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Abstract

A modification of the Adaptive Biasing Force method is introduced, in which the free
energy is approximated by a sum of tensor products of one-dimensional functions. This
enables to handle a larger number of reaction coordinates than the classical algorithm.
We prove the algorithm is well-defined and prove the long-time convergence toward a
regularized version of the free energy for an idealized version of the algorithm. Numer-
ical experiments demonstrate that the method is able to capture correlations between
reaction coordinates.

1 Introduction

Consider x ∈ TD a vector representing the positions of particles with periodic boundary
conditions (T = R/Z), and a potential energy V ∈ C∞

(
TD
)
. We are interested in computing

expectations of the form

1∫
TD e

−βV (x)dx

∫
TD
ϕ(x)e−βV (x)dx =:

∫
TD
ϕdµV,β

where ϕ : TD → R is called an observable and dµV,β := e−βV (x)dx is the Gibbs law with
potential V and inverse temperature β > 0. The large dimension D is so significant that,
in practice, these quantities have to be computed with Markov Chain Monte Carlo (MCMC)
algorithms, which consist in approximating the average of ϕ with respect to µV,β along dy-
namics that are ergodic with respect to µV,β. A typical sampler is the overdamped Langevin
dynamics

dXt = −∇V (Xt)dt+
√

2β−1dBt

where (Bt)t>0 is a Brownian motion over TD. It is ergodic with invariant measure µV,β, so
that

1

t

∫ t

0

ϕ(Xs)ds −→
t→∞

∫
TD
ϕdµV,β.

Nevertheless, the convergence of the process (or, in practice, of any alternative Markov pro-
cess with invariant measure µV,β) toward its equilibrium in the long-time limit may be very
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slow. This is due to the so-called metastability phenomenon, according to which the process
remains for long times in some region of the space, with very rare transitions from one of these
metastable regions to another. This is related to the multi-modality of the Gibbs measure
and the fact MCMC algorithms typically perform local moves, so that leaving a mode of the
target measure µV,β is a rare event. We refer to [18] for more details on this topic. For this
reason, several adaptive methods have been developed in order to force the process to leave
the metastable traps faster. Among those, we focus on the adaptive biasing force (ABF) al-
gorithm, which may be seen as a particular Importance Sampling method. The general idea
is to run a biased process

dX̃t = −∇V (X̃t)dt+∇Vbias,t(X̃t) +
√

2β−1dBt (1)

where the biasing potential Vbias,t is adaptively constructed from the past trajectory (X̃s)s∈[0,t]

in such a way that it is expected to converge to some Vbias,∞. Expectations with respect to
µV,β are then recovered through a reweighting step, assuming that ergodicity still holds:

1
t

∫ t
0
ϕ(X̃s)e

−βVbias,s(X̃s)ds
1
t

∫ t
0
e−βVbias,s(X̃s)ds

−→
t→∞

∫
TD ϕe

−βVbias,∞dµV−Vbias,∞,β∫
TD e

−βVbias,∞dµV−Vbias,∞,β
=

∫
TD
ϕdµV,β . (2)

Classically, in such an Importance Sampling scheme, the aim is to design a target bias Vbias,∞
such that two conditions are met: 1) sampling the biased equilibrium µV−Vbias,∞,β is sim-
pler than the initial problem (i.e. the corresponding overdamped Langevin process is less
metastable) and 2) the biased equilibrium is not too far from the initial target so that the
exponential weights in (2) do not cause the asymptotical variance of the estimator to skyrocket.

In the ABF algorithm, this issue is addressed with the use of so-called reaction coordinates
(or collective variables) and the associated free energy as a bias. Reaction coordinates consist
of a small number d� D of macroscopic coordinates of the whole microscopic system x ∈ TD.
These coordinates are defined through a map ξ : TD →M whereM is a manifold of dimension
d. In molecular dynamics, for example, x ∈ TD is a vector which gathers the positions of all
the different atoms of the system of interest, and ξ(x) typically represents some distances
between particular pairs of atoms, or angles formed by some triplets of atoms. These reaction
coordinates should be chosen to capture the main causes of the metastability of the system.
More precisely, ξ(Xt) should converge to equilibrium as slowly as Xt, while the conditional
laws L(X | ξ(X) = z) for fixed z ∈M when X ∼ µV,β should be easier to sample (see [19] for
more detailed considerations). In other words, ξ(x) should be a low-dimensional representation
of x that captures the slow variables of the system.

To these reaction coordinates ξ is associated the corresponding free energy A : M → R,
given by

A(z) = − 1

β
ln

∫
{x∈TD, ξ(x)=z}

e−βV (x)δξ(x)−z(dx) ,

where δξ(x)−z is the so-called delta measure, which can be defined from the Lebesgue measure
on the submanifold {x ∈ TD, ξ(x) = z} through the co-area formula, see for example [20,
Section 3.2.1]. This definition ensures that, if X is a random variable with law µV,β on TD,
then ξ(X) is a random variable with law µA,β on M. The heuristic of the ABF algorithm is
the following. Suppose that M is compact. If we were to sample from the process

dYt = −∇ (V − A ◦ ξ) (Yt)dt+
√

2β−1dBt,

the equilibrium would be µV−A◦ξ,β, whose image through ξ, by definition of A, is the uniform
measure on M. This means that there would be no more metastability along ξ, since all
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the regions of M would be equally visited by ξ(Yt)s. Unfortunately, it is not possible to use
directly this free-energy biased dynamics in practice, since it would require the knowledge of
A and thus the computation of expectations in large dimension. The idea of the ABF method

is to learn A on the fly, i.e. to run a process
(
X̃t

)
t>0

solving (1) with a biasing potential Vbias,t

constructed from
(
X̃s

)
s∈[0,t]

and designed to target A ◦ ξ in the longtime limit.

In practice, the choice of good reaction coordinates is a difficult problem. Up to recently,
their definition has been based on the knowledge and intuition of specialists. The question
of the automatic learning of suitable reaction coordinates is currently a vivid research area,
see for instance [7, 8]. Moreover, some techniques like the orthogonal space random walk [22]
provide a general way to construct new reaction coordinates from previous ones. Due to these
recent progresses, one would like to consider a relatively large d. In ABF, Vbias,t is a function of
the d reaction coordinates. From a numerical point of view, since Vbias,t is adaptively learned
on the fly, its values have to be kept in memory, which requires a grid whose size typically
scales exponentially with d. This limits the application of ABF to small dimensional reaction
coordinates (d 6 4). The aim of the present work is to lift this limitation by approximating
Vbias,t using a sum of tensor products of one-dimensional functions, which reduces the size of
the memory to O(dm) where m is the number of tensor terms. Remark that this can in turn
help for the definition of good reaction coordinates, by considering as candidates a relatively
large number of reaction coordinates and then conduct a statistical study to select or combine
some of them. Nevertheless, this question exceeds the scope of the present work, in which ξ
is supposed to be given.

Note that the question of increasing the number of reaction coordinates in adaptive biasing
algorithms has also been considered in the Bias-Exchange algorithm introduced in [26], where
several replicas of the system are run in parallel, each associated with a one-dimensional
reaction coordinate. The replicas exchange their bias according to some Metropolis-Hastings
probability, so that each replica eventually feels the bias in all the different directions of the
reaction coordinates. Nevertheless, in this case where one-dimensional reaction coordinates are
treated independently one from the others, the system remains very sensitive to correlations
between reaction coordinates (the same goes for the generalized ABF introduced in [27]),
contrary to the algorithm introduced in the present work.

Besides, let us mention that numerical methods involving both tensor approximation and
Monte Carlo methods for molecular dynamics are also introduced in [16, 24] for other purposes.

In the rest of this introduction we provide a presentation of the ABF algorithm we consider
in this work in a simple framework, and refer to Section 4 for generalizations. The presentation
is divided into two parts. In Section 1.1, we present the reference ABF algorithm we consider,
without the tensor-product approximation. In Section 1.2, we introduce the tensor-product
approximation of the bias. These two ingredients are then combined to yield the Tensor-
ABF algorithm in Section 1.3. The two algorithms and associated convergence proofs of the
reference ABF algorithm and of the tensor-product approximation are presented separately
since we think they have their own interest.

1.1 Free energy and the ABF algorithm

Let us first present the ABF algorithm in a simple framework (see [15, 10, 19] for more general
settings). From now on, we write

µ = µV,β ,
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seen both as a probability law and as the density of the latter with respect to the Lebesgue
measure.

Let us assume thatM = Td and that, for all x = (q, z) ∈ TD = Tp×Td, ξ(x) = ξ(q, z) = z
where p = D − d.

At first sight, this may seem a very restrictive choice of reaction coordinates. But, using
extended variables (see [13]), this can be applied actually in very general contexts. We refer
the reader to Section 4 for more details on this point.

The associated free energy for z ∈ Td is then

A(z) = − 1

β
ln

∫
Tp
e−βV (q,z)dq .

Following the previous discussion, our aim is then to define for all time t > 0 a function At on
Td and to sample the process{

dQt = −∇qV (Qt, Zt)dt+
√

2β−1dB1
t

dZt = −∇zV (Qt, Zt)dt+∇zAt(Zt)dt+
√

2β−1dB2
t ,

(3)

where B1 and B2 are independent Brownian motions respectively of dimension p and d, in
such a way that At gets close to A in large time.

Note that the free energy A satisfies

∇zA(z) =

∫
Tp ∇zV (q, z)e−βV (q,z)dq∫

Tp e
−βV (q,z)dq

= Eµ [∇zV (Q,Z) | Z = z] .

The following alternative equivalent characterization of A will be useful in the sequel. Let us
define

H :=

{
f ∈ H1(Td) :

∫
Td
f(z)dz = 0

}
, (4)

and let us denote by P(Tp × Td) the set of probability measures on Tp × Td = TD. For all
ν ∈ P(Tp × Td) and f ∈ H, let us define

Eν(f) :=

∫
Tp×Td

|∇zV (q, z)−∇zf(z)|2dν(q, z).

It holds that, up to an additive constant (like the potential V , the free energy is in fact always
defined up to an additive constant), A is the unique minimizer in H of the functional Eµ, i.e.

A = argmin
f∈H

Eµ(f). (5)

At time t > 0, a trajectory (Qs, Zs)s∈[0,t] of (3) is available. Let νt be the probability
measure on Tp × Td = TD defined as follows: for all ϕ ∈ C(Tp × Td),∫

Tp×Td
ϕdνt =

(∫ t

0

e−βAs(Zs)ds

)−1 ∫ t

0

ϕ (Qs, Zs) e
−βAs(Zs)ds . (6)

We call νt the unbiased occupation distribution of the process. By the ergodic limit (2), νt is
expected to converge to µ as t goes to infinity (at least if At does not change too fast with t).

