

Human pose regression by combining indirect part detection and contextual information

Diogo C Luvizon, Hedi Tabia, David Picard

▶ To cite this version:

Diogo C Luvizon, Hedi Tabia, David Picard. Human pose regression by combining indirect part detection and contextual information. Computers and Graphics, 2019, 85, pp.15–22. 10.1016/j.cag.2019.09.002 . hal-02314445

HAL Id: hal-02314445 https://hal.science/hal-02314445

Submitted on 20 Jul2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0097849319301475 Manuscript_73b100e1583f3d730cbe1d4e8c09469c

Computers & Graphics (2019)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Human pose regression by combining indirect part detection and contextual information

Diogo C Luvizon^{a,b,*}, Hedi Tabia^{a,c}, David Picard^{a,d}

^aETIS UMR 8051, Paris Seine University, ENSEA, CNRS, F-95000, Cergy, France

^bAdvanced Technologies, Samsung Research Institute, Campinas, Brazil

^cIBISC, Univ. d'Evry Val d'Essonne, Université Paris Saclay

^dLIGM, UMR 8049, École des Ponts, UPE, Champs-sur-Marne, France

ARTICLE INFO

Article history: Received September 3, 2019

Keywords: Human pose estimation, Neural nets, Computer vision.

ABSTRACT

In this paper, we tackle the problem of human pose estimation from still images, which is a very active topic, specially due to its several applications, from image annotation to human-machine interface. We use the *soft-argmax* function to convert feature maps directly to body joint coordinates, resulting in a fully differentiable framework. Our method is able to learn heat maps representations indirectly, without additional steps of artificial ground truth generation. Consequently, contextual information can be included to the pose predictions in a seamless way. We evaluated our method on two challenging datasets, the Leeds Sports Poses (LSP) and the MPII Human Pose datasets, reaching the best performance among all the existing regression methods. Source code available at: https://github.com/dluvizon/pose-regression.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Human pose estimation from still images is a hard task since the human body is strongly articulated, some parts may not be 3 visible due to occlusions or low quality images, and the visual appearance of body parts can change significantly from one 5 pose to another. Classical methods use keypoint detectors to extract local information, which are combined to build pictorial structures [1]. To handle difficult cases of occlusion or partial visualization, contextual information is usually needed to 9 provide visual cues that can be extracted from a broad region 10 around the part location [2] or by interaction among detected 11 parts [3]. In general, pose estimation can be seen from two dif-12 ferent perspectives, namely as a correlated part detection prob-13 lem or as a regression problem. Detection based approaches 14 commonly try to detect keypoints individually, which are ag-15 gregated in post-processing stages to form one pose prediction. 16 In contrast, methods based on regression use a function to map 17

directly input images to body joint positions.

Fig. 1: Test samples from the Leeds Sports Poses (LSP) dataset. Input image (top), the predicted part-based maps encoded as RGB image for visualizasion (middle), and the regressed pose (bottom). Corresponding human limbs have the same colors in all images. This figure is better seen in color.

*Corresponding author:

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license https://creativecommons.org/licenses/by-nc/4.0/

e-mail: diogo.luvizon@ensea.fr (Diogo C Luvizon)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Human pose regression by combining indirect part detection and contextual information

Anonymous C&G submission

ARTICLE INFO

Article history: Received September 3, 2019

Keywords: Human pose estimation, Neural nets, Computer vision.

ABSTRACT

In this paper, we tackle the problem of human pose estimation from still images, which is a very active topic, specially due to its several applications, from image annotation to human-machine interface. We use the *soft-argmax* function to convert feature maps directly to body joint coordinates, resulting in a fully differentiable framework. Our method is able to learn heat maps representations indirectly, without additional steps of artificial ground truth generation. Consequently, contextual information can be included to the pose predictions in a seamless way. We evaluated our method on two challenging datasets, the Leeds Sports Poses (LSP) and the MPII Human Pose datasets, reaching the best performance among all the existing regression methods. Source code available at: https://github.com/dluvizon/pose-regression.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Human pose estimation from still images is a hard task since the human body is strongly articulated, some parts may not be visible due to occlusions or low quality images, and the visual appearance of body parts can change significantly from one pose to another. Classical methods use keypoint detectors to extract local information, which are combined to build pictorial structures [1]. To handle difficult cases of occlusion or partial visualization, contextual information is usually needed to provide visual cues that can be extracted from a broad region 10 around the part location [2] or by interaction among detected 11 parts [3]. In general, pose estimation can be seen from two dif-12 ferent perspectives, namely as a correlated part detection prob-13 lem or as a regression problem. Detection based approaches 14 commonly try to detect keypoints individually, which are ag-15 gregated in post-processing stages to form one pose prediction. 16 In contrast, methods based on regression use a function to map 17 directly input images to body joint positions.

In the last few years, pose estimation have gained attention
with the breakthrough of deep Convolutional Neural Networks
(CNN) [4] alongside consistent computational power increase.
This can be seen as the shift from classical approaches [5, 6]
to deep architectures. In many recent works from different
domains, CNN based methods have overcome classical ap-

¹Fig. 1: Test samples from the Leeds Sports Poses (LSP) dataset. Input image (top), the predicted part-based maps encoded as RGB image for visualizasion (middle), and the regressed pose (bottom). Corresponding human limbs have the same colors in all images. This figure is better seen in color.

