v)
respectively. By using the definition of R(z, v | τ) given in (1.9) for k = 1, it follows
that

(2.13) R(z,−v | τ) = −e2πiv R(τ − z, v | τ) .

As R(z, v | τ + β) = R(z, v | τ) for any integer β, one deduces immediately that, for
both cases in which (γ, δ) = (0,±1):

(2.14) R(z +
τ

2
+

1

2
, v | τ) =

1

δ
e(−v+v

′)πiR(z′ +
τ ′

2
+

1

2
, v′ | τ ′) .
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When γ is negative, one considers the opposite matrix M̃ = −M , for which
Theorem 2.1 works. Let (z̃, ṽ) = (M̃z, M̃v), and note that (z′, v′) = (−z̃,−ṽ). By

applying (2.2) to the matrix M̃ , one finds that

R(z +
τ

2
+

1

2
, v | τ) +

1

γτ + δ
e(
γv(v−2z)
γτ+δ −v−v

′)πiR(−z′ + τ ′

2
+

1

2
,−v′ | τ ′)

= ϑ0(z +
τ

2
+

1

2
| τ)

√
γ i

γτ + δ

|γ|−1∑
k=0

(−1)k e−k(k+1)πiτ ΨM̃ ;k(v − z | τ) .(2.15)

By applying the functional relation in (2.13) to the second term containing R(−z′+
τ ′

2 + 1
2 ,−v

′ | τ ′) in (2.15) in the above, one can notice that this term equals to

− 1

γτ + δ
e(
γv(v−2z)
γτ+δ −v+v

′)πiR(z′ +
τ ′

2
+

1

2
, v′ | τ ′) .

Beside, by replacing M with M̃ in (2.3) and noticing the identity
1

1 + e2γπs
+

1

1 + e−2γπs
= 1, it follows that

ΨM̃ ;k(v | τ) + ΨM ;k(v | τ) =

∫ ∞
−∞

e−
γ

γτ+δ (s−vi+(k+ 1
2 )(τ+

δ
γ )i)

2πi ds .

Thus, one reduces from the above that, for any integer k:

(2.16) ΨM̃ ;k(v | τ) = −ΨM ;k(v | τ) +

√
γτ + δ

γ i
.

In summary, by considering both (2.14) and (2.15) together with (2.16), one
can extend the transformation formula (2.2) into the following form for any given

modular matrix M =

(
α β
γ δ

)
∈ SL(2;Z):

(2.17)

R(z+
τ

2
+

1

2
, v | τ) = AM (z, v | τ)R(z′+

τ ′

2
+

1

2
, v′ | τ ′)+ϑ0(z+

τ

2
+

1

2
| τ) ΨM (v−z | τ) ,

where both z′ and v′ are given in (2.1) and where the factors AM and ΨM are
defined as follows:

(2.18) AM (z, v | τ) =
1

γτ + δ
e(
γv(v−2z)
γτ+δ −v+v

′)πi

and

ΨM (v | τ) = Sgn(γ)

√
γ i

γτ + δ

|γ|−1∑
k=0

(−1)k e−k(k+1)πiτ ΨM ;k(v | τ)

+1Z<0(γ)

|γ|−1∑
k=0

(−1)k e−k(k+1)πiτ .(2.19)

In the above, Sgn is the sign function, ΨM ;k is the Mordell integral defined in (2.3),
and 1Z<0

denotes the indicator function of the subset Z<0 of Z.
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3. q-analogs of Borel-Laplace summation

As in the previous paragraph, let τ ′ = Mτ =
ατ + β

γτ + δ
to be the modular variable

associated with the matrixM =

(
α β
γ δ

)
∈ SL(2;Z), where =(τ) > 0 and =(τ ′) > 0.

Let q = e2πiτ , and write q′ = e2πiτ
′
. For simplify, we will suppose that γ ≥ 1.

Furthermore, we define

(3.1) ζ = e−
2δ
γ πi , ρ = e

2(γτ+δ)
γ πi , ζ ′ = e

2α
γ πi , ρ′ = e−

2
γ(γτ+δ)

πi .

It is obvious to see that q = ρ ζ and 0 < |q| < 1. Moreover, by noticing that

τ ′ = − 1

γ(γτ + δ)
+
α

γ
, it follows that q′ = ρ′ ζ ′.

In line with [24], we shall consider the following first order q-difference equation
in the complex plane of x:

(3.2) x y(
x

q
) + y(x) = 1 .

Let Ê(x) = Ê(x; q) be the formal power series of x given by the relation

(3.3) Ê(x) =

∞∑
n=0

(−1)n q−
1
2n(n−1) xn .

One can find that Ê(x) satisfies term-by-term the functional equation stated in

(3.2). As |q| < 1, the power series Ê(x) diverges for any x 6= 0. So, one finds
that (3.2) admits no analytic solution at x = 0, and this can be viewed as one
consequence of the fact that x = 0 represents an irregular singular point for (3.2).
See [16, 21] for the definition of an irregular singular point of any given linear q-
difference equation.

As one will see in the below, one can, however, construct for equation (3.2) or its
derivatives some analytic solutions whose asymptotic expansion as x→ 0 is exactly
the divergent power series Ê(x), and a suitable Stokes analysis will yields relations
linking all these solutions.

First, by applying the q-Borel-Laplace transform introduced in [22] and [17],
one finds that equation (3.2) is satisfied by the function L(x, u; q) defined in the
following manner:

(3.4) L(x, u; q) =
1

θ(−ux ; q)

∞∑
n=−∞

q
1
2n(n−1)

1− uqn
(−u
x

)n .

In the above, θ(x; q) is the theta function defined by the series

(3.5) θ(x; q) =

∞∑
n=−∞

q
1
2n(n−1) xn ,

and u denotes any given non-zero parameter such that u 6= qn for all integer n. The
function L(x, u; q) given in (3.4) is well-defined for any x ∈ C∗ \ {uqn : n ∈ Z}.