However, note that νt is a singular probability measure, so that the minimization problem

inf
f∈H
Eνt(f)
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is ill-posed. To circumvent this difficulty, one may consider two different alternatives to reg-
ularize the problem which we detail hereafter. Consider a smooth symmetric positive density
kernel K ∈ C∞(Td × Td,R+) with∫

Td
K(y, z)dz = 1 and K(y, z) = K(z, y) ∀y, z ∈ Td . (7)

In practice, K(y, ·) should be close to a Dirac mass at y (see Theorem 2 below). For instance,
a possible choice for K would be the so-called von-Mises kernel for a given small parameter
ε > 0, i.e.

K(y, z) ∝
d∏
i=1

exp

(
− 1

ε2/2
sin2

(
zi − yi

2

))
. (8)

Now, consider also a regularization parameter λ > 0. For all ν ∈ P(Tp × Td) and all f ∈ H,
we define

Jν(f) :=

∫
Tp×Td×Td

|∇yV (q, y)−∇zf(z)|2K(y, z)dzdν(q, y) + λ

∫
Td
|∇zf(z)|2dz , (9)

Note that, as K(y, ·) converges toward the Dirac mass at y and λ goes to 0, for all f ∈ H, Jν(f)
converges towards Eν(f). The interest of introducing Jν is that, thanks to the regularization,
the minimization problem is now well-posed:

Proposition 1. Assume that either K > 0 on Td×Td or λ > 0. Then, for all ν ∈ P(Tp×Td),
Jν admits a unique minimizer in H.

In summary, in the whole article, we work under the following conditions.

Assumption 1. V ∈ C∞(TD), D > 3, β > 0, λ > 0 and K ∈ C∞(Td × Td,R+) satisfies (7).
Moreover, either K > 0 or λ > 0.

We now have all the elements to define the reference ABF algorithm in this work, see
Algorithm 1 below.

Remark that, contrary to the cases studied in other theoretical works like [19, 1, 4], in
Algorithm 1, the bias At is piecewise constant in time, with updates at the times tk, k ∈
J1, NupK. This is due to the fact that, as will be detailed in Section 1.2, the bias updates are
numerically demanding in our case, and thus we cannot perform them at each timestep.

We prove in Section 2 the long-time convergence of Algorithm 1:

Theorem 2. Under Assumption 1, let (Qt, Zt, At)t>0 be given by Algorithm 1 (with Nup =
+∞). Then, as t→ +∞, almost surely, νt weakly converges toward µ and

‖∇At −∇A∗‖∞ −→
t→∞

0,

where A∗ is the unique minimizer in H of Jµ. Moreover, A∗ satisfies∫
Td
|∇A(z)−∇A∗(z)|2

(∫
Tp×Td

K(y, z)µ(q, y)dqdy

)
dz

6 4‖∇2A‖∞ sup
y∈Td

∫
Td
|y − z|2K(y, z)dz + 2λ

∫
Td
|∇A(z)|2dz . (10)
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Algorithm 1 ABF algorithm
1: Input:
2: Initial condition (q0, z0) ∈ Tp × Td
3: Brownian motion (B1

t , B
2
t )t>0 on Tp × Td

4: Regularization parameters K, λ
5: Update period Tup > 0, number of updates Nup ∈ N∗, total simulation time Ttot = TupNup

6: Output:
7: Estimated free energy ATtot ∈ H
8: Trajectory (Qt, Zt)t∈[0,Ttot] ∈ C

(
[0, Ttot],Tp × Td

)
9: Begin:

10: Set (Q0, Z0) = (q0, z0).
11: Set A0(z) = 0 for all z ∈ Td.
12: Set tk = kTup for all k ∈ J0, NupK.
13: for k ∈ J1, NupK do
14: Set At = Atk−1

for all t ∈ [tk−1, tk).
15: Set (Qt, Zt)t∈[tk−1,tk] to be the solution of (3) with initial condition (Qtk−1

, Ztk−1
) at

time tk−1.
16: Set Atk to be the minimizer in H of Jνtk given by (6) and (9).

17: end for

18: Return ATtot and (Qt, Zt)t∈[0,Ttot].

Note that (10) implies that, as λ and supy∈Td
∫
Td |y−z|

2K(y, z)dz go to zero, A∗ converges
in H to A (which corresponds to λ = 0 and K(y, z) = δy(z)).

The long-time convergence of a similar ABF algorithm has been established in [1] but in
the case where the empirical measure νt is replaced by the law of the process at time t. Rather
than a self-interacting process (i.e. a single trajectory with memory), this corresponds to a
system of N interacting particles (with no memory), and more precisely to the mean-field
limit as N goes to infinity of this system. Moreover, a result similar to Theorem 2 has been
established in [4] for a closely related self-interacting process, the adaptive biasing potential
algorithm. In addition, in the recent preprint [5], a similar result is established for the ABF
algorithm but when the occupation measure is not unbiased (see the discussion in Section
4.3).

1.2 Tensor approximation

This section focuses on the minimization step of Algorithm 1. Assumption 1 is enforced. Fix
ν ∈ P(Tp × Td). For all f ∈ H, the cost function Jν(f) defined by (9) is equal to

Jν(f) = Cν + (1 + λ)

∫
Td
|Fν(z)−∇f(z)|2θν(z)dz (11)

with some constant Cν independent from f and where, for all z ∈ Td,

θν(z) :=
1

λ+ 1

(
λ+

∫
Tp×Td

K(y, z)dν(q, y)

)
(12)

Fν(z) :=
1

(λ+ 1)θν(z)

∫
Tp×Td

∇yV (q, y)K(y, z)dν(q, y) . (13)
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Note that, under Assumption 1, θν is the density of a probability measure, bounded from
below by (λ + minK)/(1 + λ) > 0. Moreover, since K is smooth and bounded, so are θν
and Fν . Note that neither the additive constant Cν nor the multiplication by 1 + λ affect
the problem of minimizing Jν . As a consequence, the unique minimizer f∗ of Jν on H (see
Proposition 1) is equivalently the unique minimizer of

H 3 f 7→ J̃ν(f) :=

∫
Td
|Fν(z)−∇f(z)|2θν(z)dz. (14)

The gradient of J̃ν at f∗ is the Helmholtz projection in L2(θν) of Fν . The Euler-Lagrange

equation associated to the minimization problem of J̃ν over H is

∇ · (θν (∇f∗ − Fν)) = 0 , (15)

where ∇· denotes the divergence operator. When d is small (d = 2 in [1]), as t increases, the
functions θνt and θνtFνt are updated and kept in memory on a discrete grid of dimension Md

for some M ∈ N∗, and the Euler equation is solved with standard PDE techniques. However
this is not sustainable if one wants to consider a larger number of reaction coordinates. For
this reason, we now present a method to approximate f∗ by a sum of tensor products, namely
by a function fm ∈ H which reads as follows

∀z := (z1, · · · , zd) ∈ Td, fm(z) =
m∑
k=1

d∏
j=1

rk,j(zj)

for some m ∈ N∗ and some functions rk,j : T→ R for 1 ≤ j ≤ d and 1 ≤ k ≤ m. See [14] for
a general overview on tensor methods.

Let g be a simple tensor product function, i.e. a function such that for all z = (z1, · · · , zd) ∈
Td, g(z) =

∏d
j=1 rj(zj) for some r1, · · · , rd ∈ H1(T). Such a simple tensor product function

will be denoted herefater by g =
⊗d

j=1 rj.
If g belongs to H, its (Lebesgue) integral vanishes, which is equivalent to the fact there

exists i ∈ J1, dK such that the (Lebesgue) integral of ri vanishes. This motives the introduction
of the following subspaces of H: for i ∈ J1, dK, define

Σi :=

{
g ∈ H, g =

d⊗
j=1

rj with rj ∈ H1(T) for all j ∈ J1, dK and

∫
T
ri(zi)dzi = 0

}
.

Proposition 3. Under Assumption 1, for all ν ∈ P(Tp × Td), i ∈ J1, dK and f ∈ H, there
always exists at least one minimizer in Σi to the optimization problem

min
g∈Σi
Jν(f + g). (16)

From Proposition 3, the greedy algorithm described in Algorithm 2 below is well-defined.
In Section 3 is established the following:

Theorem 4. Under Assumption 1, let f∗ be the minimizer of Jν in H and fm = Greedy(ν, f0,m)
as given by Algorithm 2 for some ν ∈ P(Tp × Td), f0 ∈ H and m ∈ N. Then

‖fm − f∗‖H1 −→
m→+∞

0 .
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Algorithm 2 Greedy(ν, f0,m)

1: Input:
2: Probability measure ν ∈ P(Tp × Td)
3: Initial guess f0 ∈ H
4: number of tensor terms m ∈ N∗
5: Output:
6: fm ∈ H.

7: Begin:
8: n = 0
9: while n < m do

10: for i ∈ J1, dK do
11: Find gn :=

⊗d
j=1 rn,j a minimizer of g 7→ Jν (fn + g) over g ∈ Σi (i.e. with

rn,j ∈ H1(T) for all 1 ≤ j ≤ d and
∫
T rn,i = 0)

12: Set fn+1 = fn + gn .
13: Increment n← n+ 1.

14: end for
15: end while

16: Return fm.

The interest of Algorithm 2 is that at each iteration, one only has to compute d one-
dimensional functions, which makes it possible to implement even if d is relatively large (say
4 < d < 10). Notice that the price to pay when going from the original problem of minimizing
Jν over H to the problem (16) is that the Euler-Lagrange equations associated to the initial
problem are linear (since Jν is a quadratic functional) whereas the Euler-Lagrange equations
associated to (16) are nonlinear. This is due to the fact that the quadratic functional is
minimized over a non-linear space in (16).

