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A B S T R A C T

In this paper, we tackle the problem of human pose estimation from still images, which

is a very active topic, specially due to its several applications, from image annotation

to human-machine interface. We use the soft-argmax function to convert feature maps

directly to body joint coordinates, resulting in a fully differentiable framework. Our

method is able to learn heat maps representations indirectly, without additional steps of

artificial ground truth generation. Consequently, contextual information can be included

to the pose predictions in a seamless way. We evaluated our method on two challenging

datasets, the Leeds Sports Poses (LSP) and the MPII Human Pose datasets, reaching

the best performance among all the existing regression methods. Source code available

at: https://github.com/dluvizon/pose-regression.

c© 2019 Elsevier B.V. All rights reserved.

1. Introduction1

Human pose estimation from still images is a hard task since2

the human body is strongly articulated, some parts may not be3

visible due to occlusions or low quality images, and the visual4

appearance of body parts can change significantly from one5

pose to another. Classical methods use keypoint detectors to6

extract local information, which are combined to build pictorial7

structures [1]. To handle difficult cases of occlusion or par-8

tial visualization, contextual information is usually needed to9

provide visual cues that can be extracted from a broad region10

around the part location [2] or by interaction among detected11

parts [3]. In general, pose estimation can be seen from two dif-12

ferent perspectives, namely as a correlated part detection prob-13

lem or as a regression problem. Detection based approaches14

commonly try to detect keypoints individually, which are ag-15

gregated in post-processing stages to form one pose prediction.16

In contrast, methods based on regression use a function to map17
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e-mail: diogo.luvizon@ensea.fr (Diogo C Luvizon)

directly input images to body joint positions. 18

Fig. 1: Test samples from the Leeds Sports Poses (LSP) dataset. Input image

(top), the predicted part-based maps encoded as RGB image for visualizasion

(middle), and the regressed pose (bottom). Corresponding human limbs have

the same colors in all images. This figure is better seen in color.
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1. Introduction1

Human pose estimation from still images is a hard task since2

the human body is strongly articulated, some parts may not be3

visible due to occlusions or low quality images, and the visual4

appearance of body parts can change significantly from one5

pose to another. Classical methods use keypoint detectors to6

extract local information, which are combined to build pictorial7

structures [1]. To handle difficult cases of occlusion or par-8

tial visualization, contextual information is usually needed to9

provide visual cues that can be extracted from a broad region10

around the part location [2] or by interaction among detected11

parts [3]. In general, pose estimation can be seen from two dif-12

ferent perspectives, namely as a correlated part detection prob-13

lem or as a regression problem. Detection based approaches14

commonly try to detect keypoints individually, which are ag-15

gregated in post-processing stages to form one pose prediction.16

In contrast, methods based on regression use a function to map17

directly input images to body joint positions. 18

In the last few years, pose estimation have gained attention1

with the breakthrough of deep Convolutional Neural Networks2

(CNN) [4] alongside consistent computational power increase.3

This can be seen as the shift from classical approaches [5, 6]4

to deep architectures. In many recent works from different5

domains, CNN based methods have overcome classical ap-6

Fig. 1: Test samples from the Leeds Sports Poses (LSP) dataset. Input image
(top), the predicted part-based maps encoded as RGB image for visualizasion
(middle), and the regressed pose (bottom). Corresponding human limbs have
the same colors in all images. This figure is better seen in color.
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proaches by a large margin [7]. A key benefit from CNN is that7