Secondly, one knows that q = ρ ζ, where ζ is a γth root of unity. By applying the
ρ-Borel transform to Ê(x), one gets the function h(ξ; ζ) given by the power series

h(ξ; ζ) =

∞∑
n=0

(−1)n ζ−
1
2n(n−1) ξn ,
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that is convergent in the unit disk |ξ| < 1. Since ζ−
1
2 (n+γ)(n+γ−1)(−ξ)n+γ =

ζ−
1
2n(n−1) (−ξ)n (−ξγ) for any integer n, it follows that

(3.6) h(ξ; ζ) =
1

1 + ξγ

γ−1∑
k=0

ζ−
1
2k(k−1) (−ξ)k .

By using the root ζ ′ introduced in (3.1), one can find that, for any integer k,

(3.7) Res
(1

ξ
h(ξ; ζ) : ξ = e−

1
γ (2k+1)πi

)
= (−e−

1
γ πi)k ζ ′−

1
2k(k+1) S(ζ) ,

where S(ζ) is the Gauss sum satisfying the following relations:

(3.8) S(ζ) = Res
(1

ξ
h(ξ; ζ) : ξ = e−

1
γ πi
)

=
1

γ

γ−1∑
k=0

(−e−
1
γ πi)k ζ−

1
2k(k−1) .

To see (3.7), one can notice the relation e−
1
γ (2k+1)πi = e−

1
γ πi ζkα, which is a con-

sequence of αδ − βγ = 1. Thus, on can obtain (3.7) from (3.8) by iterating several

times the following functional equation at the special value ξ = e−
1
γ πi:

γ−1∑
k=0

ζ−
1
2k(k−1) (− ξ

ζ
)k = −1

ξ

γ∑
k=1

ζ−
1
2k(k−1) (−ξ)k .

In what follows, it will be assumed that the following condition is fulfilled:

(H): both ρ and ρ′ belong to the interval (0, 1).

This is equivalent to suppose that τ satisifes the condition
γτ + δ

i
∈ (0,+∞) ⊂

R. Notice that, by taking into account the argument of the analytic continuation
with respect to q inside the unit disc 0 < |q| < 1, it is enough to only prove (2.2)
under (H).

Let log to denote the principal branch of the logarithm in the universal covering
of C∗, and define

(3.9) ω(t; ρ) =
1√

2π ln(1/ρ)
e

1
2 ln ρ log2( t√

ρ ) ,

(3.10) G(x; ρ, ζ) =

∫ ∞
0

h(ξ; ζ)ω(
ξ

x
; ρ)

dξ

ξ
,

where the path of integration may be the half line starting from the origin whose
angle with the positive real axis is less than π

γ .

Theorem 3.1. Given any (z, v) ∈ C2 such that v /∈ Z⊕ τZ and z − v /∈ Z⊕ τZ, if

(3.11) x = e2πiz u = e2πiv , x′ = e2πiz
′
, u′ = e2πiv

′
,

where z′ = Mz, v′ = Mv are defined in (2.1), then:

(3.12) G(x; ρ, ζ) = L(x, u; q)− 2πi S(ζ)ω(
e−

1
γ πi

x
; ρ)L(

x′

q′
, u′; q′) .

In view of the definition of ρ given in (3.1), one can notice that ln ρ =
2

γ
(γτ+δ)πi.

Thus, one finds from (2.1) and (3.11) that

(3.13) x′ = e
2 log x
γ ln q πi , u′ = e

2 log u
γ ln q πi .
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4. Proof of Theorem 3.1

The functional equation in (3.2) can be put into the following form:

y(x) = (−x) y(
x

q
) + 1 .

By iterating this last equation (γ − 1) times, one finds that the power series Ê(x)
satisfies the functional equation

y(x) = q−
1
2γ(γ−1) (−x)γ y(

x

qγ
) +

γ−1∑
k=0

q−
1
2k(k−1) (−x)k .

As q = ρ ζ and ζ = e−
2δ
γ πi, one can notice that qγ = ργ and q−

1
2γ(γ−1) =

(−1)γ ρ−
1
2γ(γ−1). Thus, one deduces from the above that the divergent power se-

ries Ê(x), as well as its sum-functions L(x, u; q) and G(x; ρ, ζ), are solution to the
non-homogenous ρ-difference equation

(4.1) ρ−
1
2γ(γ−1) xγ y(

x

ργ
) + y(x) =

γ−1∑
k=0

q−
1
2k(k−1) (−x)k .

Thus, if g(x) = G(x; ρ, ζ)− L(x, u; q), then:

(4.2) g(x) = −xγ ρ− 1
2γ(γ−1) g(

x

ργ
) .

Further, as L(x, u; q) is left invariant for the monodromy operator x 7→ xe2πi, one
has

(4.3) g(xe2πi)− g(x) = G(xe2πi; ρ, ζ)−G(x; ρ, ζ) .

In view of the definition of G(x; ρ, ζ) in (3.10), one can observe that

G(xe2πi; ρ, ζ) =

∫ ∞e−2πi

0

h(ξ; ζ)ω(
ξ

x
; ρ)

dξ

ξ
,

where the integration path (0,∞e−2πi) may be obtained by turning through a full
rotation the positive real-axis in the clockwise direction around the origin. By

applying the Cauchy’s theorem to the contour-integral (

∫ ∞e−2πi

0

−
∫ ∞
0

), it follows

from the residues formula (3.7) that
(4.4)

G(xe2πi; ρ, ζ)−G(x; ρ, ζ) = 2πi S(ζ)

γ−1∑
k=0

(−e−
1
γ πi)k ζ ′−

1
2k(k+1) ω(

e−
1
γ (2k+1)πi

x
; ρ) .

