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Abstract: We propose a computational paradigm where off-the-shelf optical devices can be
used to image objects in a scene well beyond their native optical resolution. By design, our
approach is generic, does not require active illumination, and is applicable to several types of
optical devices. It only requires the placement of a spatial light modulator some distance from
the optical system. In this paper, we first introduce the acquisition strategy together with the
reconstruction framework. We then conduct practical experiments with a webcam that confirm
that this approach can image objects with substantially enhanced spatial resolution compared to
the performance of the native optical device. We finally discuss potential applications, current
limitations, and future research directions.

1. Introduction

The resolution of an imaging system, i.e., its ability to separate points that are located at small
angular positions, is limited by the density of the sensors and by diffraction. Following advances in
signal processing and computer science, computational approaches have been proposed to address
cases where the number of sensors is the limiting factor. In particular, the compressed-sensing
framework allows images to be reconstructed from substantially fewer sensors than defined by
the Shannon-Nyquist sampling limit [1, 2]. A practical implementation of compressed sensing
is seen in the single-pixel camera, where a scene is imaged based on a single detector [3].
Applications of single-pixel imaging include microscopy [4], terahertz imaging [5], fluorescence
lifetime imaging [6], time-resolved hyperspectral imaging [7], Raman imaging [8], and phase
imaging [9]—see [10] for a recent review. In parallel to this trend, however, the spatial density of
sensors has increased substantially, with native camera resolutions in standard mobile phones now
exceeding ten megapixels. In most consumer and professional optical devices, computational
methods that compensate for a lack of sensors are not critical.

The resolution of an imaging device is not only limited by the density of the sensors, but also
by the diffraction that occurs inside the optical system. This physical limit has been extensively
addressed in fluorescence microscopy. With the advent of super-resolution techniques, different
technologies are now available, each of which comes with several variants [11]. These methods
rely on complex illumination schemes (e.g., stimulated emission depletion [12]) or photocontrol
of the sample (e.g., photoactivated localization microscopy [13], stochastic optical reconstruction
microscopy [14]), and they are tailored to fluorescence imaging. More generic resolution-
enhancement techniques have also been developed for non-fluorescent objects (e.g., digital
holography [15], synthetic-aperture microscopy [16], Fourier ptychography [17]). However,
when the object is too far away to be accessed (e.g., in remote sensing or astronomy), none of these
approaches can be applied. In this case, only post-processing approaches can be implemented, to
deconvolve the instrument response [18]. While deconvolution can improve the image quality
when strong prior information is available (e.g., point-like objects), it leads to relatively poor
results for extended objects of unknown structure [19].
In this paper, we propose a computational imaging approach for objects that are too far away



to be illuminated or accessed, which allows them to be imaged beyond the limit of diffraction.
Our concept is highly flexible, in the sense that it can be applied to any conventional off-the-shelf
optical device with minimal hardware modifications and with the addition of a spatial light
modulator (SLM) some distance from the optical device. After acquisition of a sequence of
images for different SLM patterns, the object can be reconstructed through a simple procedure.
To the best of our knowledge, this is the first time that a practical set-up based on these techniques
has been shown to break the diffraction limit of an off-the-shelf optical device.

In Section 2, we specify the nature of the imaging problem under consideration. In Section 3,
we introduce the joint acquisition and reconstruction paradigm, discuss its intrinsic invariance to
diffraction and sampling, and describe an effective implementation. In Section 4, we demonstrate
the relevance of the proposed approach through practical optical implementation that is based on
a webcam, with a comparison of the results with respect to the conventional case where no SLM
is added. In Section 5, we discuss the implications of this work, propose future lines of research,
and discuss potential applications. Finally, we conclude our work in Section 6.

2. Conventional diffraction-limited acquisition

We consider the problem of imaging an object that emits spatially incoherent light, using a
conventional diffraction-limited digital optical device. Let Σo denote the object plane located at
distance zo from the front principal plane of the device (see Fig. 1). We assume that the object
and image planes are both perpendicular to the optical axis. The light emitted by the object is
recorded by a sensor array of P square pixels, which results in a digital image g ∈ RP . This
digital image is obtained by sampling the light intensity within the image plane g(x), x ∈ Σi.
Mathematically, we can model the sampling operator S by

g = S{g} = [(g ∗ φ)(x1), . . . , (g ∗ φ)(xP)]>∆t, (1)