the full pipeline is differentiable, allowing end-to-end learning.8

In the context of human pose estimation, the first methods using9

deep neural networks tried to do regression directly by learning10

a non-linear mapping function from RGB images to joint co-11

ordinates [4]. By contrast, the majority of the methods in the12

state of the art tackle pose estimation as a detection problem by13

predicting heat maps that correspond to joint locations [8, 9], or14

even by exploiting additional tasks such as semantic body seg-15

mentation [10]. In such methods, the ground truth is artificially16

generated from joint positions, generally as a 2D Gaussian dis-17

tribution centered on the joint location, while the context infor-18

mation is implicitly learned by the hidden convolutional layers.19

Despite achieving state-of-the-art accuracy on 2D pose esti-20

mation, detection based approaches have some limitations. For21

example, such methods rely on additional steps to convert heat22

maps to joint positions, usually by applying the argmax func-23

tion, which is not differentiable, breaking the learning chain on24

neural networks. Additionally, the precision of predicted key-25

points is proportional to that of the heat maps resolution, which26

leads the top ranked methods [11, 8] to high memory consump-27

tion and high computational requirements.28

On the other hand, regression based methods are conceptu-29

ally more adapted to 2D and 3D scenarios and can be used in-30

distinctly on both cases [12]. However, the regression function31

map is sub-optimally learned, resulting in lower scores when32

compared with detection based approaches. In this paper, we33

aim at solving this problem by bridging the gap between detec-34

tion and regression based methods. We propose to replace the35

argmax function, used to convert heat maps into joint locations,36

by the soft-argmax function, which keeps the properties of spe-37

cialized part detectors while being fully differentiable. The idea38

of soft-argmax was previously introduced by Finn et al. [13]39

in order to convert the highest response from a feature map40

to its coordinates. Differently from our work, in [13] the out-41

put of soft-argmax is not explicitly supervised. More recently,42

the soft-argmax was also used to guide local features extrac-43

tion [14] and to perform 3D human pose estimation in [15],44

which is a parallel work to ours. With our solution based45

on soft-argmax, we are able to explore contextual information46

while optimizing our network from end-to-end using regression47

losses, i.e. , from input RGB images to final (x, y) body joint co-48

ordinates.49

The contributions of our work are the following: first, we50

present a human pose regression approach from still images51

based on the soft-argmax function, resulting in an end-to-end52

trainable method which does not require artificial heat maps53

generation for training. Second, the proposed method can be54

trained using an insightful regression loss function, which is di-55

rectly linked to the error distance between predicted and ground56

truth joint positions. Third, in the proposed architecture, con-57

textual information is directly accessible and is easily aggre- 58

gated to the final predictions. Finally, the accuracy reached by 59

our method surpasses that of regression methods and is close to 60

that of state-of-the-art detection methods, despite using a much 61

smaller network. Some examples of our regressed poses are 62

shown in Fig. 1. 63

The rest of this paper is divided as follows. In the next sec- 64

tion, we present a review of the most relevant related work. The 65

proposed method is presented in section 3. In section 4, we 66

show the experimental evaluations, followed by our conclusions 67

in section 5. 68

2. Related work 69

Several approaches for human pose estimation have been pre- 70

sented for both 2D [16] and 3D [17, 18] scenarios, as well as 71

for video sequences [19, 20, 21]. Among classical methods, 72

Pictorial Structures [22] and poselet-based features [23] have 73

been widely used in the past. In this section, due to the limited 74

space, we focus on CNN based methods that are more related 75

to our work i.e., 2D human pose estimation from single frames. 76

We briefly refer to the most recent works, splitting them as re- 77

gression based and detection based approaches. 78

Regression based approaches. Some methods tackle pose 79

estimation as a keypoint regression problem. One of the first re- 80

gression approaches was proposed by Toshev and Szegedy [4] 81

as a holistic solution based on cascade regression for body part 82

detection, where individual joint positions are recursively im- 83

proved, taking the full frame as input. Pfister et al. [24] pro- 84

posed the Temporal Pose ConvNet to track upper body parts, 85

and Carreira et al. [25] proposed the Iterative Error Feedback 86

by injecting the prediction error back to the input space, im- 87

proving estimations recursively. The handle the difficult cases 88

of complex human poses, Rogez et al. [26] proposed the LCR 89

network, on which each person is first localized, then classified 90

according to a set of anchor poses, and finally the pose is re- 91

gressed. The drawback of this method is the elevated number 92

of pose anchors required to achieve reliable results. Recently, 93

Sun et al. [12] proposed a structured bone based representation 94

for human pose, which is statistically less variant than absolute 95

joint positions and can be indistinctly used for both 2D and 3D 96

representations. However, the method requires converting pose 97

data to the relative bone based format. Moreover, those results 98

are all outperformed by detection based methods. 99

Detection based approaches. Pischulin et al. [27] proposed 100

DeepCut, a graph cutting algorithm that relies on body parts de- 101

tected by DeepPose [4]. This method has been improved in [28] 102

by replacing the previous CNN by a deep Residual Network 103

(ResNet) [29], resulting in very competitive accuracy results, 104

specially on multi-person detection. Semantic part based detec- 105

tion [30] is another possibility for human pose estimation, but 106

it requires additional data annotation. 107

Several methods have shown significant improvements on ac- 108

curacy by using fully convolutional models to generate belief 109

maps (or heat maps) for joint probabilities [11, 8, 31, 9, 32]. For 110

example, Bulat et al. [9] proposed a two-stages CNN for coarse 111

and fine heat map regression using pre-trained models, and fol- 112

lowing the tendency of deeper models with residual connec-1

tions, Newell et al. [8] proposed a stacked hourglass network2

with convolutions in multi-level features, allowing reevaluation3

of previous estimations due to a stacked block architecture with4

many intermediate supervisions. The part-based learning pro-5

cess can benefit from intermediate supervision because it acts6
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Fig. 2: Overview of the proposed approach for pose regression.