In practice, the problem of minimizing Jν (f + g) over g =
⊗d

j=1 rj ∈ Σi is solved through
the Alternating Least Square method [12], which is a fixed point procedure on the Euler-
Lagrange equation (15): the rj’s are optimized one after the other, the others being fixed,
repeatedly. This amounts to solving a system of one-dimensional elliptic PDEs of the form

∂zj
(
aj∂zjrj

)
(zj)− bj(zj)rj(zj) = cj(zj) (17)

with

aj(zj) =

∫
Td−1

(∏
l 6=j

rl(zl)

)2

θν(z)dz6=j

bj(zj) =
∑
h6=j

∫
Td−1

∣∣∣∣∣∂zh∏
l 6=j

rl(zl)

∣∣∣∣∣
2

θν(z)dz6=j

cj(zj) =

∫
Td−1

(∏
l 6=j

rl(zl)

)
∂zj (Fν,jθν) (z)dz6=j −

∑
h6=j

∫
Td−1

∂zh

(∏
l 6=j

rl(zl)

)
Fν,h(z)θ(z)dz6=j ,

where dz6=j means that all variables except the jth are integrated and Fν,j denotes the jth

component of Fν . If for all y = (y1, · · · , yd), z = (z1, · · · , zd) ∈ Td, K(y, z) = Πd
i=1Ki(yi, zi) for

8



some functions Ki : T× T→ R for all 1 ≤ i ≤ d (like the kernel (8)), for ν = νt given by (6),

(1 + λ)aj(zj) =
∏
l 6=j

‖rl‖2
L2(T) +

∫
TD

(∏
l 6=j

∫
T
r2
l (zl)Kl(yl, zl)dzl

)
Kj(yj, zj)dνt(q, y) ,

which can be computed without computing Fνt(z) and θνt(z) for all z ∈ Td (which would be
improssible in practice). The same holds for bj and cj.

1.3 The tensor ABF algorithm

As already explained above, the main objective of this work is to introduce a new algorithm
to adapt the standard ABF approach to multi-dimensional reaction coordinates. Combining
Algorithms 1 and 2, the Tensor ABF (TABF) algorithm is described in Algorithm 3 below.
Note that, for the sake of clarity, it has been kept relatively simple. In particular, we haven’t
addressed here the question of time and space discretization.

Moreover, the proofs of convergence of Algorithm 1 and Algorithm 2 also have their own
interest. The convergence of Algorithm 1 is based on the so-called ordinary differential equa-
tion method [6], and requires specific contractivity bounds. The convergence of Algorithm 2
is an adaptation of the proof of convergence of greedy algorithms [9], the main difficulty being
to deal with the zero average constraint in H.

The paper is organized as follows. Section 2 is devoted to the proof of Theorem 2. In
Section 3, we prove Theorem 4. Section 4 provides a detailed discussion on practical consid-
erations and possible variations of the algorithm. Finally, some numerical experiments with
the TABF algorithm are reported in Section 5.

Algorithm 3 TABF algorithm
1: Input:
2: Initial condition (q0, z0) ∈ Tp × Td
3: Brownian motion (B1

t , B
2
t )t>0 on Tp × Td

4: Regularization parameters K, λ
5: Update period Tup > 0, number of updates Nup ∈ N∗, total simulation time Ttot = TupNup

6: Number of tensor terms by update m ∈ N∗
7: Output:
8: Estimated free energy ATtot ∈ H
9: Trajectory (Qt, Zt)t∈[0,Ttot] ∈ C

(
[0, Ttot],Tp × Td

)
10: Begin:
11: Set (Q0, Z0) = (q0, z0).
12: Set A0(z) = 0 for all z ∈ Td.
13: Set tk = kTup for all k ∈ J0, NupK.
14: for k ∈ J1, NupK do
15: Set At = Atk−1

for all t ∈ [tk−1, tk).
16: Set (Qt, Zt)t∈[tk−1,tk] to be the solution of (3) with value (Qtk−1

, Ztk−1
) at time tk−1.

17: Set fm = Greedy(νtk , Atk−1
,m) given by Algorithm 2 where νtk is given by (6).

18: Set Atk = fm.

19: Return ATtot and (Qt, Zt)t∈[0,Ttot].
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2 Proof of the long-time convergence

In the whole Section 2 we consider the ABF process (Qt, Zt, At)t>0 obtaind through Algo-
rithm 1 (with Nup = +∞), and Assumption 1 holds.

Lemma 5. For all r ∈ N∗ and all multi-index α ∈ Nd, there exists a constant Cα > 0 such
that, for all t > 0, ‖∂αAt‖∞ 6 Cα.

Proof. Since R+ 3 t 7→ At is piecewise constant, we may assume that t = tk = kTup for some
k ∈ N without loss of generality. Using the notation of Section 1.2, At is then the minimizer
over H of J̃νt defined in (14). Recall that for all f ∈ H,

J̃νt(f) =

∫
Td
|Fνt(z)−∇f(z)|2θνt(z)dz.

Remark that θνt is bounded from below uniformly in t and z by (λ + minK)/(1 + λ) > 0,
and similarly all the derivatives in z of θνt and of Fνt are bounded in L∞(Td) by constants
which depend on K and V but not on t. The Euler-Lagrange equation associated to the
minimization of J̃νt reads

∇ · (θνt∇At) = ∇ · (θνtFνt) . (18)

By elliptic regularity (cf. [2]), At is thus C∞ and, differentiating (18), multiplying it by
derivatives of ∇At and integrating, we classically get by induction that∫

Td
|∂α∇At|2θνt 6 Cα

where α ∈ Nd is any multi-index, for some constant Cα > 0 which does not depend on t.
Conclusion follows from Sobolev embeddings.

Theorem 2 will be a direct corollary of:

Proposition 6. Almost surely, νt
weak−→
t→∞

µ.

The proof of Proposition 6 is postponed to the end of this section. Let us prove that
indeed, given the latter, Theorem 2 holds:

Proof of Theorem 2. By the arguments of the previous proof, for all t ≥ 0, the function
Td 3 z 7→ θνt(z) is bounded and Lipschitz with constants which are uniform in t. Hence, for
any ε > 0, we can find Nε ∈ N∗ and a finite set of points z1, · · · , zNε ∈ Td such that for all
z ∈ Td, there exists iz ∈ J1, NεK such that, for all t > 0, |θνt(ziz)− θνt(z)| 6 ε. The same holds
for θµ. On the other hand, according to Proposition 6, almost surely,

sup
i∈J1,NεK

|θνt(zi)− θµ(zi)| −→
t→∞

0,

so that ‖θνt − θµ‖∞ goes to zero as t → ∞. Similar arguments enable us to obtain the same
results for all the derivatives of θνt and for Fνt and all its derivatives. Note that A∗ is the
minimizer of

J̃µ(f) =

∫
Td
|Fµ(z)−∇f(z)|2θµ(z)dz.

Let t = tn for some n ∈ N∗. The associated Euler-Lagrange equations associated with the two
minimization problems on At and A∗ lead to

∇ · (θµ∇ (At − A∗)) = ∇ · (θνtFνt − θµFµ − (θνt − θµ)∇At) . (19)
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Multiplying this equality by At − A∗, integrating and using the uniform control on ∇At
established in Lemma 5 (and the lower bound on θµ), we get that∫

Td
|∇ (At(z)− A∗(z)) |2dz −→

t→∞
0.

More generally, differentiating (19), multiplying it by derivatives of At − A∗, integrating and
using the uniform controls of the derivatives of At, we obtain by induction that∫

Td
|∇∂α (At − A∗) (z)|2dz −→

t→∞
0

for all multi-index α ∈ Nd. The first statement of Theorem 2 then follows from Sobolev
embeddings.

Finally, inequality (10) stems from the fact that Jµ(A∗) 6 Jµ(A). More precisely, using
that ∫

Td
∇A(y)µ(q, y)dq =

∫
Td
∇yV (q, y)µ(q, y)dq ,

we get that for all f ∈ H, Jµ(f) = Ĵµ(f) +
∫
|∇yV |2dµ−

∫
|∇A|2dµ where

Ĵµ(f) =

∫
Tp×Td×Td

|∇A(y)−∇f(z)|2K(y, z)dzdµ(q, y) + λ

∫
Td
|∇f(z)|2dz.

In other words, Jµ and Ĵµ only differ by an additive constant, so that A∗ is the minimizer of

Ĵµ over H. Then∫
Tp×Td×Td

|∇A(z)−∇A∗(z)|2K(y, z)dzdµ(q, y)

6 2Ĵµ(A∗) + 2

∫
Tp×Td×Td

|∇A(y)−∇A(z)|2K(y, z)dzdµ(q, y)

6 2Ĵµ(A) + 2

∫
Tp×Td×Td

|∇A(y)−∇A(z)|2K(y, z)dzdµ(q, y)

6 2λ

∫
Td
|∇A(z)|2dz + 4

∫
Tp×Td×Td

|∇A(y)−∇A(z)|2K(y, z)dzdµ(q, y)

6 2λ

∫
Td
|∇A(z)|2dz + 4‖∇2A‖2

∞ sup
y∈Td

∫
Td
|y − z|2K(y, z)dz

The rest of the section is dedicated to the proof of Proposition 6, which follows the so-called
ordinary differential equation (ODE) method [6].

2.1 Time change and the ODE method

Following an idea of [4], we introduce the (random) time change:

τ(t) :=

∫ t

0

e−βAs(Zs)ds,

so that

νt =
1

τ(t)

∫ t

0

δQs,Zsτ
′(s)ds =

1

τ(t)

∫ τ(t)

0

δQτ−1(s),Zτ−1(s)
ds .

11



In other words, considering the time-changed process X t :=
(
Qτ−1(t), Zτ−1(t)

)
and its occupa-

tion measure

ν̄t =
1

t

∫ t

0

δXs
ds , (20)

then νt = ν̄τ(t). Since, at a fixed time t > 0, At is smooth and with Lebesgue integral zero,
there always exists z ∈ Td such that At(z) = 0, so that

‖At‖∞ 6
√
d/2‖∇At‖∞ (21)

where we used that
√
d/2 is the diameter of Td. Together with Lemma 5, this implies that in

particular, τ(t) goes to infinity with t.
Denoting St(x) := Aτ−1(t)(z) for all x = (q, z) ∈ Tp × Td, the inhomogeneous Markov

process X solves the SDE

dX t = −eβSt(Xt)∇ (V − St)
(
X t

)
+

√
2β−1eβSt(Xt)dBt , (22)

where (Bt)t>0 is a standard Brownian motion on TD, obtained from (Bt)t>0 through rescaling.
We denote by (Lt)t>0 its infinitesimal generator, defined by: for all ϕ ∈ C2(Tp×Td) = C2(TD)
and all x ∈ Tp × Td,

Ltϕ(x) = lim
h→0

E
(
ϕ(X t+h) | X t = x

)
− ϕ(x)

h

whenever the limit exists. Here,

Ltϕ(x) =

(
−∇ (V − St) (x) · ∇ϕ(x) +

1

β
∆ϕ(x)

)
eβSt(x).