where φ(x), x ∈ Σi, is an instrument response function that represents the integration effect of the
sensor pixels, ∆t is the acquisition time, {xp}1≤p≤P are the centers of the pixels in the image
plane Σi, and ∗ is the continuous-domain convolution.
The intensity g, and hence the digital image g, suffers from diffraction within the imaging

device. On the basis of a centered diffraction-limited model, the diffraction can be modeled
through a low-pass operator D [20, p. 130], such that

g = D{ fi} = fi ∗ h, (2)

where fi(x), x ∈ Σi, is a diffraction-free image, and h(x), x ∈ Σi is a point-spread function
corresponding to the Fraunhofer diffraction pattern of the exit pupil of the imaging system.
The image fi relates to the object-plane intensity profile fo through geometrical optics and the
inverse-square law, which depend on zo and the type of optical system. More specifically,

fi(x) = α fo(Mox), x ∈ Σi (3)

where Mo is a magnification factor, and where α is a multiplicative constant under the approx-
imation of small angles. Inserting Equations (2) and (3) into Equation (1) yields the forward
model

g = αSD{ fo(Mo·)}, (4)
where · is a dummy variable. Finally, we assume a Poissonian-Gaussian noise model [21], which
yields the noisy acquisition

gδ ∼ P(g + d) +N(µ,σ2
read), (5)

where P and N are the Poisson and Gaussian distributions, respectively, d is the dark current
and contributions from ambient light, µ is an offset imposed by the sensor, and σ2

read models
both the readout and the quantization noise.
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Fig. 1: Conventional approach (black) and proposed approach (red additions). The object fo
that lies on the object plane Σo is imaged using a conventional optical device with a lens. The
numerical image g is formed within the image plane Σi. Compared to fi, the ideal geometrical
image of fo, the measured image g suffers from not only sampling, but also diffraction. To
circumvent both problems, we place a spatial light modulator (SLM) in the plane Σ. From a
sequence of modulated images {gk}1≤k≤K acquired using some SLM patterns {qk}1≤k≤K , we
can recover f , which is the geometrical projection of fo onto Σ. The dimensions are not to scale,
for clarity.

Our goal is to recover a degradation-free image from the degradation-sensitive measurements,
which is particularly relevant when the sampling or the diffraction effects—or both—dramatically
limit the spatial resolution of a raw image gδ . Contrary to post-processing approaches that invert
Equations (4)–(5) numerically, which is prone to artifacts due the ill-posedness of the operators
S and D, we propose to alter the acquisition chain upfront, such that the degradation effects are
neutralized.

3. Proposed diffraction-unlimited approach

3.1. Concept

We propose to make the acquisition chain described in Section 2 robust to the loss of resolution
due to S and D, by performing multiple acquisitions and to recover the degradation-free image
using a straightforward numerical inversion after preprocessing a set of modulated images.

Our acquisition approach consists of measuring a set of dot products {vk}1≤k≤K between the
image and some SLM patterns {qk(x)}1≤k≤K, x ∈ Σ. This is realized through the addition of
a SLM to the pre-existing acquisition set-up. The key specificity of our approach is to ensure
that the SLM patterns modulate the image before degradation occurs due to S and D, which
ultimately makes the dot products and the corresponding numerical reconstruction robust to these
effects. This is achieved by placing the SLM sufficiently far from the optical system, at a distance
z perpendicular to the optical axis (see Fig. 1). Our overall acquisition and reconstruction
approach involves three main steps, as illustrated in Fig. 2 and described below.

Modulated image acquisition The use of image modulation modifies the initial conventional
forward model of Equation (4). Specifically, every SLM pattern qk leads to measurement of the
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Fig. 2: Acquisition and reconstruction pipeline of the proposed approach. The set of digital
modulated images {gk}1≤k≤K is first acquired from the object fo using a set of SLM patterns
{qk}1≤k≤K . Then, these images are preprocessed, which leads to the diffraction-insensitive scalar
measurements {vk}1≤k≤K . Finally, the digital diffraction-free image f is reconstructed from
these diffraction-insensitive measurements through a straightforward numerical inversion, based
on the knowledge of the SLM patterns used for acquisition. The preprocessing step corresponds
to Equation (7), the reconstruction step to Equation (10), the superscript δ being used to denote
noisy measurements and estimates.