as constraints on the lower level layers. As a result, the feature7

maps on higher levels tend to be cleaner. More recently, the8

stacked hourglass network have been extended to more com-9

plex variations. For example, Chu et al. [11] proposed a Condi-10

tional Random Field (CRF) based on attention maps, and Yang11

et al. [33] studied variations of internal pyramids in multiple12

levels of each hourglass. To cope with unrealistic predictions,13

adversarial network have been used [34, 35]. Despite their14

elevated memory consumption, these methods provide to our15

knowledge state-of-the-art performance.16

All the previous methods that are based on detection need17

additional steps on training to produce artificial ground truth18

from joint positions, which represent an additional processing19

stage and additional hype-parameters, since the ground truth20

heat maps have to be defined by hand. On evaluation, the in-21

verse operation is required, i.e. , heat maps have to be converted22

to joint positions, generally using the argmax function. Conse-23

quently, in order to achieve good precision, predicted heat maps24

need reasonable spacial resolution, as proposed in [8], which25

can translate into an elevated computational cost and memory26

usage. In order to provide an alternative to heat maps based27

approaches, we present our framework in the following section.28

3. Proposed method29

The proposed approach is an end-to-end trainable network30

which takes as input RGB images and outputs two vectors: the31

probability pn of joint n being in the image and the regressed32

joint coordinates yn = (xn, yn), where n = {1, 2, . . . ,NJ} is the33

index of each joint and NJ is the number of joints. In what34

follows, we first present the global architecture of our method,35

and then detail its most important parts.36

3.1. Network architecture 37

An overview of the proposed method is presented in Fig. 2. 38

Our approach is based on a convolutional neural network es- 39

sentially composed of three parts: one entry flow, block-A and 40

block-B. The role of the stem is to provide basic feature ex- 41

traction, while block-A and block-B provide refined features 42

and body-part activation maps. One sequence of block-A and 43

block-B is used to build one prediction block, which output is 44

used as intermediate supervision during training. The full net- 45

work is composed by the stem and a sequence of K prediction 46

blocks. The final prediction is the output of the Kth prediction 47

block. To predict the pose at each prediction block, we aggre- 48

gate the 2D coordinates generated by applying soft-argmax to 49

the part-based and contextual maps that are output by block- 50

B. Similarly to recent approaches [8, 11], on each prediction 51

block we produce one estimation that is used as intermediate 52

supervision, providing better accuracy and more stability to the 53

learning process. 54

The proposed CNN model is partially based on Inception- 55

v4 [36]. For block-A, we use a similar architecture as the 56

Stacked Hourglass [8] replacing all the residual blocks by a 57

residual separable convolution. Additionally, our approach in- 58

creased the results from [8] with only three feature map reso- 59

lutions, from 32 × 32 to 8 × 8, instead of the original five res- 60