We denote by (P
(t)
s )s>0 the Markov semi-group generated by Lt for a fixed t. Formally,

P
(t)
s = esLt . For all t > 0 the unique invariant measure of Lt is µ (see [4, Proposition 3.1]).

From Lemma 5 and the bound (21), we consider C0 > 0 such that St ∈ BC0 for all t > 0 where

BC0 :=

{
S ∈ C∞

(
TD
)
,

∫
TD
S(x)dx = 0, ‖S‖C2(TD) 6 C0

}
.

The principle of the ODE method is the following: for large values of the time t, the
evolution of ν̄t is slow (because of the t−1 factor in (20)). Hence, for 1� s� t, in principle,
it holds that Su ' St for u ∈ [t, t+ s], so that

ν̄t+s =
t

t+ s
ν̄t +

s

s+ t

(
1

s

∫ t+s

t

δXu
du

)
' t

t+ s
ν̄t +

s

s+ t
µ. (23)

In other words, the evolution of ν̄t approximately follows the deterministic flow

∂tmt =
1

t
(µ−mt) ,

which converges to µ, so that ν̄t (hence νt) should also converge to µ.

Following [6] (to which we refer for more details), we will make rigorous this heuristic. For
t, s > 0, set

εt(s) =

∫ et+s

et

δXu
− µ
u

du. (24)
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It is said that R+ 3 t 7→ ν̄et is an asymptotic pseudotrajectory of the flow

∂tmt = (µ−mt) (25)

if, for all ϕ ∈ C∞(TD) and T > 0,

lim
t→∞

sup
s∈[0,T ]

|εt(s)ϕ| = 0

(cf [6, Proposition 3.5]). Note that (25) admits µ as a unique attractor, in the sense that

dTV (mt, µ) 6 e−tdTV (m0, µ) −→
t→∞

0

for all m0 ∈ P(TD), where

dTV (m1,m2) = sup
A∈B(TD)

|m1(A)−m2(A)| (26)

is the total variation distance on P
(
TD
)
, whose topology is stronger than the weak conver-

gence. In (26), we have denoted by B(TD) the set of borelian subsets of TD.
As a consequence, according to [6, Theorem 3.7], the limit set (i.e. the set of (weak) limits of

extracted sequences) of an asymptotic pseudotrajectory of the flow (25) is necessarily reduced
to the singleton {µ}. In other words, by compactness (since TD is compact, so is P

(
TD
)
), an

asymptotic pseudotrajectory of (25) necessarily converges to µ (in the weak sense).

As a conclusion, Proposition 6 is a corollary of:

Proposition 7. Almost surely, R+ 3 t 7→ ν̄et is an asymptotic pseudotrajectory of (25).

In order to prove this result, we will need some quantitative estimates. Indeed, note that,
for the approximation (23) to hold, the speed of convergence of P (t) toward µ should be
uniform in t. As we will see below, this is a direct consequence of the estimate of Lemma 5.
The approximation also requires that the time evolution of At is controlled in some sense.

2.2 Preliminary estimates

For a fixed S ∈ C∞(TD), consider LS defined for ϕ ∈ C∞(TD) by

LSϕ(x) =

(
−∇ (V − S) (x) · ∇ϕ(x) +

1

β
∆ϕ(x)

)
eβS(x),

which is the infinitesimal generator of the SDE

dXS
t = −eβS(XS

t )∇ (V − S) (XS
t )dt+

√
2β−1eβS(XS

t )dBt .

Denote
(
P S
t

)
t>0

the associated (homogeneous) semi-group and ΓS the associated carré-du-

champs operator, defined for ϕ, ψ ∈ C∞(TD) and all x ∈ TD by

ΓS(ϕ, ψ)(x) :=
1

2
(LS(ϕψ)− ϕLSψ − ψLSϕ) (x) = β−1eβS(x)∇ϕ(x) · ∇ψ(x) ,

and ΓS(ϕ) := ΓS(ϕ, ϕ). By classical elliptic regularity arguments, if ϕ ∈ C∞(TD) then P S
t ϕ ∈

C∞(TD), in particular C∞(TD) is a core for LS, see [3, Section 1.13]. More precisely each
derivative of P S

t ϕ is uniformly bounded over all finite time interval, which ensures the validity
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of the computations in the proofs of the next lemmas. Integrating twice by parts, it can be
easily seen that for all ϕ, ψ ∈ C∞(TD),∫

TD
ϕ(x)LSψ(x)µ(dx) =

∫
TD
ψ(x)LSϕ(x)µ(dx) ,

in other words LS is a self-adjoint operator on L2(µ).

Lemma 8. Let us assume that D ≥ 3. Then, there exists C1 > 0 such that for all S ∈ BC0,
(µ, LS) satisfies a Poincaré inequality and a Sobolev inequality both with constant C1, in the
sense that for all ϕ ∈ C∞(TD),

‖ϕ‖2
L2(µ) 6 C1

∫
TD

ΓS(ϕ)dµ

‖ϕ‖2
Lp(µ) 6 C1

(
‖ϕ‖2

L2(µ) +

∫
TD

ΓS(ϕ)dµ

)
,

where p = 2D
D−2

.

Proof. For S = 0, the first inequality is the classical Poincaré inequality, which holds here
since the density of µ with respect to the Lebesgue measure is bounded above and below away
from zero, see [3, Proposition 5.1.6]. As a consequence, there exists c > 0 such that for all
S ∈ BC0 and ϕ ∈ C∞(TD),

‖ϕ‖2
L2(µ) 6 c

∫
TD
|∇ϕ|2dµ 6 ceβC0

∫
TD

ΓS(ϕ)dµ .

Similarly, from the Sobolev inequality satisfied by the Lebesgue measure on TD [3, Section 6],

‖ϕ‖2
Lp(µ) 6 ‖µ‖2/p

∞ ‖ϕ‖2
Lp(TD)

6 C‖µ‖2/p
∞

(
‖ϕ‖2

L2(TD) + ‖∇ϕ‖2
L2(TD)

)
6 C‖µ‖2/p

∞ ‖µ−1‖2
∞

(
‖ϕ‖2

L2(µ) + ‖∇ϕ‖2
L2(µ)

)
6 CeβC0‖µ‖2/p

∞ ‖µ−1‖2
∞

(
‖ϕ‖2

L2(µ) +

∫
TD

ΓS(ϕ)dµ

)
.

These inequalities, in turn, yield the following estimates:

Lemma 9. There exist C2 > 0 such that, for all S ∈ BC0, t > 0 and ϕ ∈ C∞(TD),

‖P S
t Πϕ‖L2(µ) 6 e−t/C2‖Πϕ‖L2(µ)

‖P S
t ϕ‖∞ 6

C2

min(1, td/2)
‖ϕ‖L2(µ)

‖∇P S
t ϕ‖∞ 6

C2

min(1,
√
t)
‖ϕ‖∞,

with Πϕ := ϕ−
∫
TD ϕdµ.
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Proof. The first estimate is a usual consequence of the Poincaré inequality, see [3, Proposition
5.1.3]. The second one, namely the ultracontractivity of the semi-group, is a consequence of
the Sobolev inequality (see [3, Theorem 6.3.1]). The last one can be established thanks to the
Bakry-Emery calculus (see [3, Section 1.16] for an introduction), by showing that LS satisfies
a curvature estimate, as we now detail. We would like to compare |∇Ptϕ|2 and Pt(ϕ

2). A
seminal idea of the Bakry-Emery calculus is that quantities of the form Θ(Ptϕ) and PtΘ(ϕ),
where Θ is some operator can be linked through the interpolation Pt−sΘ(Psϕ), s ∈ [0, t], so
that Θ(Ptϕ) − PtΘ(ϕ) =

∫ t
0
∂s (Pt−sΘ(Psϕ)) ds. When differentiating with respect to s, we

obtain quantities of the form −2Pt−sΓΘ(Psϕ) for some operator ΓΘ, which is of a form similar
to the interpolation (Θ being replaced by ΓΘ).

More precisely, when Θ(ϕ) = ϕ2, then ΓΘ is the usual carré-du-champ operator, and when
Θ(ϕ) = |∇ϕ|2 we end up with

Γ∇,S(ϕ) =
1

2
LS
(
|∇ϕ|2

)
−∇ϕ · ∇LSϕ ,

for ϕ ∈ C∞(TD). Writing [ϕ, ψ] = ϕψ − ψϕ, we compute

Γ∇,S(ϕ) =
D∑
i=1

(ΓS(∂xiϕ) + ∂xiϕ[∂xi , LS]ϕ)

>
D∑
i=1

[
β−1e−β‖S‖∞|∇∂xiϕ|2 − β−1eβ‖S‖∞|∇∂xi(V − S)||∇ϕ||∂xiϕ|

−β|∂xiS|eβ‖S‖∞|∂xiϕ||∇ (V − S) · ∇ϕ+
1

β
∆ϕ|

]
> −c|∇ϕ|2

for some c > 0 which is uniform over S ∈ BC0 . Now, following [23, Lemma 4], we want to
consider the interpolation between α(t)|∇Ptϕ|2 + (Ptϕ)2 and α(0)Pt|∇ϕ|2 + Pt(ϕ

2) for some
α with α(0) = 0 < α(t). For fixed ϕ ∈ C∞(TD), x ∈ TD and t > 0, we set for all s ∈ [0, t]

Ψ(s) = α(s)P S
t−s|∇P S

s ϕ|2(x) + eβC0P S
t−s
(
P S
s ϕ
)2

(x)

with α(s) = (1− exp(−2ct))/c, so that

∂sΨ(s) = P S
t−s
(
−2α(s)Γ∇,S + α′(s)|∇ · |2 − 2eβC0ΓS

) (
P S
s ϕ
)

(x)

6 (2α(s)c+ α′(s)− 2)P S
t−s|∇P S

s ϕ|2(x) = 0 .

In particular,

α(t)|∇P S
t ϕ|2(x) 6 Ψ(t) 6 Ψ(0) = eβC0P S

t ϕ
2(x) 6 eβC0‖ϕ‖2

∞

which yields the desired estimate.