5

proaches by a large margin [7]. A key benefit from CNN is that 7 the full pipeline is differentiable, allowing end-to-end learning. In the context of human pose estimation, the first methods using 9 deep neural networks tried to do regression directly by learning 10 a non-linear mapping function from RGB images to joint co-11 ordinates [4]. By contrast, the majority of the methods in the 12 state of the art tackle pose estimation as a detection problem by 13 predicting heat maps that correspond to joint locations [8, 9], or 14 even by exploiting additional tasks such as semantic body seg-15 mentation [10]. In such methods, the ground truth is artificially 16 generated from joint positions, generally as a 2D Gaussian dis-17 tribution centered on the joint location, while the context infor-18 mation is implicitly learned by the hidden convolutional layers. 19

Despite achieving state-of-the-art accuracy on 2D pose esti-20 mation, detection based approaches have some limitations. For 21 example, such methods rely on additional steps to convert heat 22 maps to joint positions, usually by applying the argmax func-23 tion, which is not differentiable, breaking the learning chain on 24 neural networks. Additionally, the precision of predicted key-25 26 points is proportional to that of the heat maps resolution, which leads the top ranked methods [11, 8] to high memory consump-27 tion and high computational requirements. 28

On the other hand, regression based methods are conceptu-20 ally more adapted to 2D and 3D scenarios and can be used in-30 distinctly on both cases [12]. However, the regression function 31 map is sub-optimally learned, resulting in lower scores when 32 compared with detection based approaches. In this paper, we 33 aim at solving this problem by bridging the gap between detec-34 tion and regression based methods. We propose to replace the 35 argmax function, used to convert heat maps into joint locations, 36 by the *soft-argmax* function, which keeps the properties of spe-37 cialized part detectors while being fully differentiable. The idea 38 of soft-argmax was previously introduced by Finn et al. [13] 39 in order to convert the highest response from a feature map 40 to its coordinates. Differently from our work, in [13] the out-41 put of *soft-argmax* is not explicitly supervised. More recently, 42 the soft-argmax was also used to guide local features extrac-43 tion [14] and to perform 3D human pose estimation in [15], 44 which is a parallel work to ours. With our solution based 45 on soft-argmax, we are able to explore contextual information 46 while optimizing our network from end-to-end using regression 47 48 losses, *i.e.*, from input RGB images to final (x, y) body joint coordinates. 49

The contributions of our work are the following: first, we 50 present a human pose regression approach from still images 51 based on the soft-argmax function, resulting in an end-to-end 52 trainable method which does not require artificial heat maps 53 generation for training. Second, the proposed method can be 54 trained using an insightful regression loss function, which is di-55 rectly linked to the error distance between predicted and ground 56 57 truth joint positions. Third, in the proposed architecture, contextual information is directly accessible and is easily aggre-1 gated to the final predictions. Finally, the accuracy reached by 2 our method surpasses that of regression methods and is close to 3 that of state-of-the-art detection methods, despite using a much 4 smaller network. Some examples of our regressed poses are shown in Fig. 1.

The rest of this paper is divided as follows. In the next sec-64 tion, we present a review of the most relevant related work. The 65 proposed method is presented in section 3. In section 4, we 66 show the experimental evaluations, followed by our conclusions 67 in section 5.

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

2. Related work

Several approaches for human pose estimation have been presented for both 2D [16] and 3D [17, 18] scenarios, as well as for video sequences [19, 20, 21]. Among classical methods, Pictorial Structures [22] and poselet-based features [23] have been widely used in the past. In this section, due to the limited space, we focus on CNN based methods that are more related to our work i.e., 2D human pose estimation from single frames. We briefly refer to the most recent works, splitting them as regression based and detection based approaches.

Regression based approaches. Some methods tackle pose estimation as a keypoint regression problem. One of the first regression approaches was proposed by Toshev and Szegedy [4] as a holistic solution based on cascade regression for body part detection, where individual joint positions are recursively improved, taking the full frame as input. Pfister et al. [24] proposed the Temporal Pose ConvNet to track upper body parts, and Carreira et al. [25] proposed the Iterative Error Feedback by injecting the prediction error back to the input space, improving estimations recursively. The handle the difficult cases of complex human poses, Rogez et al. [26] proposed the LCR network, on which each person is first *localized*, then *classified* according to a set of anchor poses, and finally the pose is regressed. The drawback of this method is the elevated number of pose anchors required to achieve reliable results. Recently, Sun et al. [12] proposed a structured bone based representation for human pose, which is statistically less variant than absolute joint positions and can be indistinctly used for both 2D and 3D representations. However, the method requires converting pose data to the relative bone based format. Moreover, those results are all outperformed by detection based methods.

Detection based approaches. Pischulin et al. [27] proposed DeepCut, a graph cutting algorithm that relies on body parts detected by DeepPose [4]. This method has been improved in [28] by replacing the previous CNN by a deep Residual Network (ResNet) [29], resulting in very competitive accuracy results, specially on multi-person detection. Semantic part based detection [30] is another possibility for human pose estimation, but it requires additional data annotation.