From the definition of ω(t; ρ) in (3.9), one obtains that

ω(
e−

1
γ (2k+1)πi

x
; ρ) = e

ab
2 ln ρ ω(

e−
1
γ πi

x
; ρ) ,

where a = log(e
2k
γ πi) = 2k

γ πi and b = log(e
2k+2
γ πiρx2) = 2k+2

γ πi + ln ρ + 2 log x.

Observe that

ab = − 4

γ2
k(k + 1)π2 +

(2 ln ρ

γ
+

4 log x

γ

)
kπi .
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From the definition of ρ and ρ′ given in (3.1), it follows that ρ′ = e
4π2

γ2 ln ρ . By taking
into account the relation in (3.13) for x′, one finds from the above that

(4.5) ω(
e−

1
γ (2k+1)πi

x
; ρ) = (x′e

1
γ πi)k ρ′−

1
2k(k+1) ω(

e−
1
γ πi

x
; ρ) .

As q′ = ρ′ ζ ′, it results from combining (4.4) and (4.5) that equation (4.3) takes the
following form:

(4.6) g(xe2πi)− g(x) = 2πi S(ζ)ω(
e−

1
γ πi

x
; ρ)

γ−1∑
k=0

(−x
′

q′
)k q′−

1
2k(k−1) .

Note that g(x) is defined and analytic on the universal covering of C∗ excepted
at x = e2πi(v+n+mτ) for (n,m) ∈ Z2. Moreover, the map x 7→ x′ is one-to-one

betwenn both lattices e2πi(v+Z⊕τZ) and e2πi(v
′+Z⊕τ ′Z). Thus, if ∆ is the function

defined by the relation

(4.7) g(x) = −2πi S(ζ)ω(
e−

1
γ πi

x
; ρ) ∆(x′) ,

∆ is well-defined and analytic on the universal covering of C∗ excepted in the
multiplicative lattice e2πi(v

′+Z⊕τ ′Z).
By (3.11), it follows that (xρ−γ)′ = x′e−2πi and (xe2πi)′ = ρ′−γx′. On the one

hand, since

ω(
e−

1
γ πi

xρ−γ
; ρ) = e−πi ρ

1
2γ(γ−1) x−γ ω(

e−
1
γ πi

x
; ρ) ,

equation (4.2) becomes:

(4.8) ∆(x′) = ∆(x′e−2πi) .

On the other hand, letting k = γ into (4.5) yields that

ω(
e−

1
γ πi

xe2πi
; ρ) = −x′γ ρ′− 1

2γ(γ+1) ω(
e−

1
γ πi

x
; ρ) .

In this way, (4.6) is transformed as follows:

(4.9) ρ′−
1
2γ(γ−1) (

x′

q′
)γ ∆(

x′

ρ′γ
) + ∆(x′) =

γ−1∑
k=0

(−x
′

q′
)k q′−

1
2k(k−1) .

The above functional equation in (4.8) implies that ∆ represents an analytic
function on the complex plane excepted on {0} ∪ q′Z, while equation (4.9) is really
a dual form of (4.1). By the uniqueness of solutions with simple poles on an
only lattice like as in the theory of elliptic functions, one obtains that ∆(x′) =

L(x
′

q′ , u
′; q′), which together with (4.7) gives (3.12) and then finishes the proof of

Theorem 3.1.

5. From Theorem 3.1 to Theorem 2.1

We will interpret formula (3.12) into a relation about Appell-Lerch series and
Mordell integrals. We shall start by recalling a classic link existing between on a
side the Gauss sum S(ζ) used in (3.12), which is defined in (3.8), and on the other
side the modular relations for theta functions.
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Thanks to [8, (28)], the transformation formula (2.9) for ϑ1 can also be written
into the following form:

(5.1) ϑ1(v′ | τ ′) = SM

√
γτ + δ

i
e
γv2

γτ+δπi ϑ1(v | τ) ,

where SM is the following Gauss sum related with the matrix M =

(
α β
γ δ

)
:

(5.2) SM =
1

i
√
γ

γ−1∑
k=0

e
1
γ (αk

2+(α−γ+1)k+α+δ
4 −

γ−1
2 )πi .

It should be useful to mention that, in the above an also in the below for all similar
situations, the summation on the index k can be made over any full system of
integers with respect to the congruence relation for γ.

Lemma 5.1. Consider the Gauss sum S(ζ) defined in (3.8). One has:

(5.3) SM = i
√
γ e

1
γ (

α+δ
4 −

γ−1
2 )πi S(ζ) .

Proof. Let ζ ′ = e
2α
γ πi be as in (3.1), and define S(ζ ′±) in the same way as what

done in (3.8) for S(ζ), that is to say:
(5.4)

S(ζ ′) =
1

γ

γ−1∑
k=0

(−e−
1
γ πi)k ζ ′−

1
2k(k−1) , S(ζ ′−1) =

1

γ

γ−1∑
k=0

(−e−
1
γ πi)k ζ ′

1
2k(k−1) .

As α and γ are coprime, one has (α + 1)(γ + 1) ≡ 0 (2). Thus, replacing k with
(γ − k) in (5.2) yields that

SM =
e(
α+δ
4 −

γ−1
2 )πi

i
√
γ

γ∑
k=1

e
1
γ (αk

2−(α−γ+1)k)πi .

This is to say that

(5.5) SM = −i√γ e
1
γ (

α+δ
4 −

γ−1
2 )πi S(ζ ′−1) .

We will express SM by means of S(ζ). On the one hand, one can observe that

S(ζ ′)S(ζ ′−1) =
1

γ2

γ−1∑
k,`=0

(−e−
1
γ πi)k+` ζ ′

1
2 (k−`)(k+`−1)

=
1

γ2

γ−1∑
N=0

γ−1∑
k=0

(−e−
1
γ πi)N ζ ′

1
2 (2k−N)(N−1) .