(digital) modulated image gk given by

gk = SD{qk(M·) f (M·)}, 1 ≤ k ≤ K, (6)

where f = α fo(zo · /z) is the geometrical projection of fo onto the SLM plane, and M = Moz/zo
is the corresponding magnification factor. As fo, the intensity profile f is free of degradation due
to sampling and diffraction.
As the qk are complex-valued, whereas light intensities are positive quantities, every gk is

obtained in practice as a linear combination of several sub-acquisitions, as detailed in Sections
3.2 and 3.3 below. Finally, according to Equation (5)—which applies to every acquisition—we
only have access to noisy versions gδ

k
of the modulated images gk .

Preprocessing Once the modulated images are acquired, we numerically integrate them over
their field-of-view, to produce the scalar quantities

vδk = u>gδk , 1 ≤ k ≤ K, (7)

where u = [1 . . . 1]> ∈ RP . While each modulated image gδ
k
is altered by sampling and

diffraction in Equation (6), the scalar quantity vδ
k
is not affected by sampling or diffraction.

Indeed, as shown in the Appendices A.1 and A.2 , it is proportional on average to the dot product
of the SLM pattern and the diffraction-free image, i.e.,

E
[
vδk

]
∼ 〈qk, f 〉 (8)

where E is the expectation. This property, which is key to our acquisition approach, exploits the
energy-preserving nature of diffraction.

Reconstruction As detailed in Appendix A.3, each measurement vδ
k
satisfies the discrete-scalar-

product relation E
[
vδ
k

]
= q>

k
f , where qk ∈ RN and f ∈ RN are discrete versions of the SLM

pattern qk and of the degradation-free image f , respectively. Defining vδ = [vδ1 . . . v
δ
K ]> ∈ RK ,

we have the linear model
E

[
vδ

]
= Q f , (9)



where Q = [q1 . . . qK ]> ∈ RK×N is the matrix containing the discrete SLM patterns. Therefore,
we simply recover the diffraction-free image as

f δ = Q+vδ, (10)

where Q+ is the Moore-Penrose pseudo-inverse of Q. Here, the matrix Q is related to the choice
of the SLM patterns, which is discussed in Section 3.2. Therefore, it is easy to choose K = N
patterns for which Q is invertible; hence Q+ = Q−1. This differs significantly from methods that
invert Equation (4), where the discrete forward model depends on the physics and is typically
ill-conditioned. When only a few SLM patterns are considered, i.e. K < N , Equation (10)
provides the minimum `2 norm solution.

3.2. SLM patterns

Our choice for the SLM is dictated by two requirements. First, it is crucial to maximize light
throughput, so as to limit the acquisition time needed to acquire low-intensity objects with
acceptable signal-to-noise ratios (SNRs). Secondly, the SLM patterns need to capture the
information of f into relatively few measurements, so as to decrease the number of measurements,
and hence the time needed for an acquisition. For instance, choosing Q as the identity matrix
corresponds to an extreme case where light is only transmitted through a single SLM pixel at a
time. This complies poorly with these requirements.

In this study, we choose Q as the discrete Fourier basis, which transmits ∼64% of the incident
light flux and is known to sparsify natural images [22, 23]. For a SLM array of N = N1 × N2
square pixels of size ∆ × ∆, this defines the discrete SLM patterns qk = [q1

k
, . . . , qN

k
]> as

qn
k = exp(−j2πξ>k n), (11)

where j is the imaginary unit, n is the two-dimensional pixel coordinate associated with the
n-th pixel of the SLM, and ξk is the two-dimensional spatial frequency of the k-th pattern, with
ξk ∈ {0, 1/N1 . . . , (N1 − 1)/N1} × {0, 1/N2 . . . , (N2 − 1)/N2}.
This choice implies that the measurement vector v is the discrete Fourier transform (DFT) of

f . Therefore, the reconstruction step of Equation (10) simplifies to the performing of an inverse
DFT, which also has the advantage of having rapid implementation with complexity O(N log N).
The implementation of the spatial patterns qk into the SLM is discussed in Section 3.3, below.

3.3. Differential acquisition strategy

As our physical set-up can only implement positive-valued SLM patterns, every complex-valued
SLM pattern must be split into positive real-valued patterns to be programmed into the SLM.
The acquisitions that use positive patterns are then recombined to obtain a complex-valued image
gδ
k
. Here, we choose the four positive patterns qk,i , 1 ≤ i ≤ 4, defined by

qn
k,1 = cos+(2πξ>k n), qn

k,2 = cos−(2πξ>k n),
qn
k,3 = sin−(2πξ>k n), qn

k,4 = sin+(2πξ>k n), (12)

where (·)+ and (·)− are the projections onto the positive and negative orthants. These positive
patterns are compatible with Equation (11) as qk = (qk,1 − qk,2) + j(qk,3 − qk,4). Each of
the positive patterns qk,i leads to the measuring of a distinct positive-modulated image gδ

k,i
.

