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In this paper, we tackle the problem of human pose estimation from still images, which is a very active topic, specially due to its several applications, from image annotation to human-machine interface. We use the soft-argmax function to convert feature maps directly to body joint coordinates, resulting in a fully differentiable framework. Our method is able to learn heat maps representations indirectly, without additional steps of artificial ground truth generation. Consequently, contextual information can be included to the pose predictions in a seamless way. We evaluated our method on two challenging datasets, the Leeds Sports Poses (LSP) and the MPII Human Pose datasets, reaching the best performance among all the existing regression methods.

Introduction

Human pose estimation from still images is a hard task since 2 the human body is strongly articulated, some parts may not be proaches by a large margin [7]. A key benefit from CNN is that the full pipeline is differentiable, allowing end-to-end learning.

In the context of human pose estimation, the first methods using deep neural networks tried to do regression directly by learning a non-linear mapping function from RGB images to joint coordinates [4]. By contrast, the majority of the methods in the state of the art tackle pose estimation as a detection problem by predicting heat maps that correspond to joint locations [8, 9], or even by exploiting additional tasks such as semantic body segmentation [10]. In such methods, the ground truth is artificially generated from joint positions, generally as a 2D Gaussian distribution centered on the joint location, while the context information is implicitly learned by the hidden convolutional layers.

Despite achieving state-of-the-art accuracy on 2D pose estimation, detection based approaches have some limitations. For example, such methods rely on additional steps to convert heat maps to joint positions, usually by applying the argmax function, which is not differentiable, breaking the learning chain on neural networks. Additionally, the precision of predicted keypoints is proportional to that of the heat maps resolution, which leads the top ranked methods [11,8] to high memory consumption and high computational requirements.

On the other hand, regression based methods are conceptually more adapted to 2D and 3D scenarios and can be used indistinctly on both cases [12]. However, the regression function map is sub-optimally learned, resulting in lower scores when compared with detection based approaches. In this paper, we aim at solving this problem by bridging the gap between detection and regression based methods. We propose to replace the argmax function, used to convert heat maps into joint locations, by the soft-argmax function, which keeps the properties of specialized part detectors while being fully differentiable. The idea of soft-argmax was previously introduced by Finn et al. [13] in order to convert the highest response from a feature map to its coordinates. Differently from our work, in [13] the output of soft-argmax is not explicitly supervised. More recently, the soft-argmax was also used to guide local features extraction [14] and to perform 3D human pose estimation in [15], which is a parallel work to ours.

With our solution based on soft-argmax, we are able to explore contextual information while optimizing our network from end-to-end using regression losses, i.e. , from input RGB images to final (x, y) body joint coordinates.

The contributions of our work are the following: first, we present a human pose regression approach from still images based on the soft-argmax function, resulting in an end-to-end trainable method which does not require artificial heat maps generation for training. Second, the proposed method can be trained using an insightful regression loss function, which is directly linked to the error distance between predicted and ground truth joint positions. Third, in the proposed architecture, contextual information is directly accessible and is easily aggre-58 gated to the final predictions. Finally, the accuracy reached by 59 our method surpasses that of regression methods and is close to 60 that of state-of-the-art detection methods, despite using a much 61 smaller network. Some examples of our regressed poses are 62 shown in Fig. 1.
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The rest of this paper is divided as follows. In the next sec-64 tion, we present a review of the most relevant related work. The 65 proposed method is presented in section 3. In section 4, we 66 show the experimental evaluations, followed by our conclusions 67 in section 5. for human pose, which is statistically less variant than absolute 95 joint positions and can be indistinctly used for both 2D and 3D 96 representations. However, the method requires converting pose 97 data to the relative bone based format. Moreover, those results 98 are all outperformed by detection based methods. 99 Detection based approaches. Pischulin et al. [START_REF] Pishchulin | DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation[END_REF] proposed 100 DeepCut, a graph cutting algorithm that relies on body parts de-101 tected by DeepPose [4]. This method has been improved in [START_REF] Insafutdinov | DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model[END_REF] 102 by replacing the previous CNN by a deep Residual Network 103 (ResNet) [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], resulting in very competitive accuracy results, 104 specially on multi-person detection. Semantic part based detec-105 tion [START_REF] Liang | Look into person: Joint body parsing & pose estimation network and a new benchmark[END_REF] is another possibility for human pose estimation, but 106 it requires additional data annotation.
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Several methods have shown significant improvements on ac-108 curacy by using fully convolutional models to generate belief 109 maps (or heat maps) for joint probabilities [11,8,[START_REF] Belagiannis | Robust optimization for deep regression[END_REF]9,[START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF]. For 110 example, Bulat et al. [9] proposed a two-stages CNN for coarse 111 and fine heat map regression using pre-trained models, and fol-112 lowing the tendency of deeper models with residual connec- as constraints on the lower level layers. As a result, the feature The proposed approach is an end-to-end trainable network and then detail its most important parts. The proposed CNN model is partially based on Inception-v4 [START_REF] Szegedy | Inception-v4, inception-resnet and the impact of residual connections on learning[END_REF]. For block-A, we use a similar architecture as the Stacked Hourglass [8] replacing all the residual blocks by a residual separable convolution. Additionally, our approach increased the results from [8] with only three feature map resolutions, from 32 × 32 to 8 × 8, instead of the original five resolutions, from 64 × 64 to 4 × 4. This is possible because the soft-argmax is not directly dependent on the resolution of heat maps, since it performs a continuous regression, which is evidenced by our better results using lower resolution feature maps. Let us define the softmax operation on a single heat map h ∈ R W×H as:

