
HAL Id: hal-02314551
https://hal.science/hal-02314551

Submitted on 14 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boolean CP decomposition of binary tensors:
Uniqueness and algorithm

Mamadou Diop, Sébastian Miron, Antoine Souloumiac, David Brie

To cite this version:
Mamadou Diop, Sébastian Miron, Antoine Souloumiac, David Brie. Boolean CP decomposi-
tion of binary tensors: Uniqueness and algorithm. 44th IEEE International Conference on
Acoustics Speech and Signal Processing, ICASSP 2019, May 2019, Brighton, United Kingdom.
�10.1109/ICASSP.2019.8683508�. �hal-02314551�

https://hal.science/hal-02314551
https://hal.archives-ouvertes.fr


BOOLEAN CANONICAL POLYADIC DECOMPOSITION OF BINARY TENSORS: A
POST-NONLINEAR MIXTURE MODEL APPROACH

Mamadou Diop∗,†, Sebastian Miron∗, Antoine Souloumiac‡ and David Brie∗
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ABSTRACT

We propose an algorithm to perform the low-rank Boolean
Canonical Polyadic Decomposition (BCPD) of a binary ten-
sor. The proposed approach is based on the AO-ADMM strat-
egy introduced [7] and uses a post-nonlinear mixture model
for binary sources. We show that this new method is bet-
ter adapted for low-rank approximation of binary tensors than
other similar methods. We also provide an easy-to-check nec-
essary condition for the uniqueness of the BCPD.

Index Terms— binary tensor, Boolean Canonical Polyadic
Decomposition, uniqueness, AO-ADMM

1. INTRODUCTION

Third-order binary tensors are three-way arrays with the
entries composed of 0’s and 1’s. They are often used to
capture ternary relationships, memberships or occurrences
of events, e.g., source IP - target IP - target port in network
traffic analysis, adjacency matrices of a dynamic graph over
time, predicate relations subject - object - verb in knowledge
base, etc. To reveal latent structures in these binary tensors,
the Boolean Canonical Polyadic Decomposition (BCPD) has
been introduced; it allows to decompose a binary-valued ten-
sor in a “logical sum” of rank-1 binary terms (sources) [2].
The BCPD is NP-hard and therefore suboptimal strategies
have been proposed to tackle this difficulty. For example,
in [3, 4] the formal concept analysis framework is used to
achieve the decomposition, while in [2], the BCPD is ob-
tained using an alternating approach based on the discrete
basis problem for binary matrices, introduced in [5].

All these approaches are based on greedy strategies, de-
signed to give optimal results in the case of exact decompo-
sitions and non-correlated sources. Their performance dete-
riorates rapidly in the presence of binary noise and therefore
they are not well suited for low-rank decompositions of bi-
nary tensors. In this paper we propose an approach based on
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a relaxation of the BCPD problem over the nonnegative real
orthant, coupled with a post-nonlinear model of the Boolean
mixture of the binary sources. We show that our approach
yields very good results for low-rank approximation of binary
tensors in the presence of sources having overlapping support
(correlated sources). We also proove a sufficient condition for
the uniqueness of the BCPD based on relationships between
the the support of the loading factors.

2. BOOLEAN CP DECOMPOSITION OF BINARY
TENSORS

Consider a three-way binary data array (tensor)X of size N×
M × P such that its elements Xnmp ∈ {0, 1} (with n =
1, . . . , N , m = 1, . . . ,M and p = 1, . . . , P ) can be expressed
as:

Xnmp =
K∨

k=1
(wnk ∧ hmk ∧ vpk) (1)

with wnk, hmk, vpk ∈ {0, 1}, and with “∨” and “∧” denoting
the logical “AND” and “OR” operators, respectively. Equa-
tion (1) expresses a third-order Boolean Canonical Polyadic
Decomposition (BCPD) of rank K . As wnk, hmk, vpk ∈
{0, 1}, the logical “AND” operator in (1) can be equiva-
lently replaced by the classical real numbers product, and

thus Xnmp =
K∨

k=1
wnkhmkvpk . By regrouping the el-

ements wnk, hmk and vpk on the columns of matrices
W = [w1 . . .wK ] (N ×K), H = [h1 . . .hK ] (M ×K) and
V = [v1 . . .vK ] (P ×K), respectively, the BCPD (1) can be
expressed as:

X =
K∨

k=1
(wk ◦ hk ◦ vk) = �W,H,V� , (2)

where “◦” denotes the vector outer product and where the log-
ical operation “∨” is performed element-wise. Thus, in order
to perform the BCPD of X , one must solve the following in-



verse problem:

{Ŵ, Ĥ, V̂} = arg min
W,H,V∈{0,1}

∥∥∥∥X − K∨
k=1

wk ◦ hk ◦ vk

∥∥∥∥
2

2

.