Several methods have shown significant improvements on accuracy by using fully convolutional models to generate belief maps (or heat maps) for joint probabilities [11, 8, 31, 9, 32]. For example, Bulat et al. [9] proposed a two-stages CNN for coarse and fine heat map regression using pre-trained models, and folsolowing the tendency of deeper models with residual connecstions, Newell et al. [8] proposed a stacked hourglass network 60with convolutions in multi-level features, allowing reevaluation 6 of previous estimations due to a stacked block architecture with 62 many intermediate supervisions. The part-based learning proscess can benefit from intermediate supervision because it acts

Fig. 2: Overview of the proposed approach for pose regression.

as constraints on the lower level layers. As a result, the feature maps on higher levels tend to be cleaner. More recently, the stacked hourglass network have been extended to more complex variations. For example, Chu et al. [11] proposed a Condi-10 tional Random Field (CRF) based on attention maps, and Yang 11 et al. [33] studied variations of internal pyramids in multiple 12 levels of each hourglass. To cope with unrealistic predictions. 13 adversarial network have been used [34, 35]. Despite their 14 elevated memory consumption, these methods provide to our 15 knowledge state-of-the-art performance. 16

All the previous methods that are based on detection need 17 additional steps on training to produce artificial ground truth 18 from joint positions, which represent an additional processing 19 stage and additional hype-parameters, since the ground truth 20 heat maps have to be defined by hand. On evaluation, the in-21 verse operation is required, *i.e.*, heat maps have to be converted 22 to joint positions, generally using the argmax function. Conse-23 quently, in order to achieve good precision, predicted heat maps 24 need reasonable spacial resolution, as proposed in [8], which 25 can translate into an elevated computational cost and memory 26 usage. In order to provide an alternative to heat maps based 27 approaches, we present our framework in the following section. 28

3. Proposed method 29

The proposed approach is an end-to-end trainable network 30 which takes as input RGB images and outputs two vectors: the 31 probability \mathbf{p}_n of joint *n* being in the image and the regressed 32 joint coordinates $\mathbf{y}_n = (x_n, y_n)$, where $n = \{1, 2, \dots, N_J\}$ is the 33 index of each joint and N_J is the number of joints. In what 34 follows, we first present the global architecture of our method, 35 and then detail its most important parts. 36

3.1. Network architecture

An overview of the proposed method is presented in Fig. 2. 2 Our approach is based on a convolutional neural network essentially composed of three parts: one entry flow, block-A and 3 43.2. Proposed regression method block-B. The role of the stem is to provide basic feature extraction, while block-A and block-B provide refined features 4 42 As presented in section 2, traditional regression based meth-

block-B is used to build one prediction block, which output is used as intermediate supervision during training. The full network is composed by the stem and a sequence of K prediction blocks. The final prediction is the output of the K^{th} prediction block. To predict the pose at each prediction block, we aggregate the 2D coordinates generated by applying *soft-argmax* to the part-based and contextual maps that are output by block-B. Similarly to recent approaches [8, 11], on each prediction block we produce one estimation that is used as intermediate supervision, providing better accuracy and more stability to the learning process.

The proposed CNN model is partially based on Inceptionv4 [36]. For block-A, we use a similar architecture as the Stacked Hourglass [8] replacing all the residual blocks by a residual separable convolution. Additionally, our approach increased the results from [8] with only three feature map resolutions, from 32×32 to 8×8 , instead of the original five resolutions, from 64×64 to 4×4 . This is possible because the soft-argmax is not directly dependent on the resolution of heat maps, since it performs a continuous regression, which is evidenced by our better results using lower resolution feature maps.

At each prediction stage, block-B is used to transform input feature maps into M_d part-based detection maps (\mathbf{H}_d) and M_c context maps (**H**_c), resulting in $M = M_d + M_c$ heat maps. 68 M_d corresponds to the number of joints N_J , and $M_c = N_c N_J$, where N_c is the number of context maps for each joint. The produced heat maps are projected back to the feature space and reintroduced to the network flow by a 1×1 convolution. Similar techniques have been used by many previous works [9, 8, 11], resulting in significant gain of performance. From the generated heat maps, our method predicts the joint locations and joint probabilities in the regression block, which has no trainable pa-3rameters. Details of block-B and the regression stage are shown ₃in Fig. 3.

39

and body-part activation maps. One sequence of block-A and 5 40ds use fully connected layers on feature maps and learn the

44

45

46

47

48

49

50

51

52

53

5/

55

56

57

58

59

60

61

62

63

64

65

66

67

69

70

71

72

73

74

75

Fig. 3: Network architecture of block-B and an overview of the regression stage. The input is projected into M heat maps $(M_d + M_c)$ which are then used for pose regression.

regression mapping. However, this approach usually gives sub-6 optimal solutions. While state-of-the-art methods are over-7 whelmingly based on part detection, approaches based on re-8 gression have the advantages of providing directly the pose 9

prediction as joint coordinates without additional steps or post-10 processing. In order to provide an alternative to detection based 11 methods, we propose an efficient and fully differentiable way 12 to convert heat maps directly to (x, y) coordinates, which we 13

call soft-argmax. Additionally, the soft-argmax operation can 14 be implemented as a CNN layer, as detailed in the next section. 15

3.2.1. Soft-argmax layer 16

Let us define the *softmax* operation on a single heat map $\mathbf{h} \in$ $\mathbb{R}^{W \times H}$ as:

$$\Phi(\mathbf{h}_{i,j}) = \frac{e^{\mathbf{h}_{i,j}}}{\sum_{k=1}^{W} \sum_{l=1}^{H} e^{\mathbf{h}_{k,l}}},$$
(1)

where $\mathbf{h}_{i,i}$ is the value of heat map \mathbf{h} at location (i, j), and $W \times H$ is the heat map size. Contrary to the more common crosschannel softmax, we use here a spatial softmax that ensures each heat maps is normalized. Then, we define the soft-argmax as follows:

$$\Psi_d(\mathbf{h}) = \sum_{i=1}^{W} \sum_{j=1}^{H} \mathbf{W}_{i,j,d} \Phi(\mathbf{h}_{i,j}), \qquad (2)$$

where d is a given component x or y, and W is a $W \times H \times 2$ weight matrix corresponding to the coordinates (x, y). The matrix **W** can be expressed by its components W_x and W_y , which are 2D discrete normalized ramps, defined as follows:

$$\mathbf{W}_{i,j,x} = \frac{i}{W}, \mathbf{W}_{i,j,y} = \frac{j}{H}.$$
 (3)