Φ(h i, j ) = e h i, j W k=1 H l=1 e h k,l , (1) 
where h i, j is the value of heat map h at location (i, j), and W × H is the heat map size. Contrary to the more common crosschannel softmax, we use here a spatial softmax that ensures each heat maps is normalized. Then, we define the soft-argmax as follows:

Ψ d (h) = W i=1 H j=1 W i, j,d Φ(h i, j ), ( 2 
)
where d is a given component x or y, and W is a W×H×2 weight matrix corresponding to the coordinates (x, y). The matrix W can be expressed by its components W x and W y , which are 2D discrete normalized ramps, defined as follows:

W i, j,x = i W , W i, j,y = j H . (3) 
Finally, given a heat map h, the regressed location of the predicted joint is given by

y = (Ψ x (h), Ψ y (h)) T . (4) 
This soft-argmax operation can be seen as a weighted average of points distributed on an uniform grid, with the weights being equal to the corresponding heat map. In order to integrate the soft-argmax layer into a deep network, we need its derivative with respect to h:

∂Ψ d (h i, j ) ∂h i, j = W i, j,d e h i, j ( W k=1 H l=1 e h k,l -e h i, j ) ( W k=1 H l=1 e h k,l ) 2 .
(5)

The soft-argmax function can thus be integrated in a trainable framework by using back propagation and the chain rule on equation (5). Moreover, from equation (5), we can see that the gradient is exponentially increasing for higher values, resulting in very discriminative response at the joint position.

The implementation of soft-argmax can be easily done with recent frameworks, such as TensorFlow, just by concatenating a spatial softmax followed by one convolutional layer with 2 filters of size W × H, with fixed parameters according to equation (3).

Unlike traditional argmax, soft-argmax provides sub-pixel accuracy, allowing good precision even with very low resolution. Moreover, the soft-argmax operation allows to learn very discriminative heat maps directly from the (x, y) joint coordinates without explicitly computing artificial ground truth. Samples of heat maps learned by our approach are shown in Fig. 4.

Joint probability

Additionally to the joint locations, we estimate the joint probability p n , which corresponds to the probability of the n th joint being present in the image. The estimated joint probability is given by the sigmoid activation on the global max-pooling from heat map h n . Despite giving an additional piece of information, the joint probability does not depends on additional parameters and is computationally negligible, compared to the cost of convolutional layers.

Detection and context aggregation

Even if the correlation between some joints can be learned in the hidden convolutional layers, the joint regression approach is designed to locate body parts individually, resulting in low flexibility to learn from the context. For example, the same filters that give high response to images of a clean head, also must react positively to a hat or a pair of sunglasses. In order to provide multi-source information to the final prediction, we include in our framework specialized part-based heat maps and context heat maps, which are defined as

H d = [h d 1 , . . . , h d N J ] and H c = [h c 1,1 , . . . , h c N c ,N j ],
respectively. Additionally, we define the joint probability related to each context map as p c i,n , where i = {1, . . . , N c } and n = {1, . . . , N j }.