(3)
A classical way to perform the canonical polyadic decompo-
sition in the real-valued case is to alternatingly estimate the
three loading matrices using the three n-mode unfoldings of
X [1]. A similar strategy can be used in the Boolean case,
based on the three unfoldings hereafter:

X(1) = W � (V �H)T , (4)

X(2) = H � (V �W)T , (5)

X(3) = V � (H�W)T , (6)

where “�” denotes the Khatri-Rao product and “�” represents
the Boolean matrix product, i.e., the restriction of BCPD (2)
to second-order tensors (matrices).

3. UNIQUENESS

Before introducing the proposed approach for performing the
BCPD, we analyze the uniqueness of this Boolean tensor de-
composition. In [6] we derived a necessary and sufficient
uniqueness condition for the Boolean decomposition of bi-
nary matrices. An extension of this condition to tensor case is
possible but it would not have much practical interest because
it would be very difficult to check. We give instead a suffi-
cient condition for the uniqueness of the decomposition (2),
much more easy to examine in practice. We start by proving
a sufficient condition for the Boolean decomposition of the

binary matrix X = W �H =
K∨

k=1
X(k) =

K∨
k=1

wkh
T
k .

Theorem 3.1 (Partial uniqueness of X = W � H). If

supp1(w�) �⊆
K∪
k �=�

supp(wk) then the �th column of H, i.e, h�

can be uniquely estimated from X. (A similar condition can
be proven for the uniqueness of w�).

Proof. Suppose that h� can not be uniquely estimated from
X, i.e. it ∃ X̄(�) = w�h̄

T
� �= X(�) = w�h

T
� such that X =

∨
k �=�

wkh
T
k ∨w�h

T
� = ∨

k �=�
wkh

T
k ∨w�h̄

T
� . This is equivalent to

supp(X) =
K∪

k=1
supp(wkh

T
k ) = ∪

k �=�
supp(wkh

T
k )∪supp(w�h

T
� )

= ∪
k �=�

supp(wkh
T
k )∪supp(w�h̄

T
� ). Let us suppose, without

loss of generality, that h̄� = h�∨h �= h�. Then, supp(X) =
∪

k �=�
supp(wkh

T
k ) ∪ supp(w�(h�∨h)T ) = ∪

k �=�
supp(wkh

T
k )∪

supp(w�h
T
� ) ∪ supp(w�h

T ). As supp(h) �⊆ supp(h�), it
results that supp(w�h

T ) ⊆ ∪
k �=�

supp(wkh
T
k )⇔ supp(w�) ⊆

∪
k �=�

supp(wk) and supp(h) ⊆ ∪
k �=�

supp(hk), which ends the

proof.
1We define the support of a vector x as supp(x) = {i,xi �= 0} and the

support of matrix X as supp(X) = {(i, j),Xij �= 0}.

By applying theorem 3.1 to the unfoldingsX(1),X(2) and
X(3) of X , the following partial uniqueness condition for
BCPD can be proven quite straightforwardly (for space rea-
sons the proof will not be detailed in this version of the paper).

Theorem 3.2 (Partial uniqueness of the BCPD of X ). The
�th rank-1 term X (�) = w� ◦ h� ◦ v� in the BCPD (2) can be
uniquely estimated from X if

supp(w�) �⊆
K∪
k �=�

supp(wk) and supp(h�) �⊆
K∪
k �=�

supp(hk)

or

supp(w�) �⊆
K∪
k �=�

supp(wk) and supp(v�) �⊆
K∪
k �=�

supp(vk)

or

supp(h�) �⊆
K∪
k �=�

supp(hk) and supp(v�) �⊆
K∪
k �=�

supp(vk).

If theorem 3.2 is satisfied for all values of � = 1, . . . ,K ,
then the BPCD is fully unique or more simply we say that the
BPCD is unique.