Finally, given a heat map **h**, the regressed location of the predicted joint is given by

$$\mathbf{y} = (\Psi_x(\mathbf{h}), \Psi_v(\mathbf{h}))^T.$$
(4)

of points distributed on an uniform grid, with the weights being 4 heat map for joint n, and α is a hyper-parameter.

equal to the corresponding heat map. In order to integrate the soft-argmax layer into a deep network, we need its derivative with respect to h:

$$\frac{\partial \Psi_d(\mathbf{h}_{i,j})}{\partial \mathbf{h}_{i,j}} = \mathbf{W}_{i,j,d} \frac{e^{\mathbf{h}_{i,j}} (\sum_{k=1}^W \sum_{l=1}^H e^{\mathbf{h}_{k,l}} - e^{\mathbf{h}_{i,j}})}{(\sum_{k=1}^W \sum_{l=1}^H e^{\mathbf{h}_{k,l}})^2}.$$
 (5)

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

The *soft-argmax* function can thus be integrated in a trainable framework by using back propagation and the chain rule on equation (5). Moreover, from equation (5), we can see that the gradient is exponentially increasing for higher values, resulting in very discriminative response at the joint position.

The implementation of *soft-argmax* can be easily done with recent frameworks, such as TensorFlow, just by concatenating a spatial softmax followed by one convolutional layer with 2 filters of size $W \times H$, with fixed parameters according to equation (3).

Unlike traditional argmax, soft-argmax provides sub-pixel accuracy, allowing good precision even with very low resolution. Moreover, the *soft-argmax* operation allows to learn very discriminative heat maps directly from the (x, y) joint coordinates without explicitly computing artificial ground truth. Samples of heat maps learned by our approach are shown in Fig. 4.

3.2.2. Joint probability

Additionally to the joint locations, we estimate the joint probability \mathbf{p}_n , which corresponds to the probability of the n^{th} joint being present in the image. The estimated joint probability is given by the sigmoid activation on the global max-pooling from heat map \mathbf{h}_n . Despite giving an additional piece of information, the joint probability does not depends on additional parameters and is computationally negligible, compared to the cost of convolutional layers.

3.2.3. Detection and context aggregation

Even if the correlation between some joints can be learned in 43 the hidden convolutional layers, the joint regression approach 44 is designed to locate body parts individually, resulting in low 45 flexibility to learn from the context. For example, the same 46 filters that give high response to images of a clean head, also 47 must react positively to a hat or a pair of sunglasses. In order 48 to provide multi-source information to the final prediction, we 49 include in our framework specialized part-based heat maps and 50 context heat maps, which are defined as $\mathbf{H}_d = [\mathbf{h}_1^d, \dots, \mathbf{h}_{N_d}^d]$ and 51 $\mathbf{H}_{c} = [\mathbf{h}_{1,1}^{c}, \dots, \mathbf{h}_{N_{c},N_{i}}^{c}]$, respectively. Additionally, we define 52 the joint probability related to each context map as \mathbf{p}_{in}^{c} , where 53 $i = \{1, \ldots, N_c\}$ and $n = \{1, \ldots, N_i\}$. 54

Finally, the n^{th} joint position from detection and contextual information aggregated is given by:

$$\mathbf{y}_n = \alpha \mathbf{y}_n^d + (1 - \alpha) \frac{\sum_{i=1}^{N_c} \mathbf{p}_{i,n}^c \mathbf{y}_{i,n}^c}{\sum_{i=1}^{N_c} \mathbf{p}_{i,n}^c},$$
(6)

where $\mathbf{y}_n^d = soft\text{-}argmax(\mathbf{h}_n^d)$ is the predicted location from the n^{th} part based heat map, $\mathbf{y}_{i,n}^c = soft\text{-}argmax(\mathbf{h}_{i,n}^c)$ and $\mathbf{p}_{i,n}^c$ are This *soft-argmax* operation can be seen as a weighted average $_3$ respectively the location and the probability for the i^{th} context

From equation (6) we can see that the final prediction is 5 a combination of one specialized prediction and N_c contextual predictions pondered by their probabilities. The contextual weighted contribution brings flexibility, allowing specific filters to be more responsive to particular patterns. This aggregation scheme within the learning stage is only possible because we 10 have the joint probability and position directly available inside 11 the network in a differentiable way. 12

4. Experiments 13

We evaluate the proposed method on the very challenging 14 MPII Human Pose [37] and Leeds Sports Poses (LSP) [38] 15 datasets. The MPII dataset contains 25K images collected from 16 YouTube videos, including around 28K annotated poses for 17 training and 15K poses for testing. The annotated poses have 18 16 body joints, some of them are not present and others are oc-19 cluded but can be predicted by the context. The LSP dataset 20 is composed by 2000 annotated poses with up to 14 joint loca-21 tions. The images were gethered from Flickr with sports peo-22 ple. The details about training the model and achieved accuracy 23 results are given as follows. 24