olutions, from 64 × 64 to 4 × 4. This is possible because 61

the soft-argmax is not directly dependent on the resolution of 62

heat maps, since it performs a continuous regression, which is 63

evidenced by our better results using lower resolution feature 64

maps. 65

At each prediction stage, block-B is used to transform in- 66

put feature maps into Md part-based detection maps (Hd) and 67

Mc context maps (Hc), resulting in M = Md + Mc heat maps. 68

Md corresponds to the number of joints NJ , and Mc = NcNJ , 69

where Nc is the number of context maps for each joint. The 70

produced heat maps are projected back to the feature space and 71

reintroduced to the network flow by a 1×1 convolution. Similar 72

techniques have been used by many previous works [9, 8, 11], 73

resulting in significant gain of performance. From the gener- 74

ated heat maps, our method predicts the joint locations and joint 75

probabilities in the regression block, which has no trainable pa- 76

rameters. Details of block-B and the regression stage are shown1

in Fig. 3.2

3.2. Proposed regression method3

As presented in section 2, traditional regression based meth-4

ods use fully connected layers on feature maps and learn the5
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Fig. 3: Network architecture of block-B and an overview of the regression stage.
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pose regression.

regression mapping. However, this approach usually gives sub-6

optimal solutions. While state-of-the-art methods are over-7

whelmingly based on part detection, approaches based on re-8

gression have the advantages of providing directly the pose9

prediction as joint coordinates without additional steps or post-10

processing. In order to provide an alternative to detection based11

methods, we propose an efficient and fully differentiable way12

to convert heat maps directly to (x, y) coordinates, which we13

call soft-argmax. Additionally, the soft-argmax operation can14

be implemented as a CNN layer, as detailed in the next section.15

3.2.1. Soft-argmax layer16

Let us define the softmax operation on a single heat map h ∈
RW×H as:

Φ(hi, j) =
ehi, j∑W

k=1
∑H

l=1 ehk,l
, (1)

where hi, j is the value of heat map h at location (i, j), and W × H
is the heat map size. Contrary to the more common cross-
channel softmax, we use here a spatial softmax that ensures
each heat maps is normalized. Then, we define the soft-argmax
as follows:

Ψd(h) =

W∑
i=1

H∑
j=1

Wi, j,dΦ(hi, j), (2)

where d is a given component x or y, and W is a W×H×2 weight
matrix corresponding to the coordinates (x, y). The matrix W
can be expressed by its components Wx and Wy, which are 2D
discrete normalized ramps, defined as follows:

Wi, j,x =
i

W
,Wi, j,y =

j
H
. (3)

Finally, given a heat map h, the regressed location of the pre-
dicted joint is given by

y = (Ψx(h),Ψy(h))T . (4)

This soft-argmax operation can be seen as a weighted average
of points distributed on an uniform grid, with the weights being

equal to the corresponding heat map. In order to integrate the
soft-argmax layer into a deep network, we need its derivative
with respect to h:

∂Ψd(hi, j)
∂hi, j

= Wi, j,d
ehi, j (
∑W

k=1
∑H

l=1 ehk,l − ehi, j )

(
∑W

k=1
∑H

l=1 ehk,l )2
. (5)