Lemma 10. There exists C3 > 0 such that for all S ∈ BC0, the operator RS defined for all
ϕ ∈ C∞(TD) by

RSϕ = −
∫ ∞

0

P S
t Πϕdt

satisfies LSRS = RSLS = Π and, for all ϕ ∈ C∞(TD),

‖RSϕ‖∞ + ‖∇RSϕ‖∞ + ‖∆RSϕ‖∞ 6 C3‖ϕ‖∞. (27)
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Proof. We follow the proof of [6, Section 5.2 and Lemma 5.1]. First, from Lemma 9 (and using
the fact that ‖P S

t ϕ‖∞ 6 ‖ϕ‖∞ for all t > 0),∫ ∞
0

‖P S
t Πϕ‖∞dt 6

∫ 1

0

‖Πϕ‖∞dt+

∫ ∞
1

‖P S
t Πϕ‖∞dt

6 2‖ϕ‖∞ + C2

∫ ∞
1

‖P S
t−1Πϕ‖L2(µ)dt

6 2‖ϕ‖∞ + C2

∫ ∞
1

e−(t−1)/C2‖Πϕ‖L2(µ)dt

6 2(1 + C2
2)‖ϕ‖∞ ,

and similarly, using the fact that ‖∇P S
t Πϕ‖∞ = ‖∇P1P

S
t−1Πϕ‖∞ ≤ C2‖P S

t−1Πφ‖∞ for t > 1,∫ ∞
0

‖∇P S
t Πϕ‖∞dt 6

∫ 1

0

C2√
t
‖Πϕ‖∞dt+ C2

∫ ∞
1

‖P S
t−1Πϕ‖∞dt

6 C2

(
2 + 2(1 + C2

2)
)
‖ϕ‖∞ .

In particular RSϕ and ∇RSϕ are well defined in L∞(TD) for ϕ ∈ C∞(TD). Moreover, using
the fact that, from Lemma 9, ‖P S

t Πϕ‖∞ 6 C2e
−(t−1)/C2‖Πϕ‖L2(µ) → 0 as t→ +∞,

LSRSϕ = −
∫ ∞

0

LSP
S
t Πϕdt

= −
∫ ∞

0

∂t
(
P S
t Πϕ

)
dt = Πϕ .

The case of RSLS is similar: since µ is invariant for LS, LSΠ = LS = ΠLS, and thus P S
t ΠLS =

P S
t LSΠ = ∂t(P

S
t Πϕ) for all t > 0.

As a consequence,

|∆RSϕ| 6 eβC0 |eβS∆RSϕ| 6 eβC0
(
‖eβS∇(V − S) · ∇RSϕ‖∞ + ‖Πϕ‖∞

)
6 C3‖ϕ‖∞

for some C3 > 0 uniform over S ∈ BC0 , which yields the desired result.

Lemma 11. There exist C4 > 0 such that for all S1, S2 ∈ BC0 and ϕ ∈ C∞(TD),

‖RS1ϕ−RS2ϕ‖∞ 6 C4‖∇S1 −∇S2‖∞‖ϕ‖∞.

Proof. From RSLS = Π,

(RS1 −RS2)LS1 +RS2 (LS1 − LS2) = 0.

Multiplying this equality by RS1 on the right, and using that RSΠ = RS, we get for all
ϕ ∈ C∞(TD),

(RS1 −RS2)ϕ = RS2 (LS2 − LS1)RS1ϕ .

Conclusion follows from the estimate (27) and the fact that ‖eβS1−eβS2‖∞ 6 C‖∇S1−∇S2‖∞
for some C > 0 uniformly over S1, S2 ∈ BC0 .

Lemma 12. There exists C5 > 0 such that for all k > 1 and ϕ ∈ C∞(TD)

‖RAtk
ϕ−RAtk−1

ϕ‖∞ 6
C5

k
‖ϕ‖∞.
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Proof. From Lemma 5, At ∈ BC0 for all t > 0, so that Lemma 11 applies. It remains to obtain
a bound on ‖∇Atk −∇Atk−1

‖∞. In this proof, to simplify the notation, we write θk = θνtk and
Fk = Fνtk . Denoting by

m :=

∫ tk+1

tk
δ(Qs,Zs)e

βAs(Zs)ds∫ tk+1

tk
eβAs(Zs)ds

and p :=

∫ tk+1

tk
eβAs(Zs)ds∫ tk+1

0
eβAs(Zs)ds

,

it holds that

νtk+1
= (1− p)νtk + pm.

In particular, for some c, c′ > 0, for all z ∈ Td and k ∈ N,

|θk+1(z)− θk(z)| =
p

1 + λ

∣∣∣∣∫
(q,y)∈Tp×Td

K(z, y)(dm(q, y)− dνtk(q, y))

∣∣∣∣ 6 cp 6
c′

k
,

where we used that As ∈ BC0 for all s ∈ [0, tk+1]. The same argument also works for the
derivatives of θνt , for Fνt and its derivatives, so that for any multi-index α ∈ Nd, there exists
a constant Cα such that for all k > 1,

‖∂αFk+1 − ∂αFk‖∞ + ‖∂αθk+1 − ∂αθk‖∞ 6
Cα
k
.

Now, from the Euler equations satisfied by Atk and Atk+1
, we get

∇ ·
(
θk∇

(
Atk − Atk+1

))
= ∇ ·

(
∇Atk+1

(θk+1 − θk)
)
−∇ · (θk+1Fk+1 − θkFk) . (28)

Multiplying this equation by Atk−Atk+1
, integrating and using Lemma 5 and the lower bound

on θk, we get ∫
Td
|∇
(
Atk − Atk+1

)
(z)|2dz 6

c

k2

for some c > 0. Next, differentiating (28), multiplying it by derivatives of Atk − Atk+1
,

integrating and using by induction the previous estimates, we obtain in fact that∫
Td
|∇∂α

(
Atk − Atk+1

)
(z)|2dz 6

cα
k2

for some cα > 0 for all α ∈ Nd, and Sobolev embeddings then yield the conclusion.

2.3 Proof of Proposition 7

The arguments are similar to those of the proof of [6, Theorem 3.6]. To alleviate notations,
we write Rt = RAt and, fixing some ϕ ∈ C∞

(
TD
)
, we set

Gt(x) =
1

t
Rtϕ(x),

for all x ∈ TD. Recall the time-changed process
(
X t

)
t>0

solves (22). Denoting by τk = τ(tk),

Itô’s formula applied on the intervals [τn, τn+1[ yields, for 0 < s < t,

Gt(X t)−Gs(Xs) = Mt −Ms +
∑
k∈N

1τk∈]s,t]
1

τk

(
Rτk −Rτk−1

)
ϕ(Xτk)

+

∫ t

s

(
LuGu(Xu)−

1

u2
Ruϕ(Xu)

)
du
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where Mt is a martingale with quadratic variation 2β−1
∫ t
s
|∇Gu(Xu)|2eβSu(Xu)du.

By definition of Ru, ∫ t

s

LuGu(Xu)du =

∫ t

s

ϕ(Xu)−
∫
ϕdµ

u
du,

so that, recalling the definition (24) of εt(s),

|εt(s)ϕ| =

∣∣∣∣∣
∫ et+s

et
LuGu(Xu)du

∣∣∣∣∣
6 |a1(s, t)|+ |a2(s, t)|+ |a3(s, t)|+ |a4(s, t)|

with

a1(s, t) = Get+s(Xet+s)−Get(Xet)

a2(s, t) =

∫ et+s

et

1

u2
Ruϕ(Xu)du

a3(s, t) =
∑
k∈N

1τk∈]et,et+s]

1

τk

(
Rτk −Rτk−1

)
ϕ(Xτk)

a4(s, t) = Met+s −Met .

Lemma 5 states that At ∈ BC0 for all t > 0 so that, for all s, t > 0, from (27),

|a1(s, t)| 6 2C3e
−t‖ϕ‖∞

|a2(s, t)| 6 C3e
−t‖ϕ‖∞,

and from Lemma 12,

|a3(s, t)| 6 C5‖ϕ‖∞
∑
k∈N

1τk>et
1

kτk
.

From the uniform bound on At, τk grows at least linearly, in the sense there exists r1 > 0 such
that, for all k ∈ N, τk+1 − τk > r1. On the other hand, for the same reason, τk grows at most
linearly, so that τk 6 r2k for some r2. Hence,

|a3(s, t)| 6 C5‖ϕ‖∞
∑
k∈N

r2

(et + r1k)2 6 c‖ϕ‖∞e−t

for some c > 0.
Therefore, for all T > 0, almost surely,

sup
s∈[0,T ]

(|a1(s, t)|+ |a2(s, t)|+ |a3(s, t)|) −→
t→∞

0.

The quadratic variation of Met+s−Met being bounded by 2β−1
(
eβC0C3‖ϕ‖∞

)2
e−t, Doob’s

inequality implies that for all T, δ > 0,

P

(
sup
s∈[0,T ]

|a4(s, t)| > δ

)
6

2

βδ2

(
eβC0C3‖ϕ‖∞

)2
e−t.

This implies

P

(
sup
s∈[0,T ]

|a4(s, t)| > e−
t
4

)
6

2

β

(
eβC0C3‖ϕ‖∞

)2
e−

t
2
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and, by the Borel-Cantelli Theorem, almost surely,

lim sup
t→∞

1

t
log sup

s∈[0,T ]

|a4(s, t)| 6 −1

4
.

At the end of the day, we have proved that, for all ϕ ∈ C∞
(
TD
)

and all T > 0,

lim
t→∞

sup
s∈[0,T ]

|εt(s)ϕ| = 0, almost surely. (29)

Actually, in order to show that R+ 3 t 7→ ν̄t is an asymptotic pseudo-trajectory of the flow
(25), the result we wish to prove is that

almost surely,

(
∀ϕ ∈ C∞

(
TD
)
, ∀T > 0, lim

t→∞
sup
s∈[0,T ]

|εt(s)ϕ| = 0

)
. (30)

Nevertheless, as stated in [6, Proposition 3.5], to get (30), it is sufficient to prove that (29)
holds only for ϕ and T in a countable set of C∞(TD) × R+. This concludes the proof of
Proposition 7, hence of Proposition 6, hence of Theorem 2.