4. PROPOSED APPROACH

We base our algorithm for solving the BCPD problem (3) on
a post-nonlinear mixture model approach, similar to the one
that we proposed in [6] for the matrix case. Instead of solving
directly (3), we solve a relaxed version of it :

{Ŵ, Ĥ, V̂} = arg min
W,H,V∈{0,1}

∥∥∥∥∥X − Φ

(
K∑

k=1

wk ◦ hk ◦ vk

)∥∥∥∥∥
2

2

,

(7)
where Φ(x) is the sigmoid function in figure 1 applied
element-wise.
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Fig. 1: Sigmoid function Φ(x) = 1
1+e−γ(x−0.5)

In this paper we develop an algorithm for solving (7) in-
spired from the Alternating Optimization - Alternating Di-
rection Method of Multipliers (AO-ADMM) introduced in [7].
The proposed approach can be summarized as follows:

Repeat

min
W,W̄

1

2

∥∥∥X(1)− Φ
(
W̄ (V �H)

T
)∥∥∥2

F
+ ‖W −W ∗W‖2F

subject to W = W̄



min
H, H̄

1

2

∥∥∥X(2)− Φ
(
H̄ (V �W)T

)∥∥∥2
F
+ ‖H−H ∗H‖2F

subject to H = H̄

min
V, V̄

1

2

∥∥∥X(3)− Φ
(
V̄ (H�W)T

)∥∥∥2
F
+ ‖V −V ∗V‖2F

subject to V = V̄

until convergence (8)

where “∗” denotes the matrix Hadamard (element-wise) prod-
uct. The second term in the expressions to minimize is used to
constraint the entries of W,H,W to binarity, as explained in
[6]. Using the results of [7], update rules can be obtained for
the three minimization problems. For example, for the update
of W, the following expressions are obtained:

W̄← argmin
W̄

1

2

∥∥∥X(1) − Φ
(
W̄ (V �H)

T
)∥∥∥2

F
+

ρ

2

∥∥W − W̄ +A
∥∥2
F

W← argmin
W

‖W −W ∗W‖2F +
ρ

2

∥∥W − W̄ +A
∥∥2
F

A← A+W − W̄,

with ρ a regularization parameter. One can easily observe
that the two minimization problems below are non-convex. In
order to obtain an explicit update rule for W, we take advan-
tage of the binary nature of its entries and we replace the term
‖W −W ∗W‖2F by ‖W −W ∗W‖1. For W̄, we locally
“linearize” the sigmoid function Φ(·), in the neighborhood of
the current iteration of W̄. The resulting algorithm, that we
called Boolean Tensor - ADMM (BT-ADMM), is resumed in
Algorithm 1.

5. RESULTS

In this section we illustrate the proposed approach in numeri-
cal simulations and compare it to similar methods of the state-
of-the-art.

A first experiment illustrates the uniqueness condition for
the BCPD. Figure 2 shows two rank-3 BCPD’s of 10× 7× 5
binary tensors (gray pixels symbolize the 1’s). The first row
of each image represents the simulated data and the second
row, the estimated BCPD. One can see that for Fig.2 (a) the
uniqueness conditions of theorem 3.2 are verified for all 3
sources, while for Fig.2 (b) the partial uniqueness condition
is not satisfied for the second source. Thus, for the second
configuration, our algorithm yielded another decomposition
that reproduces exactly the BCP model X .

The second experiments compares the performance of the
proposed BT-ADMM algorithm to two other state-of-the-art
approaches, the BCP-ALS of [2] and the T-FC of [4]. We

Algorithm 1 : BT-ADMM

1: Input: X , K , Nbiter, Nbinterne,γ, ρ, ε
2: Output: W, H, V
3: Initialization

W← rand(N,K), H← rand(M,K), V← rand(P,K)
W̄← rand(N,K), H̄← rand(M,K), V̄← rand(P,K)

4: for t = 1 : Nbiter do

5: Update of W̄ et W
6: for t1 = 1 : Nbinterne do
7: Ew ← Φ

(
W̄ (V �H)

) −
γΦ
(
W̄ (V �H)

) (
1− Φ

(
W̄ (V �H)

)) (
W̄ (V �H)

)
8: Fw ← γ

(
Φ
(
W̄ (V �H)

)− (Φ (W̄ (V �H)
))2)

9: W̄T ←
(
(Fw(V �H))

T
(Fw(V �H))− ρI

)−1

((
X(1) ∗ Fw −Ew ∗ Fw

)
(V �H) + ρ (W +A)