The soft-argmax function can thus be integrated in a trainable 17

framework by using back propagation and the chain rule on 18

equation (5). Moreover, from equation (5), we can see that the 19

gradient is exponentially increasing for higher values, resulting 20

in very discriminative response at the joint position. 21

The implementation of soft-argmax can be easily done with 22

recent frameworks, such as TensorFlow, just by concatenating 23

a spatial softmax followed by one convolutional layer with 2 24

filters of size W × H, with fixed parameters according to equa- 25

tion (3). 26

Unlike traditional argmax, soft-argmax provides sub-pixel 27

accuracy, allowing good precision even with very low resolu- 28

tion. Moreover, the soft-argmax operation allows to learn very 29

discriminative heat maps directly from the (x, y) joint coordi- 30

nates without explicitly computing artificial ground truth. Sam- 31

ples of heat maps learned by our approach are shown in Fig. 4. 32

3.2.2. Joint probability 33

Additionally to the joint locations, we estimate the joint prob- 34

ability pn, which corresponds to the probability of the nth joint 35

being present in the image. The estimated joint probability is 36

given by the sigmoid activation on the global max-pooling from 37

heat map hn. Despite giving an additional piece of information, 38

the joint probability does not depends on additional parameters 39

and is computationally negligible, compared to the cost of con- 40

volutional layers. 41

3.2.3. Detection and context aggregation 42

Even if the correlation between some joints can be learned in 43

the hidden convolutional layers, the joint regression approach 44

is designed to locate body parts individually, resulting in low 45

flexibility to learn from the context. For example, the same 46

filters that give high response to images of a clean head, also 47

must react positively to a hat or a pair of sunglasses. In order 48

to provide multi-source information to the final prediction, we 49

include in our framework specialized part-based heat maps and 50

context heat maps, which are defined as Hd = [hd
1, . . . ,h

d
NJ

] and 51

Hc = [hc
1,1, . . . ,h

c
Nc,N j

], respectively. Additionally, we define 52

the joint probability related to each context map as pc
i,n, where 53

i = {1, . . . ,Nc} and n = {1, . . . ,N j}. 54

Finally, the nth joint position from detection and contextual
information aggregated is given by:

yn = αyd
n + (1 − α)

∑Nc
i=1 pc

i,nyc
i,n∑Nc

i=1 pc
i,n

, (6)

where yd
n = soft-argmax(hd

n) is the predicted location from the1

nth part based heat map, yc
i,n = soft-argmax(hc

i,n) and pc
i,n are2

respectively the location and the probability for the ith context3

heat map for joint n, and α is a hyper-parameter.4
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From equation (6) we can see that the final prediction is5

a combination of one specialized prediction and Nc contex-6

tual predictions pondered by their probabilities. The contextual7

weighted contribution brings flexibility, allowing specific filters8

to be more responsive to particular patterns. This aggregation9

scheme within the learning stage is only possible because we10

have the joint probability and position directly available inside11

the network in a differentiable way.12

4. Experiments13

We evaluate the proposed method on the very challenging14

MPII Human Pose [37] and Leeds Sports Poses (LSP) [38]15

datasets. The MPII dataset contains 25K images collected from16

YouTube videos, including around 28K annotated poses for17

training and 15K poses for testing. The annotated poses have18

16 body joints, some of them are not present and others are oc-19

cluded but can be predicted by the context. The LSP dataset20

is composed by 2000 annotated poses with up to 14 joint loca-21

tions. The images were gethered from Flickr with sports peo-22

ple. The details about training the model and achieved accuracy23

results are given as follows.24

4.1. Training25

The proposed network was trained simultaneously on joints
regression and joint probabilities. For joints regression, we use
the elastic net loss function (L1 + L2):

Ly =
1

NJ

NJ∑
n=1

‖yn − ŷn‖1 + ‖yn − ŷn‖
2
2, (7)

where yn and ŷn are respectively the ground truth and the pre-26

dicted nth joint coordinates. In this case, we use directly the27

joint coordinates normalized to the interval [0, 1], where the28

top-left image corner corresponds to (0, 0), and the bottom-right29

image corner corresponds to (1, 1).30

For joint probability estimation, we use the binary cross en-
tropy loss function on the joint probability p:

Lp =
1

NJ

NJ∑
n=1

[(pn − 1) log (1 − p̂n) − pn log p̂n], (8)