3 Consistency of the tensor approximation

This section is devoted to the proof of Propositions 1 and 3 and Theorem 4. In all this
section, Assumption 1 holds and we write θ = θν , F = Fν , J = Jν for some fixed ν ∈
P(Tp × Td). Recall that F, θ ∈ C∞(Td), that θ is a positive probability density on Td, and

that the minimizers of J in H are exactly the minimizers of J̃ in H, where for all f ∈ H,

J̃ (f) =

∫
Td
|F (z)−∇f(z)|2θ(z)dz ,

the link between J and J̃ begin given by (11).
Since θ is bounded from above and below by positive constants, the weighted spaces

L2(Td; θ) and H1(Td; θ) are equal to the flat spaces L2(Td; dz) and H1(Td; dz). We endow
H (whose definition is given in (4), with the norm

‖f‖ =

√
(1 + λ)

∫
Td
|∇f(z)|2θ(z)dz,

which is indeed a norm, equivalent to the usual H1 norm from the Poincaré-Wirtinger inequal-
ity: there exists C > 0 such that for all f ∈ H,∫

Td
f 2(z)θ(z)dz 6 ‖θ‖∞

∫
Td
f 2(z)dz

6 C‖θ‖∞
∫
Td
|∇f(z)|2dz

6 C‖θ‖∞‖θ−1‖∞
∫
Td
|∇f(z)|2θ(z)dz.

The scalar product associated with ‖ · ‖ is denoted by 〈·〉. The choice of such a norm is
motivated by the fact that, denoting by J ′ the differential of J , then for all f, g ∈ H,

J (f) = J (0) + J ′(0) · f + ‖f‖2

J ′(f) · g = J ′(0) · g + 2〈f, g〉 .
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Proposition 1 is then a direct consequence of the strict convexity of J . The unique minimizer
f∗ of J over H satisfies

∀g ∈ H ,

∫
F (z) · ∇g(z)θ(z)dz =

∫
∇f∗(z) · ∇g(z)θ(z)dz

or equivalently

∀g ∈ H , J (g) = J (f∗) + ‖f∗ − g‖2 . (31)

Proof of Proposition 3. Let f ∈ H and i ∈ J1, dK. If J (f) = inf{J (f + g) , g ∈ Σi} then the
result is correct since 0 ∈ Σi is a minimizer over Σi. Suppose now that 0 is not a minimizer,
i.e. that J (f) > inf{J (f + g) , g ∈ Σi} and consider a minimizing sequence (g(l))l∈N in Σi

such that J
(
f + g(l)

)
converges to inf{J (f + g) , g ∈ Σi} as l goes to infinity. For l large

enough, J
(
f + g(l)

)
< J (f) so that g(l) 6= 0, and thus up to an extraction we suppose that

g(l) 6= 0 for all l ∈ N. Moreover the sequence is bounded in H1 and thus, up to the extraction
of a subsequence, we suppose that it weakly converges in H1 to some g∗ ∈ H. The function
H 3 g 7→ J (f + g) being convex on H, it is weakly lower semi-continuous, so that

J (g∗) 6 inf
g∈Σi
J (f + g) .

For all l ∈ N, there exist r
(l)
1 , · · · , r

(l)
d ∈ H1(T) such that g(l) =

⊗d
j=1 r

(l)
j . Since g(l) 6= 0, we

can normalize the r
(l)
j ’s so that ‖r(l)

j ‖L2(T) = 1 for all j 6= i and l ∈ N. As a consequence, up to
the extraction of a subsequence, for all 1 ≤ j 6= i ≤ d, there exists r∗j ∈ L2(T) such that the

sequence (r
(l)
j )l∈N weakly converges to r∗j in L2(T). Now, since the sequence g(l) is bounded in

H and

‖∇g(l)‖2
L2(Td) =

d∑
j=1

‖∂zjr
(l)
j ‖2

L2(T)

∏
h6=j

‖r(l)
h ‖

2
L2(T),

we get that the sequence (r
(l)
i )l∈N is bounded in H1(T) (since

∫
T r

(l)
i = 0 for all l ∈ N). Thus,

up to the extraction of another subsequence, the sequence (r
(l)
i )l∈N weakly converge in H1(T)

to some r∗i ∈ H1(T) such that
∫
T r
∗
i = 0. From [17, Lemma 2], (g(l))l∈N converges in the

distributional sense to
⊗d

j=1 r
∗
j . Thus, g∗ =

⊗d
j=1 r

∗
j and since g∗ 6= 0, this implies that for all

1 ≤ j ≤ d, r∗j 6= 0. Finally, since

‖∇g∗‖2
L2(Td) =

d∑
j=1

‖∂zjr∗j‖2
L2(T)

∏
h6=j

‖r∗h‖2
L2(T)

is a finite quantity, this implies that for all 1 ≤ j 6= i ≤ d,

‖∂zjr∗j‖L2(T) ≤
‖∇g∗‖2

L2(Td)∏
h6=j ‖r∗h‖2

L2(T)

< +∞,

and thus r∗j ∈ H1(T). This implies that g∗ ∈ Σi and yields the desired result.

Remark 13. The problem would be ill-posed if we were to try and minimize J (f + g−
∫
Td g)

over all g ∈ Σ := {r1 ⊗ · · · ⊗ rd, rj ∈ H1(T) for all 1 ≤ j ≤ d}. This is the reason why we
introduced the condition that one of the rj’s has zero mean. Indeed, consider the situation where
d = 2, f = 0 and F (z) = (a′(z1), b′(z2)) for some smooth functions a, b : T → R with zero
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mean. Then, the minimum of J over H is 0, and only attained at f ∗(z1, z2) = a(z1) + b(z2),
which is not of the form g−

∫
Td g for some g ∈ Σ. Nevertheless, the sequence (g(l))l∈N∗ defined

by: for all l ∈ N∗, g(l) = r
(l)
1 r

(l)
2 with

r
(l)
1 (z1) = 1 +

a(z1)

l
, r

(l)
2 (z2) = l + b(z2)

is a minimizing sequence. Indeed, the sequence
(
g(l) −

∫
Td g

(l)
)
l∈N∗ weakly converges to f ∗. In

other words, the set
{
g −

∫
Td g, g ∈ Σ

}
is not weakly closed in H.

Proposition 3 proves that all the iterations of Algorithm 2 are well-defined. In the following,
we consider a sequence (fn)n∈N given by the latter and gn = fn+1− fn for n ∈ N. The general
idea of the proof of Theorem 4 is that, if the sequence (fn)n∈N converges to some f∞ in H,
it holds that J ′(f∞) · g = 0 for all g ∈ ∪di=1Σi, and a density argument enables to conclude.
Nevertheless, remark that Σi is not a vector space and that its elements all have null integral,
so that one should be careful. In the following, we essentially adapt the arguments of [9].

Lemma 14. For all g ∈ ∪di=1Σi and n ∈ N,

|J ′(fn) · g| 6 6‖g‖
d−1∑
j=0

‖gn+j‖.

Proof. Let i ∈ J1, dK be such that g ∈ Σi. Let ni ∈ Jn, n + d − 1K be such that gni ∈ Σi. We
bound, first,

|J ′(fn) · g| 6 |J ′(fni) · g|+ 2 |〈g, fni − fn〉| .

The second term of the right hand side is bounded by 2‖g‖
∑ni−1

j=n ‖gj‖. To deal with the first
one, note that, even though gni is a minimizer of J (fni + ·) over Σi, it is not necessarily true
that J ′(fni + gni) · g = 0, since Σi is not a vector space. We follow the proof of [9, Proposition
3.3]. By convexity of

t ∈ R 7→ ψ(t) := J (fni + g + t(gni − g)) ,

and since t = 0 minimizes ψ(t), we get

ψ′(0) 6 ψ(1)− ψ(0) 6 0,

which reads

J ′ (fni + g) · g > J ′ (fni + g) · gni .

Hence,

−J ′(fni) · g = −J ′(fni + g) · g + 2‖g‖2

6 −J ′(fni + g) · gni + 2‖g‖2

6 −J ′(fni + gni) · gni + 2〈gni , gni − g〉+ 2‖g‖2.

Now, 1 being a minimizer over R of t 7→ J (fni + tgni), J ′(fni + gni) · gni = 0, so that

−J ′(fni) · g 6 2
(
‖gni‖2 + ‖g‖‖gni‖+ ‖g‖2

)
.

When applied to g̃ = ±‖gni‖g/‖g‖, this inequality yields

|J ′(fni) · g| 6 6‖g‖‖gni‖,

which concludes the proof.
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Proposition 15. Let f∗ be the unique minimizer of J over H. Then

‖fn − f∗‖ −→
n→∞

0.

Proof. As in the previous proof,

0 = J ′(fn + gn) · gn = 2(1 + λ)

∫
∇gn · (∇fn+1 − F )θ = 0

for all n ∈ N, so that,

J (fn)− J (fn+1) = J (fn+1 − gn)− J (fn+1) = ‖gn‖2. (32)

In particular, since (J (fn))n>0 is a decreasing sequence bounded from below,∑
n>0

‖gn‖2 <∞. (33)

Together with Lemma 14 and the fact J ′(f∗) = 0, this implies that for all g ∈ Span
(
∪di=1Σi

)
,

2〈f∗ − fn, g〉 = J ′(f∗) · g − J ′(fn) · g −→
n→∞

0.

Now, for all r1, · · · , rd ∈ C∞(T), denoting by h :=
⊗

ri ∈ C∞(Td) (note that we do not have
necessarily that

∫
Td h = 0), we can write

h−
∫
Td
h =

d∑
j=1

(
rj −

∫
T
rj

)(∏
l<j

∫
T
rl

)∏
l>j

rl ,

which proves that h−
∫
Td h ∈ Span

(
∪di=1Σi

)
. As a consequence,

(1 + λ)

∫
Td
θ∇(f∗ − fn) · ∇h = 〈f∗ − fn, h−

∫
Td
h〉 −→

n→∞
0 ,

As a consequence, the limit f∞ of any convergent (in the weak sense in H) subsequence of
(fn)n∈N necessarily satisfies that ∫

Td
θ∇(f∗ − f∞) · ∇h = 0,

for any tensor product function h =
⊗

ri, with ri ∈ C∞(T) for all 1 ≤ i ≤ d. By [9,
Lemma 2.1], this implies that f∞ = f∗. On the other hand, since (‖fn‖)n∈N is bounded, all its
subsequences admits weak convergent subsequences, and the fact they all have the same limit
f∗ proves that the whole sequence (fn)n∈N weakly converges in H to f∗. In particular

〈f∗ − fn, f∗〉 −→
n→∞

0. (34)

Thus, it only remains to prove that (〈f∗ − fn, fn〉)n∈N also converges to zero as n goes to
infinity to obtain the strong convergence of the sequence (fn)n∈N to f∗ in H. From Lemma 14,

2|〈f∗ − fn, fn〉| = |J ′(fn) · fn|

6
n∑
k=0

|J ′(fn) · gk|

6 6

(
n−1∑
k=0

‖gk‖

)
n+d−1∑
j=n

‖gj‖

6 6

√√√√ndan

∞∑
k=0

‖gk‖2.
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with an =
∑n+d−1

j=n ‖gj‖2. Using (33), since
∑

n∈N an ≤ d
∑

n∈N ‖gn‖2 < ∞, there exists an
extracted subsequence (nk)k>1 such that (nkank)k≥1 converges to 0 as k goes to infinity. As
a consequence, (〈f∗ − fnk , fnk〉)k≥1 goes to zero as k → ∞, and thus so does (‖fnk − f∗‖)k≥1

by (34). Finally, from (31), the sequence (‖fn − f∗‖)n∈N is non-increasing, so that the whole
sequence goes to zero. Hence the result.