For any given integer N belonging to [0, γ), the last summation for k from 0 to
(γ − 1) equals zero if N 6= 1, and equals to γ otherwise. So, it follows that

(5.6) S(ζ ′)S(ζ ′−1) = − 1

γ
e−

1
γ πi .

On the other hand, by considering all residus of the rational function 1
ξh(ξ; ζ) over

the whole complex plane, one obtains that

γ−1∑
k=0

Res
(1

ξ
h(ξ; ζ) : ξ = e−

1
γ (2k+1)πi

)
= −Res

(1

ξ
h(ξ; ζ) : ξ = 0

)
= −1 .
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This together with (3.7) implies that

γ−1∑
k=0

(−e−
1
γ πi)k ζ ′−

1
2k(k+1) S(ζ) = −1 .

Therefore, one deduces from the definition of S(ζ ′) given in (5.4) that S(ζ ′)S(ζ) =
1

γ
e−

1
γ πi, which, by (5.6), implies that S(ζ) = −S(ζ ′−1). By taking into account

(5.5), one finds easily (5.3). �

Now, we will write Theorem 2.1 by means of Appell-Lerch series. Note that the
definition of L(x, u; q) in (3.4) can be read as follows:

L(x, u; q) =
1

θ(−ux ; q)
R(v − z − τ

2
+

1

2
, v | τ) ,

where x = e2πiz and u = e2πiv. By noticing that L(x
′

q′ , u
′; q′) = 1

x′ (1−L(x′, u′; q′)),

one deduces from (3.12) that

θ(−u
x

; q)G(x; ρ, ζ) = R(v − z − τ

2
+

1

2
, v | τ)−ΘM (z, v | τ)×(

R(v′ − z′ − τ ′

2
+

1

2
, v′ | τ ′)− θ(−u

′

x′
; q′)

)
,(5.7)

where

(5.8) ΘM (z, v | τ) = −2πi S(ζ)ω(
e−

1
γ πi

x
; ρ)

θ(−ux ; q)

θ(−u′x′ ; q′)
1

x′
.

By (3.1), one knows that ln ρ =
2

γ
(γτ + δ)πi. If t = e2πs, the definition of ω(t; ρ)

given in (3.9) implies that

(5.9) ω(e2πs; ρ) =
1

2π

√
γ i

γτ + δ
e−

γ
γτ+δ (s−

γτ+δ
2γ i)2πi .

Letting in the above s = −i( 1
2γ + z) yields that

(5.10) ω(
e−

1
γ πi

x
; ρ) =

1

2π

√
γ i

γτ + δ
e

γ
γτ+δ (z+

1
2γ+

γτ+δ
2γ )2πi .

Further, comparing (3.5) with (1.4) gives that

θ(−e2πiv; e2πiτ ) = −i eπi(v− τ4 ) ϑ1(v | τ) .

Thus, in view of (5.10), the factor ΘM (z, v | τ) defined in (5.8) can be written as
follows:

(5.11) ΘM (z, v | τ) = −i S(ζ)

√
γ i

γτ + δ
eλπi

ϑ1(v − z | τ)

ϑ1(v′ − z′ | τ ′)
,

where

(5.12) λ =
γ

γτ + δ
(z +

1

2γ
+
γτ + δ

2γ
)2 + v − z − τ

4
− v′ − z′ + τ ′

4
.
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By applying the transformation formula (5.1), one deduces from (5.11) that

ΘM (z, v | τ) =
S(ζ)

SM

√
γ

γτ + δ
e(λ−

γ(v−z)2
γτ+δ )πi .

Using (5.3) yields that

(5.13) ΘM (z, v | τ) = − i

γτ + δ
e(λ−

γ(v−z)2
γτ+δ −

1
γ (

α+δ
4 −

γ−1
2 ))πi .

It remains to simplify the exponent employed in the right-hand side of (5.13).
For this, one notices the following expansion:

γ

γτ + δ
(z +

1

2γ
+
γτ + δ

2γ
)2 =

γz2

γτ + δ
+ z′ + z +

1

4γ(γτ + δ)
+
γτ + δ

4γ
+

1

2γ
.

Furthermore, since
1

γτ + δ
= −γτ ′ + α, one deduces from (5.12) that

λ =
γ z2

γτ + δ
+ v − v′ + α

4γ
+

δ

4γ
+

1

2γ
.

So, the expression of ΘM given in (5.13) can be simplified as follows:

(5.14) ΘM (z, v | τ) =
1

γτ + δ
e(

γ
γτ+δ v(2z−v)+v−v

′)πi .

While replacing z with (v − z) in (5.7), one makes use of the functions θ(−x; q)

and θ(−x′; q) instead of θ(−ux ; q) and θ(−u
′

x′ ; q). In view of the expression of ΘM

given in (5.14), one obtains from (5.7) that

θ(−x; q)G(
u

x
; ρ, ζ) = R(z − τ

2
+

1

2
, v | τ)− 1

γτ + δ
e(
γv(v−2z)
γτ+δ +v−v′)πi×(

R(z′ − τ ′

2
+

1

2
, v′ | τ ′)− θ(−x′; q′)

)
.(5.15)

By using the definition of the Appell-Lerch series Rk in (1.9) with k = 1, a direct
calculation shows that

R(z − τ

2
+

1

2
, v | τ)− θ(−x; q) = e2πiv R(z +

τ

2
+

1

2
, v | τ) .