4.1. Training 25

The proposed network was trained simultaneously on joints regression and joint probabilities. For joints regression, we use the elastic net loss function (L1 + L2):

$$L_{\mathbf{y}} = \frac{1}{N_J} \sum_{n=1}^{N_J} ||\mathbf{y}_n - \hat{\mathbf{y}}_n||_1 + ||\mathbf{y}_n - \hat{\mathbf{y}}_n||_2^2,$$
(7)

where \mathbf{y}_n and $\hat{\mathbf{y}}_n$ are respectively the ground truth and the pre-26 dicted n^{th} joint coordinates. In this case, we use directly the joint coordinates normalized to the interval [0, 1], where the 28 top-left image corner corresponds to (0, 0), and the bottom-right 29 image corner corresponds to (1, 1). 30

For joint probability estimation, we use the binary cross entropy loss function on the joint probability **p**:

$$L_{\mathbf{p}} = \frac{1}{N_J} \sum_{n=1}^{N_J} [(\mathbf{p}_n - 1) \log (1 - \hat{\mathbf{p}}_n) - \mathbf{p}_n \log \hat{\mathbf{p}}_n], \qquad (8)$$

where \mathbf{p}_n and $\hat{\mathbf{p}}_n$ are respectively the ground truth and the pre-31 dicted joint probability. 32

We optimize the network using back propagation and the 33 RMSProp optimizer, with batch size of 16 samples. For the 34 MPII dataset, we train the network for 120 epochs. The learn-35 ing rate begins at 10^{-3} and decreases by a factor of 0.4 when 36 accuracy on validation plateaus. On the LSP dataset, we start 37 from the model trained on MPII and fine-tuned it for more 70 38 epochs, beginning with learning rate $2 \cdot 10^{-5}$ and using the same 39 decrease procedure. The full training of our network takes three 1 40 days on the relatively outdated NVIDIA GPU Tesla K20 with 2 5GB of memory.

Data augmentation. We use standard data augmentation on 3 44.3. Discussion both MPII and LSP datasets. Input RGB images are cropped 4 44 As suggested in section 3.2.1, the proposed soft-argmax

box, keeping the people scale (when provided), then resized to 256×256 pixels. We perform random rotations ($\pm 40^{\circ}$) and random rescaling from 0.7 to 1.3 to make the model more robust to image changes.

Parameters setup and ablation studies. Out network model is composed of eight prediction blocks (K = 8). We trained the network to regress 16 joints with 2 context maps for each joint $(N_i = 16, N_c = 2)$. In the aggregation stage, we use $\alpha = 0.8$. In order to provide insights about the chosen parameters, we performed some ablation studies as follows.

In Table 1, we evaluated the influence of the soft-argmax and the combination of contextual information on the precision of the method. The *soft-argmax* improves over a simple *argmax* by 1.6%, and the contextual maps improve precision by 2.2%. Not further significant improvement was noticed by using α lower than 0.8. The improvement is more relevant on more challenging joints, such as knees and ankles, which suggests that the contextual maps provide a complementary information to refine the specialized maps on difficult cases.

We also evaluated the execution time of our method comparing it with the stacked hourglass network [8], which is the most common baseline for detection approaches. Our method is able to perform predictions at 29.3 FPS (frames per second), while the stacked hourglass reached 18.3 FPS only, using the same framework and hardware (TensorFlow and NVIDIA GPU K20).

4.2. Results

LSP dataset. We evaluate our method on the LSP dataset using two metrics, the "Percentage of Correct Parts" (PCP) and the "Probability of Correct Keypoint" (PCK) measures. Our results compared to the state-of-the-art on the LSP dataset are present in Tables 2 and 3, respectively for PCK and PCP metrics. Our method achieves the best result among regression approaches. On the PCK measure, we outperform the results reported by Carreira et al. [25] (CVPR 2016) by 18.0%, which is the only regression method reported on this setup.

MPII dataset. On the MPII dataset, we evaluate our method using the "Single person" challenge [37]. The scores were computed by the providers of the dataset, since the test labels are not publicly available. As shown in Table 4, we reached a test score of 91.2%, which is 4.8% higher than the previous methods using regression.

Taking into account the competitiveness of the MPII Human 88 Pose challenge, our score represents a very significant improvement over regression based approaches and a promising result compared to detection based methods. Moreover, our method is much simpler than the stacked hourglass network from Newell et al. [8] or its extensions [11, 35, 34, 33, 10]. For example, the size of the models [8], [11], and [33] is 183 MB, 409 MB, and 217 MB, respectively, while our model requires only 58 MB. Due to limited memory resources, we were not able to re-train these models in our hardware. Despite that, we reach compara-4ble results with a model that fits in much smaller GPUs.

42

and centered on the main subject with a squared bounding 5 4 function acts as a constrain on the regression approach, driving

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

89

90

91

92

٥/

95

Table 1: Results considering different strategies for coordinates regression, evaluated using the PCKh@0.5 metric on the MPII validation set, single crop.

Method	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	Total
Simple argmax	95.8	91.3	86.7	82.4	85.8	75.5	76.7	85.3
soft-argmax w/o context	96.7	93.1	88.7	82.5	88.0	77.3	78.3	86.9
soft-argmax $\alpha=0.9$	96.8	94.8	88.8	82.8	88.9	83.3	80.6	88.7
soft-argmax α =0.8	96.8	95.2	89.0	82.9	89.2	84.6	80.9	89.1

Table 2: Results on LSP test samples using the PCK measure at 0.2.