4 Discussion and variations

For the sake of clarity, the TABF algorithm defined in Section 1.3 has been kept relatively
simple, and there is obviously room for many variations or fine-tuning. We list here a few of
them.

4.1 Extended ABF

Consider general reaction coordinates ξ : TD → M where M is a submanifold of Rd or Td.
In the Extended ABF (EABF) algorithm introduced in [13] (see also [21]), the state space is
extended to TD ×M with the addition of auxiliary variables (or fictitious particles) z ∈ M,
and the potential V on TD is extended to a potential Ṽ on TD ×M as

Ṽ (q, z) = V (x) +
1

2σ2
(distM (ξ(q), z))2 , ∀(q, z) ∈ TD ×M,

for some small parameter σ > 0, where distM stands for the distance on M. The reaction
coordinates on the extended space are then defined by ξ̃(q, z) = z, which means the framework
considered in the present paper is general for the EABF algorithm. If (Q,Z) is distributed
according to µṼ ,β, the law of Z is obtained from the law of ξ(Q) through a Gaussian convolution
of variance σ2/β. There are several practical advantages to EABF:

• In the potential Ṽ , in the case where distM is an Euclidian distance, the zi’s for i ∈ J1, dK
appear in separate terms of a sum, they are not directly coupled. As a consequence, in the
EABF case, µA,β should be, in some sense, closer to the product of its marginal (namely,
at equilibrium, the Zi’s should be closer to be independent) than in the non-extended
ABF case. In [13], this was a crucial point since the density µA,β was approximated by a
tensor product. But even in our case where the approximation as a sum of tensor product
is made at the level of A, we can expect this form of Ṽ to improve the approximation.

• After convolution, the so-called mean-force ∇zA is smoother than the initial mean force
in the non-extended ABF case. Since it varies less, its estimation is expected to be
easier.

That being said, the tensorized ABF introduced above can also be straightforwardly extended
to a general ABF framework, without extended coordinates.

4.2 Non-periodic reaction coordinates.

In general, M may be different from Td. If it has boundaries, for instance if M = [0, 1]d,
the definition of the algorithm is the same except that the diffusion (3) is reflected at the
boundaries of M. The proof of well-posedness and convergence of the tensor algorithm, i.e.
Theorem 4, is unchanged. The proof of the long-time convergence of the idealized algorithm,
i.e. Theorem 2, is similar up to technical considerations in particular to take into account
boundary conditions in Section 2.2.
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Moreover, M may not be compact, for instance M = Rd. Since the Lebesgue measure
has not a finite mass, a confining biasing potential has to be added to the adaptive biasing
potential, see [19, Section 1.2], in which case the law of ξ(Xt) does not converge to a uniform
law (flat histogram) but to a target unimodal law on Rd.

4.3 Real implementation.

The algorithm really implemented for the numerical experiments in Section 5 differs from the
theoretical Algorithm 3 in the following points:

1. Time and space are discretized. The SDE (3) is replaced by an Euler-Maruyama scheme
with some timestep δt and the time integral in (6) is replaced by a discrete sum with a
timestep ∆t (not necessarily small; it can be of the order of the decorrelation length of the
process (Qt, Zt)t>0). The one-dimensional functions in the tensor terms are restricted to
be continuous piecewise linear, determined by their value on a discrete grid with q ∈ N∗
points, so that solving (17) amount to solve a q × q linear system. In particular, the
discrete space interpolation plays a role similar to the regularization kernel K which is
no more necessary, hence is discarded.

2. In fact, it is not necessary to re-weight the occupation distribution, namely (6) can be
replaced by νt = 1/t

∫ t
0
δ(Qs,Zs)ds. In that case, νt is expected to converge to µV−Ã∗,β

for some Ã∗ instead of µV,β but the conditional law of Q given Z = z is the same for
these two laws. Since the free energy only depends on these conditional laws, At is still
expected to converge to Ã∗, that should be close to the true free energy in a sense similar
to (10). This is clear in the mean-field limit of the algorithm, where no regularization is
needed so that Ã∗ = A (see [19]). It is more difficult to establish for the self-interacting
ABF process, but in parallel of the present paper it has been done in [5]. We tried
numerically both cases, and the results were similar. The results presented in Section 5
are obtained with the full (non reweighted) occupation distribution.

3. Instead of a single particle, in practice, several replicas of the process (3) are simulated
in parallel. Denoting N the number of replicas and (Qi

t, Z
i
t)t>0 the ith replica, i ∈ J1, NK,

the total empirical distribution of the system is

ν̃N,t =
1

Nbt/∆tc

N∑
i=1

bt/∆tc∑
k=1

δ(Qik∆t,Z
i
k∆t)

. (35)

The replicas all use the same bias At obtained from this empirical distribution by mini-
mizing Jν̃N,t at times t = tk = kTup.

4.4 Other possible simple variations.

1. From the biased trajectory (Qt, Zt)t>0 provided by the TABF algorithm, in order to
compute expectations with respect to the target Gibbs measure µ = µV,β, an alternative
to the reweighting step (2) is the following. Remark that only the Z variable is biased, so
that for all z ∈ Td, the conditional expectations

∫
Tp f(q, z)µ(q, z)dq/

∫
Tp µ(q, z)dq can be

estimated without re-weighting. On the other hand, the marginal law of Z is estimated
by exp(−βATtot)/

∫
Td exp(−βATtot(z))dz.

2. The bias update period Tup and the number m of tensor products added at each update
in Algorithm 3, instead of having fixed values, could be adaptively chosen. For instance,
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the bias could be updated when the histogram of the reaction coordinates have reached
some stability, and m could be the lowest integer n ∈ N such that Jν(Atk + fn−d) −
Jν(Atk + fn) 6 ε for some threshold ε > 0.

3. A time-dependent weight in the definition (6) of νt (or, in practice, in (35) for ν̃N,t) can
be added in such a way that old samples have less influence than new ones since they
are more biased toward the initial distribution.

4. The regularization kernel K and parameter λ may depend on time. Indeed, as time
goes, the size of the sample increases. Since the problem of minimizing Jνt is in practice
solved on a finite dimension space, for a time large enough the regularization is actually
not necessary anymore and the minimization problem with K(z, y) = δz(y) and λ = 0
is well-posed.

5. It is possible to use the tensor approximation only as a correction of the classical ABF,
or more precisely of the Generalized ABF (GABF) algorithm proposed in [27] where the
bias is just a sum of one-dimensional functions. Namely, for all time t > 0, for j ∈ J1, dK,
let

αj,t(zj) =

∫
Tp×Td

∂ykV (q, y)K(yj, zj)dνt(q, y)

βj,t(zj) =

∫
Tp×Td

K(yj, zj)dνt(q, y) .

These functions can be recorded on d one-dimensional grids and are easily updated
on the fly. Denoting γt,j(zj) = 1βj,t(zj)>sαj,t(zj)/βj,t(zj) for some burn-in time s > 0,
let At,j(zj) =

∫ zj
0
γt,j(z)dz if the jth reaction coordinate zj lies in R and At,j(zj) =∫ zj

0
γt,j(u)du−zj

∫ 1

0
γt,j(u)du if zj lies in T (so that, in both cases, ∂zjAt,j is the Helmoltz

projection in L2(dzj) of γt,j). Then, at time t, in the dynamics (3), use the bias∇zAt with

At(z) =
∑d

j=1Atk,j(zj) + fm(z) where fm is a tensor approximation obtained through

Algorithm 2 of the minimizer of H 3 f 7→ Jνtk (f −
∑d

j=1 Atk,j), where tk = sup{tk′ <
t, k′ ∈ N} is the last update time.

6. For k ∈ N+, denote by J λ
k the function given by (9) for some λ > 0 with ν = νtk . Rather

than setting Atk to be the minimizer of J λ
k , we can set it to be Atk−1

+ f where f is the
minimizer of

H 3 f 7→ J 0
k

(
Atk−1

+ f
)

+ λ

∫
Td
|∇zf(z)|2dz , (36)

the difference being that Atk−1
does not appear in the last regularization term any more.

Note that, when λ = 0, there is no difference. When λ > 0, the theoretical results of
Section 3, i.e. the well-posedness of the tensor approximation, can be straightforwardly
adapted. The long-time behaviour study of Section 2 should be similar, although a bit
more troublesome since Atk would not depend only on the empirical distribution ηtk but
also on the previous bias Atk−1

. On the other hand, remark that 0 is a minimizer of
(36) if and only if Atk is a minimizer of J 0

k . As a consequence, the long-time limit of
At should be the minimizer of Jµ with λ = 0 which, in view of (10), advocates for this
alternative form of cost function.

7. Since the bias is stored in memory in a tensor form, it is possible to use at some times
a compression algorithm (see [11]) to reduce the number of tensor terms, if needed.
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4.5 Some limitations and perspectives.

A practical limitation observed in the algorithm is the following. Recall that d is too large
to keep in memory the empirical measure on a grid by simply recording how many times
each d-dimensional cell has been visited by the process, as in the classical ABF algorithm.
Instead, the sequence (Zk∆t,∇zV (Qk∆t, Zk∆t))k∈N is kept in memory for some ∆t > 0, and
thus computing an expectation with respect to νt has a numerical cost proportional to t.
Such integrals are computed when solving the one-dimension equations (17), which have to
be solved repeatedly at each addition of a tensor term to the bias. As t grows, the update
of the bias gets numerically more expensive. We list here some possible directions to address
this question. The analysis of these variations is beyond the reach of the present work.

1. At the beginning of Algorithm 2, a clustering or quantization algorithm (see [25]) can
be used to reduce the memory (Zk∆t,∇zV (Qk∆t, Zk∆t))k∈J1,tn/∆tK to fewer points.