Therefore, formula (5.15) can also be expressed as follows:

θ(−x; q)
(
G(
u

x
; ρ, ζ)− 1)

)
= e2πiv R(z +

τ

2
+

1

2
, v | τ)

− 1

γτ + δ
e(
γv(v−2z)
γτ+δ +v+v′)πiR(z′ +

τ ′

2
+

1

2
, v′ | τ ′) .(5.16)

In addition, be considering the expression obtained in (5.9) for the heat-kernel
ω(e2πs; ρ), it follows from (3.10) that
(5.17)

G(
u

x
; ρ, ζ)− 1 =

√
γ i

γτ + δ

∫ ∞
−∞

(
h(e2πs; ζ)− 1

)
e−

γ
γτ+δ (s−vi+zi−

τ
2 i−

δ
2γ i)

2πi ds ,

where the path of integration may be a line parallel with the real axis with a
distance less than 1

2γ from the real axis. By putting ξ = e2πs into the right-hand
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side of (3.6), it follows that

(5.18) h(e2πs; ζ)− 1 =
1

1 + e2γπs

γ∑
k=1

(−1)k ζ−
1
2k(k−1) e2kπs .

At this time, let a = −vi+ zi− τ
2 i−

δ
2γ i, and note that

e−
γ

γτ+δ (s+a)
2πi+2kπs = e

(
− γ
γτ+δ (s+a+

k
γ (γτ+δ)i)

2+2kai− k2γ (γτ+δ)
)
πi
.

Since

a+
k

γ
(γτ + δ)i = (z − u)i+ (k − 1

2
)(τ +

δ

γ
)i

and

2kai− k2

γ
(γτ + δ) = 2k(v − z)− k(k − 1)(τ +

δ

γ
) ,

one finds that

e−
γ

γτ+δ (s+a)
2πi+2kπs = e−

γ
γτ+δ (s+(z−v)i+(k− 1

2 )(τ+
δ
γ )i)

2πi u

x
q−

1
2k(k−1) ζ

1
2k(k−1) .

It follows from (5.18) that(
h(e2πs; ζ)− 1

)
e−

γ
γτ+δ (s−vi+zi−

τ
2 i−

δ
2γ i)

2πi+2kπs

=
u

x(1 + e2γπs)

γ∑
k=1

(−1)k e−
γ

γτ+δ (s+(z−v)i+(k− 1
2 )(τ+

δ
γ )i)

2
πi−k(k−1)πiτ .

By considering (5.17) and the relation θ(−x; q) = −xθ(−qx; q), one deduces that

θ(−x; q)
(
G(
u

x
; ρ, ζ)− 1

)
= −u θ(−qx; q)

√
γ i

γτ + δ
×

γ∑
k=1

(−1)k q−
1
2k(k−1)

∫ ∞
−∞

e−
γ

γτ+δ (s+(z−v)i+(k− 1
2 )(τ+

δ
γ )i)

2πi ds

1 + e2γπs
.(5.19)

In view of the definition of ϑ0 given in (1.4), one sees that

θ(−qx; q) = ϑ0(z +
τ

2
+

1

2
| τ) .

In this way, one obtains (2.2) from (5.16), and achieves the proof of Theorem 2.1.

6. About the main transformation formula

Let us consider the transformation formula (2.17), and notice that

(6.1) i ϑ1(z | τ) = e(z+
τ
4 )πi ϑ0(z +

τ

2
+

1

2
| τ) ;

see (1.4). If one substitutes z + v to v in (2.17) and multiplies both sides by the
factor e(z+v)πi, one can write this formula into the following form:

(6.2) R̃(z, v | τ) = ÃM (z, v | τ) R̃(z′, v′ | τ ′) + ϑ1(z | τ) Ψ̃M (v | τ) .

In the above, R̃, ÃM and Ψ̃M are related respectively with R, AM and ΨM in the
following manner:

(6.3) R̃(z, v | τ) = e(z+v)πiR(z +
τ

2
+

1

2
, z + v | τ) ,

(6.4) ÃM (z, v) = e(z+v−z
′−v′)πiAM (z, z + v | τ)
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and

(6.5) Ψ̃M (v | τ) = i e(v−
τ
4 )πi ΨM (v | τ) .

First, by replacing v with z + v in (2.18) and considering (6.4), one can notice
that

(6.6) ÃM (z, v | τ) =
1

γτ + δ
e

γ
γτ+δ (v

2−z2)πi .

In view of the relation αδ − βγ = 1, one can also notice the following identities
deduced directly from the definition of τ ′:

(6.7)
τ

γτ + δ
= δ τ ′ − β , 1

γτ + δ
= −γ τ ′ + α .

Thus, one deduces from (6.6) that

(6.8) ÃM (z, v + 1 | τ) = (−1)αγ e(2γv
′−γ2τ ′)πi ÃM (z, v | τ) .

Beside, by writing γτ = (γτ + δ)− δ, one gets that

(6.9)
γτv

γτ + δ
= v − δv′ , γτ2

γτ + β
= τ − δτ

γτ + δ
= τ − δ2τ ′ + βδ .

So, one can find that

(6.10) ÃM (z, v − τ | τ) = (−1)βδ e(−2v+2δv′+τ−δ2τ ′)πi ÃM (z, v | τ) .

In order to express the functional relations on ΨM or Ψ̃M , it will be convenient
to introduce the family of functions {Pk}k∈Z in the following fashion: P0 = 0; for
k ≥ 1 or k ≤ −1,

(6.11) Pk(v | τ) = −i e(v− τ4 )πi
k−1∑
`=0

(−1)` e(2`v−`(`+1)τ)πi

or

(6.12) Pk(v | τ) = i e(v−
τ
4 )πi

−1∑
`=k

(−1)` e(2`v−`(`+1)τ)πi

respectively. By comparing both relations in (6.11) and (6.12), one can observe
that the following symmetries hold for any integer k:

(6.13) P−k(v | τ) = −Pk(−v | τ) = (−1)k+1 e(−2kv−k
2τ)πi Pk(v + kτ | τ) .

Lemma 6.1. The following identity holds for any integer k:

(6.14) R̃(z, v − kτ | τ) = (−1)k e(−2kv+k
2τ)πi

(
R̃(z, v | τ) + Pk(v | τ)ϑ1(z | τ)

)
.