Method	Head	Sho.	Elb.	Wri.	Hip	Knee	Ank.	PCK		
Detection based methods										
Pishchulin et al. [5]	87.2	56.7	46.7	38.0	61.0	57.5	52.7	57.1		
Wei et al. [39]	97.8	92.5	87.0	83.9	91.5	90.8	89.9	90.5		
Bulat and Tzimi. [9]	97.2	92.1	88.1	85.2	92.2	91.4	88.7	90.7		
Chu et al. [11]	98.1	93.7	89.3	86.9	93.4	94.0	92.5	92.6		
Yang et al. [33]	98.3	94.5	92.2	88.9	94.4	95.0	93.7	93.9		
Chou et al. [35]	98.2	94.9	92.2	89.5	94.2	95.0	94.1	94.0		
	R	legressi	on based	d metho	ds					
Carreira et al. [25]	90.5	81.8	65.8	59.8	81.6	70.6	62.0	73.1		
Our method	97.5	93.3	87.6	84.6	92.8	92.0	90.0	91.1		

Table 3: Results on LSP test samples using the PCP measure.

Torso	Upper	Lower Upper		Fore-	Head	PCP				
	leg	leg	arm	arm						
D	etection b	ased meth	ods							
88.7	63.6	58.4	46.0	35.2	85.1	58.0				
98.0	92.2	89.1	85.8	77.9	95.0	88.3				
97.7	92.4	89.3	86.7	79.7	95.2	88.9				
98.4	95.0	92.8	88.5	81.2	95.7	90.9				
Regression based methods										
95.3	81.8	73.3	66.7	51.0	84.4	72.5				
98.2	93.6	91.0	86.6	78.2	96.8	89.4				
	Torso Do 88.7 98.0 97.7 98.4 Re 95.3 98.2	Torso Upper leg Detection b 88.7 63.6 98.0 92.2 97.7 98.4 95.3 81.8 98.2 93.6	Torso Upper leg Lower leg Detection based meth 88.7 63.6 58.4 98.0 92.2 89.1 97.7 92.4 89.3 98.4 95.0 92.8 Regression based meth 95.3 81.8 73.3 98.2 93.6 91.0	Torso Upper Lower Upper leg leg arm D=tertion based methods 46.0 98.7 63.6 58.4 46.0 98.0 92.2 89.1 85.8 97.7 92.4 89.3 86.7 98.4 95.0 92.8 88.5 97.7 81.8 73.3 66.7 98.2 93.6 91.0 86.6	Torso Upper leg Lower leg Upper arm Fore- arm Detection based methods arm arm 88.7 63.6 58.4 46.0 35.2 98.0 92.2 89.1 85.8 77.9 97.7 92.4 89.3 86.7 79.7 98.4 95.0 92.8 88.5 81.2 Regression based methods 95.3 81.8 73.3 66.7 51.0 98.2 93.6 91.0 86.6 78.2	Torso Upper leg Lower leg Upper arm Fore- arm Head Detection based methods arm arm arm B8.7 63.6 58.4 46.0 35.2 85.1 98.0 92.2 89.1 85.8 77.9 95.0 97.7 92.4 89.3 86.7 79.7 95.2 98.4 95.0 92.8 88.5 81.2 95.7 98.4 95.0 92.8 66.7 51.0 84.4 95.3 81.8 73.3 66.7 51.0 84.4 98.2 93.6 91.0 86.6 78.2 96.8				

Table 4: Comparison results with state-of-the-art methods on the MPII dataset on testing, using PCKh measure with threshold as 0.5 of the head segment length. Detection based methods are shown on top and regression based methods on bottom.

Method	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	Total			
Detection based methods											
Pishchulin et al. [5]	74.3	49.0	40.8	34.1	36.5	34.4	35.2	44.1			
Bulat and Tzimi. [9]	97.9	95.1	89.9	85.3	89.4	85.7	81.7	89.7			
Newell et al. [8]	98.2	96.3	91.2	87.1	90.1	87.4	83.6	90.9			
Chu et al. [11]	98.5	96.3	91.9	88.1	90.6	88.0	85.0	91.5			
Chou et al. [35]	98.2	96.8	92.2	88.8	91.3	89.1	84.9	91.8			
Chen et al. [34]	98.1	96.5	92.5	88.5	90.2	89.6	86.0	91.9			
Yang et al. [33]	98.5	96.7	92.5	88.7	91.1	88.6	86.0	92.0			
Nie [*] et al. [10]	98.6	96.9	93.0	89.1	91.7	89.0	86.2	92.4			
Regression based methods											
Carreira et al. [25]	95.7	91.7	81.7	72.4	82.8	73.2	66.4	81.3			
Sun et al. [12]	97.5	94.3	87.0	81.2	86.5	78.5	75.4	86.4			
Our method	98.1	96.6	92.0	87.5	90.6	88.0	82.7	91.2			

* Method using multi-task supervision with segmentation task (additional training).

8

the network to learn part-based detectors indirectly. This ef- 27
fect provides the flexibility of regression based methods, which 28
can be easily integrated to provide 2D pose estimation to other 29
applications such as 3D pose estimation or action recognition, 30
while preserving the performance of detection based methods. 31
Some examples of part-based maps indirectly learned by our 32
method are shown in Fig. 4. As we can see, the responses are 33
very well localized on the true location of the joints without 34
explicitly requiring so.