According to the forward and noise models of Equations (6) and (5), we have

gk,i = SD{qk,i(M·) f (M·)}, (13)

and
gδk,i ∼ P(gk,i + dk) +N(µ,σ2

read). (14)



In the latter, we assume that dk does not vary during the four sub-acquisitions.
Finally, we repeat the measurements L times and average them to decrease the noise. The

modulated image gδ
k
is computed as

gδk = L−1
L∑̀
=1
(gδk,1,` − gδk,2,`) + j(g

δ
k,3,` − gδk,4,`), (15)

where gδ
k,i,`

is the `-th modulated image acquired using the SLM pattern qk,i . As shown in
Appendix A.1, the modulated image gδ

k
is an unbiased estimate of gk , which includes the

cancellation of additive ambient-light effects. This is crucial in our setting where the amount of
light captured from an object at long distance can be very low.

3.4. Time budget and subsampling

As f is real-valued, only half of its DFT coefficients are nonredundant. Recalling that the SLM
is an array of N = N1 × N2 pixels, and assuming that N1 and N2 are even, the number of DFT
coefficients for full acquisition is K = N/2 + 2. Implementing the differential approach of
Equation (15), the time budget for a full acquisition is thus

tfull = (2N + 8)L∆t. (16)

The time budget of full acquisition can be substantial when the acquisition time per measurement
is large (e.g., for low-intensity objects that require ∆t or L to be large), or when the image
resolution N is large. One approach to decrease the time budget is to use a smaller number of L ′

of acquisitions per SLM pattern, which yields

tsub = (2N + 8)L ′∆t, L ′ < L. (17)

Another approach is to acquire a subset of K < N/2+ 2 significant DFT coefficients. In this case,
we consider the low-frequency diamond scheme, which yielded the best image-reconstruction
results in [24]. The corresponding time budget is

tsub = 4KL∆t, K < N/2 + 2. (18)

We also propose an adaptive subsampling approach that can preserve higher-frequency coefficients,
exploiting repeated measurements. This approach is described in detail in Appendix A.4. For
each of the aforementioned subsampling methods, the sampling ratio γ is defined as

γ = tsub/tfull. (19)

3.5. Angular resolution

As this approach is robust to diffraction and sampling that occur after modulation, the maximum
angular resolution R (in radians; the smaller the better) only depends on the SLM. Under the
approximation of small angles, and neglecting noise, we have

R = ∆/z, (20)

where ∆ is the SLM pixel size and z is the distance between the conventional optical device and
the SLM. The combination of the original device and the SLM can be seen as a single new device
where the maximum angular resolution is only parameterized by ∆ and z. This is in contrast to
conventional optical devices, where the maximum angular resolution is fixed and is limited by
diffraction.



∆ (µm) z (m)

0.5 1 2 5 10 20 50

10 4.1 2.1 1.0 0.41 0.21 0.10 0.041

20 8.3 4.1 2.1 0.83 0.41 0.21 0.083

50 21 10 5.2 2.1 1.0 0.52 0.21

100 41 21 10 4.1 2.1 1.0 0.41

200 83 41 21 8.3 4.1 2.1 0.83

Table 1: Maximum angular resolutions R in arcseconds for various SLM distances z and
pixel sizes ∆, according to Equation (20). The angular resolution of the human eye is ca. 60
arcseconds [27]. For a pixel size of 50 µm, setting the SLM at 10 m yields an angular resolution
of one arcsecond, which is comparable to that of a 4-inch telescope.

One way to improve the angular resolution is to decrease the SLM pixel size. The lower limit
for ∆ depends on the available technology (e.g, digital micro mirrors, translucent or reflective
liquid crystal displays). Ultimately, ∆ must be larger than the wavelength used for acquisition,
to avoid diffraction effects during modulation [25]. For a fixed pixel size ∆, a target angular
resolution R can be achieved by setting the SLM distance z accordingly, i.e., choosing z ≥ ∆/R.
For instance, for a pixel size of 50µm, setting the SLM at a distance of 10 m yields an angular
resolution of 5 · 10−6 radians, which is equivalent to approximately one arcsecond. This angular
resolution is comparable to that of a regular 4-inch telescope [26]. In Table 1, we report more
example values of R as a function of z and ∆.