Proof. By considering the definition of R(z, v | τ) in (1.9), one finds that, for any
integer k,

(6.15) R(z, v − kτ | τ) = e(2kz+k
2τ)πiR(z + kτ, v | τ) .

If one writes (2.11) into the form R(z + τ, v | τ) = e−2vπi
(
R(z, v | τ) − ϑ0(z | τ)

)
,

iterating this gives that, for any positive integer k:

R(z + kτ, v | τ) = e−2kvπiR(z, v | τ)−
k−1∑
`=0

e−2(k−`)vπi ϑ0(z + `τ | τ) .
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By taking into account the definition of ϑ0(z | τ) in (1.4), one can immediately

obtain that ϑ0(z + `τ | τ) = e−(2`z+`
2τ)πi ϑ0(z | τ). So, one deduces from the above

that, for positive integer k:

R(z + kτ, v | τ) = e−2kπiv
(
R(z, v | τ)− e(z−v− τ4 )πi Pk(v − z +

τ

2
+

1

2
| τ)ϑ0(z | τ)

)
,

where Pk is defined in (6.11). This together with (6.15) implies that, for k ≥ 0:

R(z, v − kτ | τ) = e(2k(z−v)+k
2τ)πi

(
R(z, v | τ)

−e(z−v− τ4 )πi Pk(v − z +
τ

2
+

1

2
| τ)ϑ0(z | τ)

)
.

If one replaces (z, v) with (z+ τ
2 + 1

2 , z+ v) in the above and considers the relation

stated in (6.1) for ϑ0 and ϑ1, one deduces immediately from the definition of R̃ in
(6.3) the wanted formula (6.14) for any positive integer k.

The case for which k ≤ −1 can be obtained by substituting (v + kτ) to v into
(6.14) and then expanding there Pk(v+kτ | τ) by means of P−k(v | τ) with the help
of the last relation of (6.13). �

In what follows, we will make use of the linear transformation formula (2.9) for
ϑ1, in which ε1,M denotes some root of unity associated with the given modular
matrix M . Namely, one deduces from (6.6) that

(6.16) ÃM (z, v | τ)
ϑ1(z′ | τ ′)
ϑ1(z | τ)

= i ε1,M

√
i

γτ + δ
e
γ v2

γτ+δπi .

Theorem 6.1. The following functional relations hold for the function Ψ̃M (v | τ):

(6.17) Ψ̃M (v + 1 | τ) + Ψ̃M (v | τ) = i ε1,M

√
i

γτ + δ
e
γ v2

γτ+δπi Pγ(v′ | τ ′)

and
(6.18)

Ψ̃M (v | τ)+e(2v−τ)πi Ψ̃M (v−τ | τ) = i e(v−
τ
4 )πi+ i ε1,M

√
i

γτ + δ
e
γ v2

γτ+δπi Pδ(v
′ | τ ′) .

Proof. In view of the second identity given in (6.7), one knows that (v + 1)′ =

v′ − γτ ′ + α. Since R̃(z, v + k | τ) = (−1)kR̃(z, v | τ) for any integer k, one obtains

that R̃(z′, (v+ 1)′ | τ ′) = (−1)αR̃(z′, v′− γτ ′ | τ). Thus, substituting (v+ 1) to v in
the transformation formula (6.2) yields that, if

R = (−1)α+1 ÃM (z, v + 1 | τ) R̃(z, v′ − γτ ′ | τ ′) ,

then:

(6.19) ÃM (z, v | τ) R̃(z′, v′ | τ ′) + ϑ1(z | τ) Ψ̃M (v | τ) = R− ϑ1(z | τ) Ψ̃M (v + 1 | τ) .

Furthermore, by applying (6.14), it follows that
(6.20)

R = (−1)α+γ+1 ÃM (z, v + 1 | τ) e(−2γv
′+γτ ′)πi

(
R̃(z′, v′ | τ ′) + Pγ(v′ | τ ′)ϑ1(z′ | τ ′)

)
.

Since (γ + 1)(α+ 1) ≡ 0 (2), putting (6.8) into (6.20) implies that

R = ÃM (z, v | τ)
(
R̃(z′, v′ | τ ′) + Pγ(v′ | τ ′)

)
ϑ1(z′ | τ ′) .
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Therefore, (6.19) takes the following form:

ϑ(z | τ)
(
Ψ̃M (v + 1 | τ) + Ψ̃M (v | τ)

)
= ÃM (z, v | τ)ϑ1(z′ | τ ′)Pγ(v′ | τ ′) .

which is clearly equivalent with (6.17), in view of (6.16).
To obtain (6.18), one can replace v with v − τ in (6.2). Indeed, by the first

identity given in (6.7), one knows that (v − τ)′ = v′ − δτ ′ + β. Thus, one deduces
from (6.2) that

R̃(z, v − τ | τ)− ϑ1(z | τ) Ψ̃(v − τ | τ) = (−1)β ÃM (z, v − τ | τ) R̃(z′, v′ − δτ ′ | τ ′) .

By taking into account (6.10) and also the congruence relation (β+1)(δ+1) ≡ 0 (2),
one sees that

(−1)β ÃM (z, v − τ | τ) = (−1)δ+1 e(−2v+τ)πi ÃM (z, v | τ) e(2δv
′−δ2τ ′)πi .

Thus, by applying (6.14) to both R̃(z, v − τ | τ) and R̃(z′, v′ − δτ ′ | τ ′), one obtains
from the above that

e(−2v+τ)πi
(
R̃(z, v | τ) + P1(v | τ)ϑ1(z | τ)

)
+ ϑ1(z | τ) Ψ̃(v − τ | τ)

= e(−2v+τ)πi ÃM (z, v | τ)
(
R̃(z′, v′ | τ ′) + Pδ(v

′ | τ ′)ϑ1(z′ | τ ′)
)
.