The fact that the regressed coordinates of a given joint are 15 influenced by all the pixels in the heat map could result in erro-16 neous predictions in the case where multiple people are visible 17 in the image. However, our method is trained with the target 18 person centered in the cropped image, which makes our ap-19 proach robust to the appearance of a second person in the cor-20 ners (see an example in Fig. 4). In practice, a standard person 21 detector [40] can be used to provide a well cropped bounding 22 box around each person. 23

Fig. 4: Indirectly learned part-based heat maps from our method. All the joints ³⁸ encoded to RGB are shown in the first image (top-left corner) and the final ³⁹ pose is shown in the last image (bottom-right corner). On each column, the ⁴⁰ intermediate images correspond to the predicted heat maps before (left) and ⁴¹ after (right) the Softmax normalization. The presented heat maps correspond ⁴² to *right ankle, right hip, right wrist, right shoulder, upper neck, head top, left* ⁴³ *knee*, and *left wrist.*

Additionally to the part-based maps, the contextual maps ⁴⁶/₄₇ give extra information to refine the predicted pose. In some ⁴⁸/₄₈ cases, the contextual maps provide strong responses to regions ⁴⁹/₄₈ around the joint location. In such cases, the aggregation scheme is able to refine the predicted joint position. On the other hand, if the contextual map response is weak, the context reflects in very few changes on the pose. Some examples of predicted poses and visual contributions from contextual aggregation are shown in Fig. 5. The contextual maps are able to increase the precision of the predictions by providing complementary information, as we can see for the right elbows of the poses in Fig. 5.

5. Conclusion

In this work, we presented a new regression method for human pose estimation from still images. The method is based on the *soft-argmax* operation, a differentiable operation that can be integrated in a deep convolutional network to learn part-based detection maps indirectly, resulting in a significant improvement over the state-of-the-art scores from regression methods and very competitive results compared to detection based approaches. Additionally, we demonstrate that contextual information can be seamless integrated into our framework by using additional context maps and joint probabilities. As a future work, other methods could be build up to our approach to provide 3D pose estimation or human action recognition from pose in a fully differentiable way.

6. Acknowledgements

This work was partially founded by CNPq (Brazil) - Grant 233342/2014-1.

References

- P. F. Felzenszwalb, D. P. Huttenlocher, Pictorial structures for object recognition, International Journal of Computer Vision 61 (1) (2005) 55– 79 (2005).
- [2] X. Fan, K. Zheng, Y. Lin, S. Wang, Combining local appearance and holistic view: Dual-source deep neural networks for human pose estimation, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015 (June 2015).
- [3] Y. Yang, S. Baker, A. Kannan, D. Ramanan, Recognizing proxemics in personal photos, in: 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 3522–3529 (June 2012).
- [4] A. Toshev, C. Szegedy, DeepPose: Human Pose Estimation via Deep Neural Networks, in: Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1653–1660 (2014).
- [5] L. Pishchulin, M. Andriluka, P. V. Gehler, B. Schiele, Strong appearance and expressive spatial models for human pose estimation, in: International Conference on Computer Vision (ICCV), 2013, pp. 3487–3494 (2013).
- [6] L. Ladicky, P. H. S. Torr, A. Zisserman, Human pose estimation using a joint pixel-wise and part-wise formulation, in: Computer Vision and Pattern Recognition (CVPR), 2013 (2013).
- [7] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 (June 2016).
- [8] A. Newell, K. Yang, J. Deng, Stacked Hourglass Networks for Human Pose Estimation, European Conference on Computer Vision (ECCV) (2016) 483–499 (2016).
- [9] A. Bulat, G. Tzimiropoulos, Human pose estimation via Convolutional Part Heatmap Regression, in: European Conference on Computer Vision (ECCV), 2016, pp. 717–732 (2016).
- [10] X. Nie, J. Feng, Y. Zuo, S. Yan, Human pose estimation with parsing induced learner, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (June 2018).

Fig. 5: Samples of context maps aggregated to refine predicted pose. Input image (a), part-based detection maps (b), predicted pose without context (c), two different context maps (d) and (e), and the final pose with aggregated predictions (f).