where pn and p̂n are respectively the ground truth and the pre-31

dicted joint probability.32

We optimize the network using back propagation and the33

RMSProp optimizer, with batch size of 16 samples. For the34

MPII dataset, we train the network for 120 epochs. The learn-35

ing rate begins at 10−3 and decreases by a factor of 0.4 when36

accuracy on validation plateaus. On the LSP dataset, we start37

from the model trained on MPII and fine-tuned it for more 7038

epochs, beginning with learning rate 2 ·10−5 and using the same39

decrease procedure. The full training of our network takes three40

days on the relatively outdated NVIDIA GPU Tesla K20 with 41

5GB of memory. 42

Data augmentation. We use standard data augmentation on 43

both MPII and LSP datasets. Input RGB images are cropped 44

and centered on the main subject with a squared bounding 45

box, keeping the people scale (when provided), then resized to 46

256×256 pixels. We perform random rotations (±40◦) and ran- 47

dom rescaling from 0.7 to 1.3 to make the model more robust 48

to image changes. 49

Parameters setup and ablation studies. Out network model 50

is composed of eight prediction blocks (K = 8). We trained the 51

network to regress 16 joints with 2 context maps for each joint 52

(N j = 16, Nc = 2). In the aggregation stage, we use α = 0.8. 53

In order to provide insights about the chosen parameters, we 54

performed some ablation studies as follows. 55

In Table 1, we evaluated the influence of the soft-argmax and 56

the combination of contextual information on the precision of 57

the method. The soft-argmax improves over a simple argmax by 58

1.6%, and the contextual maps improve precision by 2.2%. Not 59

further significant improvement was noticed by using α lower 60

than 0.8. The improvement is more relevant on more challeng- 61

ing joints, such as knees and ankles, which suggests that the 62

contextual maps provide a complementary information to refine 63

the specialized maps on difficult cases. 64

We also evaluated the execution time of our method com- 65

paring it with the stacked hourglass network [8], which is the 66

most common baseline for detection approaches. Our method 67

is able to perform predictions at 29.3 FPS (frames per second), 68

while the stacked hourglass reached 18.3 FPS only, using the 69

same framework and hardware (TensorFlow and NVIDIA GPU 70

K20). 71

4.2. Results 72

LSP dataset. We evaluate our method on the LSP dataset 73

using two metrics, the “Percentage of Correct Parts” (PCP) and 74

the “Probability of Correct Keypoint” (PCK) measures. Our 75

results compared to the state-of-the-art on the LSP dataset are 76

present in Tables 2 and 3, respectively for PCK and PCP met- 77

rics. Our method achieves the best result among regression ap- 78

proaches. On the PCK measure, we outperform the results re- 79

ported by Carreira et al. [25] (CVPR 2016) by 18.0%, which is 80

the only regression method reported on this setup. 81

MPII dataset. On the MPII dataset, we evaluate our method 82

using the “Single person” challenge [37]. The scores were com- 83

puted by the providers of the dataset, since the test labels are not 84

publicly available. As shown in Table 4, we reached a test score 85

of 91.2%, which is 4.8% higher than the previous methods us- 86

ing regression. 87

Taking into account the competitiveness of the MPII Human 88

Pose challenge, our score represents a very significant improve- 89

ment over regression based approaches and a promising result 90

compared to detection based methods. Moreover, our method is 91

much simpler than the stacked hourglass network from Newell 92

et al. [8] or its extensions [11, 35, 34, 33, 10]. For example, the 93

size of the models [8], [11], and [33] is 183 MB, 409 MB, and 94

217 MB, respectively, while our model requires only 58 MB. 95

Due to limited memory resources, we were not able to re-train 96

these models in our hardware. Despite that, we reach compara-1

ble results with a model that fits in much smaller GPUs.2

4.3. Discussion3

As suggested in section 3.2.1, the proposed soft-argmax4

function acts as a constrain on the regression approach, driving5
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Table 1: Results considering different strategies for coordinates regression, evaluated using the PCKh@0.5 metric on the MPII validation set, single crop.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total
Simple argmax 95.8 91.3 86.7 82.4 85.8 75.5 76.7 85.3
soft-argmax w/o context 96.7 93.1 88.7 82.5 88.0 77.3 78.3 86.9
soft-argmax α=0.9 96.8 94.8 88.8 82.8 88.9 83.3 80.6 88.7
soft-argmax α=0.8 96.8 95.2 89.0 82.9 89.2 84.6 80.9 89.1

Table 2: Results on LSP test samples using the PCK measure at 0.2.

Method Head Sho. Elb. Wri. Hip Knee Ank. PCK
Detection based methods

Pishchulin et al. [5] 87.2 56.7 46.7 38.0 61.0 57.5 52.7 57.1
Wei et al. [39] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
Bulat and Tzimi. [9] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7
Chu et al. [11] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6
Yang et al. [33] 98.3 94.5 92.2 88.9 94.4 95.0 93.7 93.9
Chou et al. [35] 98.2 94.9 92.2 89.5 94.2 95.0 94.1 94.0

Regression based methods
Carreira et al. [25] 90.5 81.8 65.8 59.8 81.6 70.6 62.0 73.1
Our method 97.5 93.3 87.6 84.6 92.8 92.0 90.0 91.1

Table 3: Results on LSP test samples using the PCP measure.