Finally, the n th joint position from detection and contextual information aggregated is given by:

y n = αy d n + (1 -α) N c i=1 p c i,n y c i,n N c i=1 p c i,n , (6) 
where The proposed network was trained simultaneously on joints regression and joint probabilities. For joints regression, we use the elastic net loss function (L1 + L2):

y d n = soft-argmax(h d n ) is
L y = 1 N J N J n=1 y n -ŷn 1 + y n -ŷn 2 2 , ( 7 
)
where y n and ŷn are respectively the ground truth and the pre-
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dicted n th joint coordinates. In this case, we use directly the 
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For joint probability estimation, we use the binary cross entropy loss function on the joint probability p:

L p = 1 N J N J n=1 [(p n -1) log (1 -pn ) -p n log pn ], (8) 
where p n and pn are respectively the ground truth and the pre-31 dicted joint probability.
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We optimize the network using back propagation and the 
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Data augmentation. We use standard data augmentation on 43 both MPII and LSP datasets. Input RGB images are cropped 44 and centered on the main subject with a squared bounding 45 box, keeping the people scale (when provided), then resized to 256 × 256 pixels. We perform random rotations (±40 • ) and random rescaling from 0.7 to 1.3 to make the model more robust to image changes.

Parameters setup and ablation studies. Out network model is composed of eight prediction blocks (K = 8). We trained the network to regress 16 joints with 2 context maps for each joint (N j = 16, N c = 2). In the aggregation stage, we use α = 0.8. In order to provide insights about the chosen parameters, we performed some ablation studies as follows.

In Table 1, we evaluated the influence of the soft-argmax and the combination of contextual information on the precision of the method. The soft-argmax improves over a simple argmax by 1.6%, and the contextual maps improve precision by 2.2%. Not further significant improvement was noticed by using α lower than 0.8. The improvement is more relevant on more challenging joints, such as knees and ankles, which suggests that the contextual maps provide a complementary information to refine the specialized maps on difficult cases. We also evaluated the execution time of our method comparing it with the stacked hourglass network [8], which is the most common baseline for detection approaches. Our method is able to perform predictions at 29.3 FPS (frames per second), while the stacked hourglass reached 18.3 FPS only, using the same framework and hardware (TensorFlow and NVIDIA GPU K20).

Results

LSP dataset. We evaluate our method on the LSP dataset using two metrics, the "Percentage of Correct Parts" (PCP) and the "Probability of Correct Keypoint" (PCK) measures. Our results compared to the state-of-the-art on the LSP dataset are present in Tables 2 and3, respectively for PCK and PCP metrics. Our method achieves the best result among regression approaches. On the PCK measure, we outperform the results reported by Carreira et al. [25] (CVPR 2016) by 18.0%, which is the only regression method reported on this setup. MPII dataset. On the MPII dataset, we evaluate our method using the "Single person" challenge [37]. The scores were computed by the providers of the dataset, since the test labels are not publicly available. As shown in Table 4, we reached a test score of 91.2%, which is 4.8% higher than the previous methods using regression.

Taking into account the competitiveness of the MPII Human Pose challenge, our score represents a very significant improvement over regression based approaches and a promising result compared to detection based methods. Moreover, our method is much simpler than the stacked hourglass network from Newell et al. [8] or its extensions [11,[START_REF] Chou | Self adversarial training for human pose estimation[END_REF][START_REF] Chen | Adversarial posenet: A structure-aware convolutional network for human pose estimation[END_REF][START_REF] Yang | Learning feature pyramids for human pose estimation[END_REF]10]. For example, the size of the models [8], [11], and [START_REF] Yang | Learning feature pyramids for human pose estimation[END_REF] is 183 MB, 409 MB, and 217 MB, respectively, while our model requires only 58 MB. Due to limited memory resources, we were not able to re-train these models in our hardware. Despite that, we reach compara-1 ble results with a model that fits in much smaller GPUs. 
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  visible due to occlusions or low quality images, and the visual 4 appearance of body parts can change significantly from one 5 pose to another. Classical methods use keypoint detectors to 6 extract local information, which are combined to build pictorial 7 structures [1]. To handle difficult cases of occlusion or par-8 tial visualization, contextual information is usually needed to 9 provide visual cues that can be extracted from a broad region 10 around the part location [2] or by interaction among detected 11 parts [3]. In general, pose estimation can be seen from two dif-12 ferent perspectives, namely as a correlated part detection prob-13 lem or as a regression problem. Detection based approaches 14 commonly try to detect keypoints individually, which are ag-15 gregated in post-processing stages to form one pose prediction. 16 In contrast, methods based on regression use a function to map