If one considers again (6.2), one may find that

Ψ̃(v | τ) + P1(v | τ) + e(2v−τ)πi Ψ̃(v − τ | τ) = ÃM (z, v | τ)
ϑ1(z′ | τ ′)
ϑ1(z | τ)

Pδ(v
′ | τ ′) .

By letting k = 1 into (6.11), one obtains that P1(v | τ) = −i e(v− τ4 )πi. In this way,
one arrives at the formula expected in (6.18), with the help of (6.16). �

Putting x = e2πiz and u = e2πv into (5.19) implies the following identity:

G(e2πiv; ρ, ζ) = e2πiv ΨM (v | τ) + 1 = −i e(v+ τ
4 )πi Ψ̃M (v | τ) + 1 .

One can notice that (6.17) is equivalent with the monodromy relation (4.6) on g(x).
At the same times, the relation in (6.18) means that G(x; ρ, ζ) satisfies one first
order q-difference equation.

In the following, we will deal with the composite structure of the transformation

formula stated in (6.2). Let M ′ be another modular matrix with M ′ =

(
α′ β′

γ′ δ′

)
∈

SL(2;Z), write M ′M =

(
α′′ β′′

γ′′ δ′′

)
, and set τ ′′ = M ′τ ′ =

α′τ ′ + β′

γ′τ ′ + δ′
. Beside, in

accordance with (2.1), we define

(6.21) z′′ = M ′z′ =
z′

γ′τ ′ + δ′
, v′′ = M ′v′ =

v′

γ′τ ′ + δ′
.

It is well-known from the fractional transformation theory that

(6.22) τ ′′ = (M ′M)τ , z′′ = (M ′M)z , v′′ = (M ′M)v .

Theorem 6.2. The following relations hold for all (z, v) ∈ C2 and M ′ ∈ SL(2;Z):

(6.23) ÃM ′M (z, v | τ) = ÃM (z, v | τ) ÃM ′(z
′, v′ | τ ′)

and

(6.24) Ψ̃M ′M (v | τ) = Ψ̃M (v | τ) + i ε1,M

√
i

γτ + δ
e
γ v2

γτ+δπi Ψ̃M ′(v
′ | τ ′) .
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Proof. The relation stated in (6.23) can be directly deduced from the expression of

ÃM given in (6.6). Indeed, by considering (6.21), one obtains that

(6.25) ÃM (z, v | τ) ÃM ′(z
′, v′ | τ ′) = a ebπi ,

where a =
1

(γτ + δ)(γ′τ ′ + δ′)
and where b = γ′ v′′ v′ + γ v′ v. On the one hand,

for z = 1, since z′ =
1

γτ + δ
, it follows from the relation in (6.22) for z′′ that

a =
z′

γ′τ ′ + δ′
= z′′ =

1

γ′′τ + δ′′
. On the other hand, by (6.7), one knows that

1

γτ + δ
= −γτ ′ + α. Thus, one finds that, for any v ∈ C,

γ′v′′v′ + γv′v =
(
γ′(−γτ ′ + α) + γ(γ′τ ′ + δ′)

)
v′′v = γ′′v′′v .

In this way, one gets (6.23) from (6.25).

To prove (6.24), we shall apply transformation formula (6.2) to R̃(z′, v′ | τ ′) with
the modular matrix M ′, and this implies that

(6.26) R̃(z′, v′ | τ ′) = ÃM ′(z
′, v′ | τ ′) R̃(z′′, v′′ | τ ′′) + ϑ1(z′ | τ ′) Ψ̃M ′(v

′ | τ ′) .

If one combines (6.2) with (6.26) in the above, one finds that

(6.27) R̃(z, v | τ) = ÃM (z, v | τ) ÃM ′(z
′, v′ | τ ′) R̃(z′′, v′′ | τ ′′) + Ψ ,

where

Ψ = ϑ1(z | τ) Ψ̃M (v | τ) + ÃM (z, v | τ)ϑ1(z′ | τ ′) Ψ̃M ′(v
′ | τ ′) .

Thus, in view of (6.23), one can deduce from (6.27) that

ϑ1(z | τ) Ψ̃M ′M (v | τ) = ϑ1(z | τ) Ψ̃M (v | τ) + ÃM (z, v | τ)ϑ1(z′ | τ ′) Ψ̃M ′(v
′ | τ ′) ,

which is equivalent with (6.24); see (6.16). �

In particular, if M ′ is the inverse matrix M−1 of M , one has M ′M = I2, τ ′′ = τ ,
z′′ = z and v′′ = v. As ÃI2(z, v | τ) = 1 and Ψ̃I2(v | τ) = 0, the relations in (6.23)
and (6.24) imply respectively that

(6.28) ÃM−1(z′, v′ | τ ′) =
1

ÃM (z, v | τ)

and

(6.29) Ψ̃M−1(v′ | τ ′) =
i

ε1,M

√
γτ + δ

i
e−

γ v2

γτ+δπi Ψ̃M (v | τ) .

Beside, it is easy to see the following symmetry relation for ÃM (z, v | τ):

(6.30) ÃM (−z, v | τ) = ÃM (z,−v | τ) = ÃM (z, v | τ) .

At the same time, the function Ψ̃M (v | τ) satisfies also the following relation:

(6.31) Ψ̃M (−v | τ) = Ψ̃M (v | τ) .

Indeed, by considering the symmetry relation in (2.13) for R(z, v | τ), one obtains

that R(−z +
τ

2
+

1

2
,−v | τ) = −e2πiv R(z +

τ

2
+

1

2
, v | τ) . This is equivalent to say

that R̃(−z,−v | τ) = −R̃(z, v | τ). As ϑ1(−z | τ) = −ϑ1(z | τ), one deduces (6.31)
by applying (6.2) and (6.30).
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Moreover, when one takes the derivative with repsective to v at v = 0 for both
sides of (6.31), one finds that

(6.32)
d

dv
Ψ̃M (0 | τ) = 0 ,

d

dv
ΨM (0 | τ) = −πiΨM (0 | τ) .