2. Another way to deal with this problem would be to use a fixed small size for the memory.
For instance, at an update time tk, the empirical measure used to define Jν̄tk could be

ν̄tk =

(∫ tk

tk−l

e−βAs(Zs)ds

)−1 ∫ tk

tk−l

δ(Qs,Zs)e
−βAs(Zs)ds

for some small l ∈ N∗, say l = 1. In that case, in order to expect a long-time convergence
of the bias, following classical stochastic algorithms, we would define the new bias as
Atk = Atk−1

+ γkfk where fk is (a tensor approximation of) a minimizer over H of

H 3 f 7→ Jνtk (Atk +f) and (γk)k∈N is a positive sequence with γk → 0 and
∑k

l=1 γl →∞
as k →∞.

3. Finally, a third way to deal with the memory management as time increases could be to
use a stochastic gradient descent when solving the one-dimensional partial differential
equation (17). In other words, when optimizing ri for some 1 ≤ i ≤ d, instead of
computing averages over all steps l ∈ J1, tk/∆tK, only use an approximation of νtk by
picking a random (and comparatively small) set of steps among J1, tk/∆tK. Then only
an estimation of the gradient of H1(T) 3 ri 7→ Jtk(f +

⊗d
j=1 rj) is computed, which is

exactly the settings of the stochastic gradient descent.

A second possible limitation is the following. Note that, as the number of reaction coor-
dinates increases, we can expect that, at some point, the biasing scheme becomes unefficient.
Indeed, by flattening the energy landscape, we replace the initial sampling problem (that was
mainly restricted to low-energy regions, which form a low-dimensional manifold) by the sam-
pling of the uniform measure on some hypercube, which is not so easy. In some sense, following
the definitions of [18], at some point, energy barriers are replaced by entropic ones. Moreover,
the variance of the estimator (2) increases due to the exponential weights. As a consequence,
as d increases, a partial biasing with Vbias,t = θAt ◦ ξ for some θ ∈ (0, 1) may be more appro-
priate than the full biasing (i.e. θ = 1). At the biased equilibrium, if At = A is the true free
energy, the marginal law of the reactions coordinates is thus µ(1−θ)A,β, i.e. the temperature
is increased. Then the choice of θ such that this measure satisfies a Poincaré inequality with
minimal constant (which means the corresponding overdamped Langevin process mixes the
fastest) may not be θ = 1.
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5 Numerical experiments

Let us fix some details and parameters that will hold for the different examples below. In this
section, the modifications discussed in Section 4.3 are enforced.

The one-dimensional functions rn,j are stored for all n ∈ N and 1 ≤ j ≤ d on a discrete

grid with M = 30 points, so that the minimization of functions of the form
⊗d

j=1 rj 7→
Jνt(f +

⊗d
j=1 rj) is restricted to tensor products of one-dimensional continuous piecewise

linear functions on this grid, and the Euler-Lagrange equations (17) are replaced by M ×M
linear systems. This discretization replaces the regularization by a kernel K, which is no more
necessary. The process (3) is discretized with a time-step δt = 25.10−5, while the time integral
in the empirical measure νt defined in (6) is discretized with a time-step ∆t = 20δt. In other
words, the reaction coordinates and the associated local mean forces are recorded in memory
only every 20 steps of the Euler scheme. Moreover, N independent replicas of the processes
are run in parallel and the occupation measure used to defined the bias is ν̃N,t given by (35).
The update times tk of the bias are fixed at tk = kT , with T a multiple of ∆t and the number
of tensor terms gn added at each update time is fixed with value m.

5.1 A low dimensional example

We start to test the method on a toy model, with N = 30 replicas, a bias update period of
T = 100∆t, a regularization parameter λ = 10−5, and m = 8 tensor products added at each
update. The reaction coordinates are Euclidian coordinates, more precisely ξ(x) = (x1, x2),
so that we don’t introduce any additional extended coordinate.

The dimensions are D = 3, d = 2, particles start at (0, 0, 0) and

V (x1, x2, x3) = − sin(3x1) sin(x2) cos(x3 − 1) + cos(3x2 + 2)(0.5 + cos(x3 − 2))

+ 2 sin(2x1 + 0.5) cos(x3)− 5 cos(x1) cos(x2) cos(x3 + 1) .

This potential has the following properties: it is not a tensor product and yields a metastable
process but, since V (x1, x2, x3) = ψ(x1, x2) cos(x3 + ϕ(x1, x2)) for some functions ψ and ϕ,
there is no metastability in the orthogonal space for fixed x1, x2.

The results are given in Figures 1 and 2 (for β = 1) and 3 and 4 (for β = 5). In both
cases, the theoretical free energy is successfully computed and the histograms of the reaction
coordinates is eventually flat. This is a bit slower with the inverse temperature β = 5, since
the initial metastability is very strong. As can be seen in Figure 4, at that temperature and
in the same times, a non-biased process is stuck in its initial well.

5.2 Polymer ring in solvent

We now consider a system inspired from [1]. The system is constituted of two types of particles,
solvent particles, and polymer particles. The polymer particles interact through a potential
made precise below to form a ring. The reaction coordinates are the bond lengths between
consecutive polymer particles. This gives a large dimensional problem, for which the total
dimension and the number of reaction coordinates are easily prescribed, and moreover where
the reaction coordinates should exhibit some correlations (if it wasn’t the case, then the TABF
algorithm would not give better results than GABF [27]).

In a two-dimensional periodic box, we consider D/2 = 100 particles among which d (labeled
from 1 to d) form a polymer and the others are solvent particles. The length of the box is
L =

√
D/2, to ensure a concentration independent from D. Each pair of particles that involves
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Figure 1: For β = 1, left and middle: estimated free energy respectively at t = 1 and t = 30.
Right: theoretical free energy.

Figure 2: For β = 1, cumulated histograms of the reaction coordinates at t = 30 respectively
for the TABF algorithm (left) and a non-biased process (right).

Figure 3: For β = 5, left and middle: estimated free energy respectively at t = 10 and t = 100.
Right: theoretical free energy.

at least one solvent particle interacts through the purely repulsive WCA pair potential, which
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Figure 4: For β = 5, cumulated histograms of the reaction coordinates at t = 100 respectively
for the TABF algorithm (left) and a non-biased process (right).

is the Lennard-Jones potential truncated at its minimum, namely

VWCA(r) = ε1r6r0

(
1 +

(σ
r

)12

−
(σ
r

)6
)

where r denotes the distance between the two particles, ε = 1, σ = 0.5 and r0 = 21/6σ.
Each pair of consecutive particles in the polymer ring (where the dth and first particles are
considered to be consecutive, closing the loop) interacts through a double well potential

VDW (r) = h

(
1− (2r − 2r1 − ω)2

ω2

)2

,

where r1 = r0, ω = 1 and h = 3. The minimum of VDW is attained at r = r1 (compact state)
and r = r1 + w (stretched state). Finally, each triplet of consecutive particles in the polymer
also interacts through the angle θ they form with the potential

VA(θ) =
1

2
(cos(θ)− cos(θd))

2

with an equilibrium angle θd = π(1 − 2/d) that ensures that the total angular potential is
minimized when the polymer particles form a regular polygon.

There are d reaction coordinates, which are the distances between two consecutive polymer
particles. Following Section 4.1, the interaction between an extended reaction coordinate z
and the corresponding distance r in the system is given via the extended potential

VE(z, r) =
1

2δ

(
z − r − r1

w

)2

for δ = 0.01. The scaling ensures that the minimum of VE(z, r) + VDW (r) is attained at
z = (r − r1)/w ∈ {0, 1}. Moreover, in line with Section 4.2, the extended variable is confined
in [ξmin, ξmax]

d by orthogonal reflection at the boundary, with ξmin = −0.2 and ξmax = 1.2.
The total energy of the (extended) system is thus, for (q, z) ∈ (LT)D × [ξmin, ξmax]

d,

V (q, z) =

D/2∑
i=d+1

∑
j<i

VWCA (|qi − qj|) +
d∑
i=1

VE (zi, |q̃i+1 − qi|)

+
d∑
i=1

VDW (|qi − q̃i+1|) +
d−1∑
i=1

VA

(
arccos

(
q̃i+1 − qi
|q̃i+1 − qi|

· q̃i+2 − q̃i−1

|q̃i+2 − q̃i+1|

))
,
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Figure 5: The slow motions of the system are the transitions of each bond between two
consecutive particles of the polymer from its compact state to its stretched state.

where q̃i = qi for all i ∈ J1, dK and q̃d+j = qj for j = 1, 2. Initially, the polymer is in a compact
state, i.e. the distances between two consecutive of its particles are at distance r1, the angles
are θd and all the extended variables (zi)i∈J1,dK are at 0. For this model, we use the variant
described in point 5 of Section 4.4 namely, following the GABF algorithm, we keep in memory
one dimensional free energies on a grid and we use the tensor approximation as a correction
of this initial guess. There are N = 50 replicas, the update period, regularization parameter,
and inverse temperature are respectively T = 104∆t, λ = 0.05 and β = 1, and at each update,
m = 4d tensor products are added.

The free energy is expected to be close to a sum of one-dimensional double well potentials,
with minima attained at points close to 0 and 1. Nevertheless the angular force should favor
configurations where the consecutive distances in the polymer are close. This fact cannot be
grasped by the GABF algorithm alone, for which reaction coordinates are treated indepen-
dently one from the others.

The results are presented in Figure 6 for d = 3 and Figures 7 and 8 for d = 5. In Figure 6,
we see that indeed the one-dimensional free energies recovered by the GABF algorithm have
two wells approximately at 0 and 1, and that the non-independent part of the free energy has
the following effect: when z3 = 0, the well (0, 0) is favored, when z3 = 1 the same goes for
(1, 1), and when z3 is intermediate the landscape is flatter and the two wells {z1 = z2 = x}
with x ∈ {0, 1} are favored with respect to the wells (0, 1) and (1, 0). The result is similar
in Figure 7, even though the quality of the estimation is lower for z3 = z4 = z5 = 0.5, which
is to be expected as this lies in a very low probability area (since 0.5 is the saddle point of
the two well potential). This shows that the TABF algorithm is able to recover non-trivial
correlations between reaction coordinates.
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[4] M. Benäım and C.-E. Bréhier. Convergence of adaptive biasing potential methods for
diffusions. C. R. Math. Acad. Sci. Paris, 354(8):842–846, 2016.
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