Fig. 1 :

 1 Fig. 1: Test samples from the Leeds Sports Poses (LSP) dataset. Input image (top), the predicted part-based maps encoded as RGB image for visualizasion (middle), and the regressed pose (bottom). Corresponding human limbs have the same colors in all images. This figure is better seen in color.

  Fig. 1: Test samples from the Leeds Sports Poses (LSP) dataset. Input image (top), the predicted part-based maps encoded as RGB image for visualizasion (middle), and the regressed pose (bottom). Corresponding human limbs have the same colors in all images. This figure is better seen in color.
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1Fig. 2 :

 2 Fig. 2: Overview of the proposed approach for pose regression.

7

  maps on higher levels tend to be cleaner. More recently, the 8 stacked hourglass network have been extended to more com-9 plex variations. For example, Chu et al. [11] proposed a Condi-10 tional Random Field (CRF) based on attention maps, and Yang 11 et al. [33] studied variations of internal pyramids in multiple 12 levels of each hourglass. To cope with unrealistic predictions, 13 adversarial network have been used [34, 35]. Despite their 14 elevated memory consumption, these methods provide to our knowledge state-of-the-art performance. 16 All the previous methods that are based on detection need 17 additional steps on training to produce artificial ground truth 18 from joint positions, which represent an additional processing 19 stage and additional hype-parameters, since the ground truth 20 heat maps have to be defined by hand. On evaluation, the in-21 verse operation is required, i.e. , heat maps have to be converted 22 to joint positions, generally using the argmax function. Conse-23 quently, in order to achieve good precision, predicted heat maps 24 need reasonable spacial resolution, as proposed in [8], which 25 can translate into an elevated computational cost and memory 26 usage. In order to provide an alternative to heat maps based 27 approaches, we present our framework in the following section.

28 3. Proposed method 29

 2829 

30 which

 30 takes as input RGB images and outputs two vectors: the 31 probability p n of joint n being in the image and the regressed 32 joint coordinates y n = (x n , y n ), where n = {1, 2, . . . , N J } is the 33 index of each joint and N J is the number of joints. In what 34 follows, we first present the global architecture of our method,

35

 35 

36 3

 36 .1. Network architecture 37 An overview of the proposed method is presented in Fig.2. 38 Our approach is based on a convolutional neural network es-39 sentially composed of three parts: one entry flow, block-A and 40 block-B. The role of the stem is to provide basic feature ex-41 traction, while block-A and block-B provide refined features 42 and body-part activation maps. One sequence of block-A and 43 block-B is used to build one prediction block, which output is used as intermediate supervision during training. The full network is composed by the stem and a sequence of K prediction blocks. The final prediction is the output of the K th prediction block. To predict the pose at each prediction block, we aggregate the 2D coordinates generated by applying soft-argmax to the part-based and contextual maps that are output by block-B. Similarly to recent approaches[8, 11], on each prediction block we produce one estimation that is used as intermediate supervision, providing better accuracy and more stability to the learning process.

Fig. 3 :

 3 Fig. 3: Network architecture of block-B and an overview of the regression stage. The input is projected into M heat maps (M d + M c ) which are then used for pose regression.

27 joint

 27 coordinates normalized to the interval [0, 1], where the 28 top-left image corner corresponds to (0, 0), and the bottom-right 29 image corner corresponds to (1, 1).
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  RMSProp optimizer, with batch size of 16 samples. For the 34 MPII dataset, we train the network for 120 epochs. The learn-35 ing rate begins at 10 -3 and decreases by a factor of 0.4 when 36 accuracy on validation plateaus. On the LSP dataset, we start 37 from the model trained on MPII and fine-tuned it for more 70 38 epochs, beginning with learning rate 2 • 10 -5 and using the same decrease procedure. The full training of our network takes three 40 days on the relatively outdated NVIDIA GPU Tesla K20 with 41 5GB of memory.