7. Applications and remarks

We shall consider the action of any modular matrix on the function f(z | τ) given
in (1.3), whose basic transformation formula was stated in [11]; see (1.1). As before,

let M =

(
α β
γ δ

)
∈ SL(2;Z). It is obvious to see that M contains one or two even

integers. By considering the definition of the function f(z | τ) in (1.3), one finds
that f(z | τ) can be expressed as follows:

(7.1) f(z | τ) = e(z−
τ
4 )πi R̃(z,

τ

2
− 1

2
− z | τ) .

For w =
τ

2
− 1

2
, it follows from (6.7) that

(7.2) w′ =
γ + δ

2
τ ′ − α+ β

2
.

Theorem 7.1. If two of the entries of the matrix M ∈ SL(2;Z) are even, the
following transformation formula holds for the function f(z | τ) defined in (1.3):

(7.3) f(z | τ) =
1

γτ + δ
e
πi
4

(
(α+β)(γ+δ)−1

)
f(z′ | τ ′) + ∆(z | τ) ,

where

∆(z | τ) =
1

γτ + δ
e(z
′− τ′4 + 1

4 (α+β)(γ+δ)−
1
4 )πi ϑ1(z′ | τ ′)P 1−γ−δ

2
(−z′ | τ ′)

+e(z−
τ
4 )πi ϑ1(z | τ) Ψ̃M (

τ

2
− 1

2
− z | τ) .(7.4)

Proof. As αδ − βγ = 1, the integers α and β, as well as the couple (δ, γ), are
coprime. So, when M contains two even integers among its entries, one can find
(k, n) ∈ Z2 such that (7.2) takes the following form:

(7.5) w′ = w′0 − k τ ′ , w′0 =
τ ′

2
− 1

2
+ n .

Thus, by applying the transformation formula (6.2) to R̃(z, τ2−
1
2−z | τ), one obtains

from (7.1) that

(7.6) f(z | τ) = a R̃(z′, w′0 − z′ − kτ ′ | τ ′) + Ψ ,

where a = e(z−
τ
4 )πi ÃM (z,

τ

2
− 1

2
−z | τ) and Ψ = e(z−

τ
4 )πi ϑ1(z | τ) Ψ̃M ( τ2−

1
2−z | τ).

Furthermore, by considering (6.14), one observes that, if b = e(2kz
′+k(k−1)τ ′)πi ,

then:

R̃(z′, w′0 − z′ − kτ ′ | τ ′) = b
(
R̃(z′, w′0 − z | τ ′) + Pk(w′0 − z′ | τ ′)ϑ1(z′ | τ ′)

)
.

So, the relation in (7.6) implies that

f(z | τ) = a b R̃(z′, w′0 − z | τ ′) + a bPk(w′0 − z′ | τ ′)ϑ1(z′ | τ ′)
)

+ Ψ .

In view of (7.3), this is to say that

(7.7) f(z | τ) = a b e(−z
′+ τ′

4 )πi f(z′ | τ ′) + a bPk(w′0 − z′ | τ ′)ϑ1(z′ | τ ′)
)

+ Ψ .
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It remains to express the product a b in (7.7). By considering (6.6), it follows
that

ÃM (z,
τ

2
− 1

2
− z | τ) =

1

γτ + δ
e

γ
γτ+δ (

τ2

4 −
τ
2+

1
4−τz+z)πi .

In a similar manner as what done in (6.9), one can find that

γ

γτ + δ
(
τ2

4
− τz + z) = −z + (γ + δ)z′ +

τ

4
− δ2

4
τ ′ +

βδ

4
.

Thus, by making use of (6.7), one gets that

γ

γτ + δ
(
τ2

4
− τ

2
+

1

4
− τz+z) = −z + (γ + δ)z′ +

τ

4
− (γ + δ)2

4
τ ′ +

βδ

4
+
βγ

2
+
αγ

4
.

By observing that αγ + 2βγ + βδ = (α + β)(γ + δ) − 1, the factor a used in (7.6)
can be expressed as follows:

a =
1

γτ + δ
e((γ+δ)z

′− (γ+δ)2

4 τ ′+ 1
4 (α+β)(γ+δ)−

1
4 )πi .

By comparing (7.2) with (7.5), it follows that 2k = 1−γ− δ. So, one gets from the
above that

a b =
1

γτ + δ
e(z
′− τ′4 + 1

4 (α+β)(γ+δ)−
1
4 )πi .

In this way, one deduces immediately (7.3) and (7.4) from (7.7). �

For M =

(
0 −1
1 0

)
, one has (α+ β)(γ + δ) = −1. By noticing that P0 = 0 and

Ψ̃M (
τ

2
− 1

2
− z | τ) = e(−z+

τ
4 )πiΨM (

τ

2
− 1

2
− z | τ), the above relation (7.3) takes the

following form:

f(z | τ) = − i
τ
f(
z

τ
| − 1

τ
) + ϑ1(z | τ) ΨM (

τ

2
− 1

2
− z | τ) .

While replacing (z, τ) with ( zτ ,−
1
τ ), one can easily check this last relation is reduced

into (1.1).
If only one entry of M is even, one can deduce from Theorem 2.1 modular-like

relations between f(z | τ) and some modified variants of f(z′ | τ ′) but not with this
function itself. Indeed, the condition in (7.5) may be replaced with the following
ones:

w′ = (m+
1

2
)τ ′ + n or w′ = mτ ′ + n+

1

2

for some suitable integers m and n; see also (7.2). Note that this is a situation
in some way similar to what hapenning for the modular relations for other theta
functions than ϑ1; see also (1.10).

In a forthcoming paper, we will make use of the transformation formula (2.17)
for establishing a general modular relation including (1.2). For this matter, the
relation in (6.32) would be helpful.
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