)T
10: W← ((ρ− 2)I)

−1 (
ρ(W̄ −A)− I

)
11: A← A+W − W̄
12: end for
13: Update of H̄ et H
14: for t2 = 1 : Nbinterne do
15: Eh ← Φ

(
H̄ (V �W)

) −
γΦ
(
H̄ (V �W)

) (
1− Φ

(
H̄ (V �W)

)) (
H̄ (V �W)

)
16: Fh ← γ

(
Φ
(
H̄ (V �W)

)− (Φ (H̄ (V �W)
))2)

17: H̄T ←
((

Fh(V �W)
)T (

Fh(V �W)
)− ρI

)−1

((
X(2) ∗ Fh −Eh ∗ F) (V �W) + ρ (H+V)

)T
18: H← ((ρ− 2)I)

−1 (
ρ(H̄−V) − I

)
19: B← B+H− H̄
20: end for
21: Update of V̄ et V
22: for t3 = 1 : Nbinterne do
23: Ev ← Φ

(
V̄ (H�W)

) −
γΦ
(
V̄ (H�W)

) (
1− Φ

(
V̄ (H�W)

)) (
V̄ (H�W)

)
24: Fv ← γ

(
Φ
(
V̄ (H�W)

)− (Φ (V̄ (H�W)
))2)

25: V̄T ←
(
(Fv(H�W))T (Fv(H�W))− ρI

)−1

((
X(3) ∗ Fv −Ev ∗ Fv

)
(H�W) + ρ (V +W)

)T
26: V← ((ρ− 2)I)−1 (ρ(V̄ −W)− I

)
27: C← C+V − V̄
28: end for

29: Normalization of W̄, W, H̄, H, V̄ et V
30: W̄← Φ(W̄), H̄← Φ(H̄), V̄← Φ(V̄)
31: W← Φ(W), H← Φ(H), V← Φ(V)

32: Stop criterion

33: X̂ =
K∨

k=1
wk ◦ hk ◦ vk

34: if ‖X −X̂‖2+∑

i,k

(
W2

ik −Wik

)2
+
∑

j,k

(
H2

jk −Hjk

)2
+

∑

�,k

(
V2

�,k −V�,k

)2
< ε then

35: break
36: end if
37: end for
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Fig. 2: Unique decomposition (a) and non-unique decomposition
(b) of X

plotted the estimation error for the loading matrices:

ErrorW,H,V =

‖W−Ŵ‖2
F

NK +
‖H−Ĥ‖2

F

MK +
‖V−V̂‖2

F

PK

3

and the reconstruction error for X :

ErrorX =

∥∥∥X(1) − X̂(1)

∥∥∥2
F

NMP

versus the noise rate. For these simulations we considered
additive XOR noise generated according to a Bernoulli dis-
tribution of parameter b. The plotted points were averaged
over 50 runs. Two scenarios are considered: in the first sce-
nario (Fig. 3) the sources are randomly simulated accord-
ing to a Bernoulli distribution with parameter p = 0.3, i.e.,
the sources have low correlation (their supports are approxi-
mately disjoints). In the second scenario (Fig. 4) we chose
p = 0.6 in order to generate highly correlated sources.
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Fig. 3: (a) Reconstruction error rate for X and (b) estimation error
rate for W, H V vs. additive XOR noise rate b (N = 20, M = 30,
P = 10, K = 3, ρ = 109) for p = 0.3
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Fig. 4: (a) Reconstruction error rate for X and (b) estimation error
rate for W, H V vs. additive XOR noise rate b (N = 20, M = 30,
P = 10, K = 3, ρ = 109) for p = 0.6

One can observe that for noise rates b inferior to 0.3 our
algorithm yields better results than the competitor methods,
which makes it an interesting tool for low-rank binary tensor
approximation. For the values of p > 0.3 none of the three
methods give good results because the XOR noise rate is high
enough to completely destroy the low-rank structure of the
data.

6. CONCLUSIONS

In this paper we introduced a new method for the Boolean
canonical polyadic decomposition (BCPD) of binary-valued
tensors based on a post-nonlinear mixture model and an al-
ternating ADMM approach. We illustrated in numerical sim-
ulations that our method outperforms similar state-of-the-art
methods in the presence of XOR binary noise, which makes
it well-adapted for low-rank binary tensor approximation. An
easy-to-check sufficient condition for the BCPD was also de-
rived.
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