3

  As suggested in section 3.2.1, the proposed soft-argmax 4 function acts as a constrain on the regression approach, driving 5

  the network to learn part-based detectors indirectly. This ef-6 fect provides the flexibility of regression based methods, which 7 can be easily integrated to provide 2D pose estimation to other 8 applications such as 3D pose estimation or action recognition, 9 while preserving the performance of detection based methods. 10 Some examples of part-based maps indirectly learned by our 11 method are shown in Fig. 4. As we can see, the responses are 12 very well localized on the true location of the joints without 13 explicitly requiring so. 14 The fact that the regressed coordinates of a given joint are 15 influenced by all the pixels in the heat map could result in erro-16 neous predictions in the case where multiple people are visible 17 in the image. However, our method is trained with the target 18 person centered in the cropped image, which makes our ap-19 proach robust to the appearance of a second person in the cor-20 ners (see an example in Fig. 4). In practice, a standard person 21 detector [40] can be used to provide a well cropped bounding 22 box around each person.
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Fig. 4 :

 4 Fig. 4: Indirectly learned part-based heat maps from our method. All the joints encoded to RGB are shown in the first image (top-left corner) and the final pose is shown in the last image (bottom-right corner). On each column, the intermediate images correspond to the predicted heat maps before (left) and after (right) the Softmax normalization. The presented heat maps correspond to right ankle, right hip, right wrist, right shoulder, upper neck, head top, left knee, and left wrist.

1

  In this work, we presented a new regression method for hu-2 man pose estimation from still images. The method is based on 3 the soft-argmax operation, a differentiable operation that can be 4 integrated in a deep convolutional network to learn part-based 5 detection maps indirectly, resulting in a significant improve-6 ment over the state-of-the-art scores from regression methods 7 and very competitive results compared to detection based ap-8 proaches. Additionally, we demonstrate that contextual infor-9 mation can be seamless integrated into our framework by us-10 ing additional context maps and joint probabilities. As a future 11 work, other methods could be build up to our approach to pro-12 vide 3D pose estimation or human action recognition from pose 13 in a fully differentiable way.

15

  This work was partially founded by CNPq (Brazil) -Grant 16 233342/2014-1.
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Fig. 5 :

 5 Fig. 5: Samples of context maps aggregated to refine predicted pose. Input image (a), part-based detection maps (b), predicted pose without context (c), two different context maps (d) and (e), and the final pose with aggregated predictions (f).

  Some methods tackle pose 79 estimation as a keypoint regression problem. One of the first re-80 gression approaches was proposed by Toshev and Szegedy [4] 81 as a holistic solution based on cascade regression for body part 82 detection, where individual joint positions are recursively im-83 proved, taking the full frame as input. Pfister et al. [24] pro-84 posed the Temporal Pose ConvNet to track upper body parts, 85 and Carreira et al. [25] proposed the Iterative Error Feedback 86 by injecting the prediction error back to the input space, im-87 proving estimations recursively. The handle the difficult cases 88 of complex human poses, Rogez et al. [26] proposed the LCR 89 network, on which each person is first localized, then classified 90 according to a set of anchor poses, and finally the pose is re-91 gressed. The drawback of this method is the elevated number 92 of pose anchors required to achieve reliable results. Recently, 93 Sun et al. [12] proposed a structured bone based representation 94

	2. Related work	69
	Several approaches for human pose estimation have been pre-70
	sented for both 2D [16] and 3D [17, 18] scenarios, as well as 71
	for video sequences [19, 20, 21]. Among classical methods, 72
	Pictorial Structures [22] and poselet-based features [23] have 73
	been widely used in the past. In this section, due to the limited 74
	space, we focus on CNN based methods that are more related 75
	to our work i.e., 2D human pose estimation from single frames. 76
	We briefly refer to the most recent works, splitting them as re-77
	gression based and detection based approaches.	
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Regression based approaches.