Method Torso Upper Lower Upper Fore- Head PCP
leg leg arm arm

Detection based methods
Pishchulin et al. [5] 88.7 63.6 58.4 46.0 35.2 85.1 58.0
Wei et al. [39] 98.0 92.2 89.1 85.8 77.9 95.0 88.3
Bulat and Tzimi. [9] 97.7 92.4 89.3 86.7 79.7 95.2 88.9
Chu et al. [11] 98.4 95.0 92.8 88.5 81.2 95.7 90.9

Regression based methods
Carreira et al. [25] 95.3 81.8 73.3 66.7 51.0 84.4 72.5
Our method 98.2 93.6 91.0 86.6 78.2 96.8 89.4

Table 4: Comparison results with state-of-the-art methods on the MPII dataset on testing, using PCKh measure with threshold as 0.5 of the head segment length.
Detection based methods are shown on top and regression based methods on bottom.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total
Detection based methods

Pishchulin et al. [5] 74.3 49.0 40.8 34.1 36.5 34.4 35.2 44.1
Bulat and Tzimi. [9] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Newell et al. [8] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Chu et al. [11] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5
Chou et al. [35] 98.2 96.8 92.2 88.8 91.3 89.1 84.9 91.8
Chen et al. [34] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9
Yang et al. [33] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0
Nie? et al. [10] 98.6 96.9 93.0 89.1 91.7 89.0 86.2 92.4

Regression based methods
Carreira et al. [25] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3
Sun et al. [12] 97.5 94.3 87.0 81.2 86.5 78.5 75.4 86.4
Our method 98.1 96.6 92.0 87.5 90.6 88.0 82.7 91.2

? Method using multi-task supervision with segmentation task (additional training).



Preprint Submitted for review / Computers & Graphics (2019) 7

the network to learn part-based detectors indirectly. This ef-6

fect provides the flexibility of regression based methods, which7

can be easily integrated to provide 2D pose estimation to other8

applications such as 3D pose estimation or action recognition,9

while preserving the performance of detection based methods.10

Some examples of part-based maps indirectly learned by our11

method are shown in Fig. 4. As we can see, the responses are12

very well localized on the true location of the joints without13

explicitly requiring so.14

The fact that the regressed coordinates of a given joint are15

influenced by all the pixels in the heat map could result in erro-16

neous predictions in the case where multiple people are visible17

in the image. However, our method is trained with the target18

person centered in the cropped image, which makes our ap-19

proach robust to the appearance of a second person in the cor-20

ners (see an example in Fig. 4). In practice, a standard person21

detector [40] can be used to provide a well cropped bounding22

box around each person.23

Fig. 4: Indirectly learned part-based heat maps from our method. All the joints
encoded to RGB are shown in the first image (top-left corner) and the final
pose is shown in the last image (bottom-right corner). On each column, the
intermediate images correspond to the predicted heat maps before (left) and
after (right) the Softmax normalization. The presented heat maps correspond
to right ankle, right hip, right wrist, right shoulder, upper neck, head top, left
knee, and left wrist.

Additionally to the part-based maps, the contextual maps24

give extra information to refine the predicted pose. In some25

cases, the contextual maps provide strong responses to regions26

around the joint location. In such cases, the aggregation scheme27

is able to refine the predicted joint position. On the other hand,28

if the contextual map response is weak, the context reflects in29

very few changes on the pose. Some examples of predicted30

poses and visual contributions from contextual aggregation are31

shown in Fig. 5. The contextual maps are able to increase the32

precision of the predictions by providing complementary infor-33

mation, as we can see for the right elbows of the poses in Fig. 5.34

5. Conclusion1

In this work, we presented a new regression method for hu-2

man pose estimation from still images. The method is based on3

the soft-argmax operation, a differentiable operation that can be4

integrated in a deep convolutional network to learn part-based5

detection maps indirectly, resulting in a significant improve-6

ment over the state-of-the-art scores from regression methods7

and very competitive results compared to detection based ap-8

proaches. Additionally, we demonstrate that contextual infor-9

mation can be seamless integrated into our framework by us-10

ing additional context maps and joint probabilities. As a future11

work, other methods could be build up to our approach to pro-12

vide 3D pose estimation or human action recognition from pose13

in a fully differentiable way.14
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