- [11] X. Chu, W. Yang, W. Ouyang, C. Ma, A. L. Yuille, X. Wang, Multi-50 context attention for human pose estimation, in: The IEEE Conference on 51 Computer Vision and Pattern Recognition (CVPR), 2017 (July 2017). 52
- 53 [12] X. Sun, J. Shang, S. Liang, Y. Wei, Compositional human pose regression, in: The IEEE International Conference on Computer Vision (ICCV), 2017 54 55 (Oct 2017).
 - C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, P. Abbeel, Learning [13] visual feature spaces for robotic manipulation with deep spatial autoencoders., CoRR abs/1509.06113 (2015).
- 59 [14] K. M. Yi, E. Trulls, V. Lepetit, P. Fua, Lift: Learned invariant feature transform, in: European Conference on Computer Vision, Springer, 2016, 60 pp. 467-483 (2016).
 - [15] A. Nibali, Z. He, S. Morgan, L. Prendergast, 3d human pose estimation with 2d marginal heatmaps, CoRR abs/1806.01484 (2018). arXiv: 1806.01484.
 - [16] M. Dantone, J. Gall, C. Leistner, L. V. Gool, Human Pose Estimation Using Body Parts Dependent Joint Regressors, in: Computer Vision and Pattern Recognition (CVPR), 2013, pp. 3041-3048 (June 2013).
 - [17] C. Ionescu, F. Li, C. Sminchisescu, Latent structured models for human pose estimation, in: International Conference on Computer Vision (ICCV), 2011, pp. 2220-2227 (Nov 2011).
 - [18] D. C. Luvizon, D. Picard, H. Tabia, 2d/3d pose estimation and action recognition using multitask deep learning, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (June 2018).
 - [19] T. Pfister, J. Charles, A. Zisserman, Flowing convnets for human pose estimation in videos, in: International Conference on Computer Vision (ICCV), 2015 (2015).
 - [20] E. Insafutdinov, M. Andriluka, L. Pishchulin, S. Tang, E. Levinkov, B. Andres, B. Schiele, Arttrack: Articulated multi-person tracking in the wild, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (July 2017).
 - [21] B. Xiao, H. Wu, Y. Wei, Simple baselines for human pose estimation and tracking, in: The European Conference on Computer Vision (ECCV), 2018 (September 2018).
 - [22] M. Andriluka, S. Roth, B. Schiele, Pictorial structures revisited: People detection and articulated pose estimation, in: Computer Vision and Pattern Recognition (CVPR), 2009, pp. 1014-1021 (June 2009).
 - [23] L. Pishchulin, M. Andriluka, P. Gehler, B. Schiele, Poselet Condi- 2 tioned Pictorial Structures, in: Computer Vision and Pattern Recognition 3 (CVPR), 2013, pp. 588-595 (June 2013).
 - [24] T. Pfister, K. Simonyan, J. Charles, A. Zisserman, Deep convolutional 5 neural networks for efficient pose estimation in gesture videos, in: Asian 6 Conference on Computer Vision (ACCV), 2014 (2014).
 - [25] J. Carreira, P. Agrawal, K. Fragkiadaki, J. Malik, Human pose estimation 8 with iterative error feedback, in: 2016 IEEE Conference on Computer Vi- 9 9439] sion and Pattern Recognition (CVPR), 2016, pp. 4733-4742 (June 2016). 10 95
 - [26] G. Rogez, P. Weinzaepfel, C. Schmid, LCR-Net: Localization- 11 Classification-Regression for Human Pose, in: Conference on Computer 12 9f40] J. Redmon, A. Farhadi, Yolo9000: Better, faster, stronger, in: The IEEE

Vision and Pattern Recognition (CVPR), 2017 (Jun. 2017). URL https://hal.inria.fr/hal-01505085

- [27] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. Gehler, B. Schiele, DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 (June 2016).
- [28] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, B. Schiele, DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model, in: European Conference on Computer Vision (ECCV), 2016 (May 2016).
- [29] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: IEEE Conference on Computer Vision and Pattern 62 Recognition (CVPR), 2016 (2016).
- X. Liang, K. Gong, X. Shen, L. Lin, Look into person: Joint body parsing 6330]
- & pose estimation network and a new benchmark, IEEE Transactions on 64 Pattern Analysis and Machine Intelligence (2018). 65
- V. Belagiannis, C. Rupprecht, G. Carneiro, N. Navab, Robust optimiza-6631] tion for deep regression, in: International Conference on Computer Vision 67 (ICCV), 2015, pp. 2830-2838 (Dec 2015). 68
- Z. Cao, T. Simon, S. Wei, Y. Sheikh, Realtime multi-person 2d pose es-6932]
- timation using part affinity fields, in: 2017 IEEE Conference on Com-70 puter Vision and Pattern Recognition (CVPR), 2017, pp. 1302-1310 (July 71
- 2017). doi:10.1109/CVPR.2017.143. 72
- W. Yang, S. Li, W. Ouyang, H. Li, X. Wang, Learning feature pyramids 7\$331 for human pose estimation, in: The IEEE International Conference on 74 Computer Vision (ICCV), 2017 (Oct 2017). 75
- Y. Chen, C. Shen, X.-S. Wei, L. Liu, J. Yang, Adversarial posenet: A 7634] structure-aware convolutional network for human pose estimation, in: 77 The IEEE International Conference on Computer Vision (ICCV), 2017 78
- 79 (Oct 2017). C. Chou, J. Chien, H. Chen, Self adversarial training for human pose 80351
- 81 estimation, CoRR abs/1707.02439 (2017).
- URL http://arxiv.org/abs/1707.02439 82
- 8(36] C. Szegedy, S. Ioffe, V. Vanhoucke, Inception-v4, inception-resnet and the impact of residual connections on learning, CoRR abs/1602.07261 84 (2016). 85
- URL http://arxiv.org/abs/1602.07261 86
- 8737] M. Andriluka, L. Pishchulin, P. Gehler, B. Schiele, 2D Human Pose Estimation: New Benchmark and State of the Art Analysis, in: IEEE Confer-88 ence on Computer Vision and Pattern Recognition (CVPR), 2014 (June 89 2014). 90
- S. Johnson, M. Everingham, Clustered pose and nonlinear appearance 9**f**381 models for human pose estimation, in: Proceedings of the British Ma-92 chine Vision Conference, 2010 (2010).
- S.-E. Wei, V. Ramakrishna, T. Kanade, Y. Sheikh, Convolutional pose machines, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 (2016). 96

8

56

57

58

61

124

125

126

127

128

129

130

131

132

133

98

99

100

- Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (July 2017). 13
- 14