Table 1 :

 1 Results considering different strategies for coordinates regression, evaluated using the PCKh@0.5 metric on the MPII validation set, single crop.

	Method	Head Shoulder Elbow Wrist Hip Knee Ankle Total
	Simple argmax	95.8	91.3	86.7	82.4	85.8	75.5	76.7	85.3
	soft-argmax w/o context	96.7	93.1	88.7	82.5	88.0	77.3	78.3	86.9
	soft-argmax α=0.9	96.8	94.8	88.8	82.8	88.9	83.3	80.6	88.7
	soft-argmax α=0.8	96.8	95.2	89.0	82.9	89.2	84.6	80.9	89.1

Table 2 :

 2 Results on LSP test samples using the PCK measure at 0.2.

	Method	Head Sho. Elb. Wri. Hip Knee Ank. PCK
			Detection based methods			
	Pishchulin et al. [5]	87.2	56.7 46.7 38.0 61.0	57.5	52.7	57.1
	Wei et al. [39]	97.8	92.5 87.0 83.9 91.5	90.8	89.9	90.5
	Bulat and Tzimi. [9]	97.2	92.1 88.1 85.2 92.2	91.4	88.7	90.7
	Chu et al. [11]	98.1	93.7 89.3 86.9 93.4	94.0	92.5	92.6
	Yang et al. [33]	98.3	94.5 92.2 88.9 94.4	95.0	93.7	93.9
	Chou et al. [35]	98.2	94.9 92.2 89.5 94.2	95.0	94.1	94.0
			Regression based methods			
	Carreira et al. [25]	90.5	81.8 65.8 59.8 81.6	70.6	62.0	73.1
	Our method	97.5	93.3 87.6 84.6 92.8	92.0	90.0	91.1

Table 3 :

 3 Results on LSP test samples using the PCP measure.

	Method	Torso Upper Lower Upper Fore-Head PCP
			leg	leg	arm	arm		
			Detection based methods			
	Pishchulin et al. [5]	88.7	63.6	58.4	46.0	35.2	85.1	58.0
	Wei et al. [39]	98.0	92.2	89.1	85.8	77.9	95.0	88.3
	Bulat and Tzimi. [9]	97.7	92.4	89.3	86.7	79.7	95.2	88.9
	Chu et al. [11]	98.4	95.0	92.8	88.5	81.2	95.7	90.9
		Regression based methods			
	Carreira et al. [25]	95.3	81.8	73.3	66.7	51.0	84.4	72.5
	Our method	98.2	93.6	91.0	86.6	78.2	96.8	89.4

Table 4 :

 4 Comparison results with state-of-the-art methods on the MPII dataset on testing, using PCKh measure with threshold as 0.5 of the head segment length. Detection based methods are shown on top and regression based methods on bottom. Method using multi-task supervision with segmentation task (additional training).

	Method	Head Shoulder Elbow Wrist Hip Knee Ankle Total
			Detection based methods				
	Pishchulin et al. [5]	74.3	49.0	40.8	34.1	36.5	34.4	35.2	44.1
	Bulat and Tzimi. [9]	97.9	95.1	89.9	85.3	89.4	85.7	81.7	89.7
	Newell et al. [8]	98.2	96.3	91.2	87.1	90.1	87.4	83.6	90.9
	Chu et al. [11]	98.5	96.3	91.9	88.1	90.6	88.0	85.0	91.5
	Chou et al. [35]	98.2	96.8	92.2	88.8	91.3	89.1	84.9	91.8
	Chen et al. [34]	98.1	96.5	92.5	88.5	90.2	89.6	86.0	91.9
	Yang et al. [33]	98.5	96.7	92.5	88.7	91.1	88.6	86.0	92.0
	Nie et al. [10]	98.6	96.9	93.0	89.1	91.7	89.0	86.2	92.4
			Regression based methods				
	Carreira et al. [25]	95.7	91.7	81.7	72.4	82.8	73.2	66.4	81.3
	Sun et al. [12]	97.5	94.3	87.0	81.2	86.5	78.5	75.4	86.4
	Our method	98.1	96.6	92.0	87.5	90.6	88.0	82.7	91.2

Computers & Graphics (2019)

Computer Vision and Pattern Recognition (CVPR), 2017 (July 2017).