4. Results

4.1. Experimental settings

We evaluate this approach considering a webcam (USB HD C270; Logitech) as the conventional
optical device and the front screen of a commercial showcase (ClearVue Lite CV101LV1) as
the SLM. The object is placed and illuminated inside the same showcase. Overall, the scene
setting follows the configuration of Figure 1, where all of the distances and the effective SLM
area ensure that the object is fully modulated and captured by our webcam according to the
requirements of Section 3.

The webcam camera has a resolution of 1280× 960 pixels, an angle of view of 60 degrees, and
a focal length of 4 mm. It produces color images in compressed JPEG format that we converted to
grayscale. According to the trigonometric relations between these quantities [28], the pixel size
of the camera is 2.9µm, with a corresponding angular resolution of 135 arcseconds. Importantly,
this pixel size is comparable to the theoretical optical diffraction limit associated with the webcam
parameters, and can thus be used as a meaningful reference to assess the resolving power of
our approach. For instance, the Airy-disk diameter DA = 2.44λN obtained at average optical
wavelength λ = 550 nm [29] and low focal ratio N = 2 is DA = 2.7µm.

The SLM has a liquid crystal display of 1024 × 600 pixels with ∆ = 210µm and a contrast
ratio of 500:1. For our experiments, we only use an effective area of N = 64 × 64 pixels located
at the center of the liquid crystal display, with the rest of the pixels set to block out all of the light.
For conventional acquisitions, we set the effective SLM region of 64 × 64 pixels to transmit all of
the light, while leaving the rest of the SLM pixels set to block out all of the light. This ensures



that the same object field-of-view is acquired with and without modulation.
The object is the letter "T" as the black capital (width 9.5 mm, height 8 mm), as shown in

Figure 3a. The object is placed inside the showcase, which leads to z = 3.80 m and zo = 3.87 m,
respectively. As viewed from the webcam, the effective size of fo captured by the SLM is thus
730 × 730 arcseconds, or as the equivalent, 5.4 × 5.4 sensor pixels.

In our experiments, we acquire each pattern L = 50 times during ∆t = 42 ms. The object
illumination, SLM transmittivity gain, and webcam gain are set to maximize the brightness, while
avoiding saturation of the webcam. We perform the acquisition in a dark room, to minimize the
influence of variations in ambient light during acquision. To ensure the correct synchronization
between the acquisitions performed by the webcam and the generation of the SLM patterns, a
latency of 0.5 s is added between the successive measurements. As this latency is only relevant
to our particular software implementation, it is not included in our time budget.
Both the optical and the SLM devices are connected to a laptop computer (MacBook Pro;

2.4 GHz Intel Core i7; 6 GB memory). All of the acquisition and reconstruction methods are
implemented in Matlab.

4.2. Proposed paradigm versus conventional acquisition

In this first experiment, we assess the proposed paradigm, and compare it with conventional
acquisition where the object is acquired from the same location but without SLM modulation.
Based on the practical set-up and its parameters described in Section 4.1, we acquire object
coefficients and reconstruct f via Equation (10). The results of this experiment are shown in
Figure 3.
In the conventional acquisition setting (Fig. 3b), the object appears in a very small central

region of the acquired image, where the horizontal line at the top is due to light leaking from
the showcase. When inspecting a magnified central area of 8 × 8 pixels (Fig. 3c), no object
features can be identified, and the image is blurred. This confirms that the native resolution of
the webcam is insufficient to image the object. It is worth noting that in this magnified image,
the area of the bright profile is consistent with the expected size of fo, 5.4 × 5.4 sensor pixels,
which is derived in Section 4.1 from the dimensions of this set-up, with small differences due to
diffraction and instrument response.
In the proposed-paradigm setting (Fig. 3d), the reconstructed object can be resolved and

appears to be consistent with the original profile (Fig. 3a). The reconstruction also contains
details that are significantly smaller than the pixel resolution and diffraction limit in the classical
setting (Fig. 3c). This result demonstrates that our joint acquisition and reconstruction paradigm
can image objects at a resolution that significantly exceeds the native limits of the conventional
device it is built from.
As mentioned in the previous sections, one major caveat of our approach is its acquisition

time. In that regard, Equation (16) implies that the time budget to acquire f in our set-up is
tfull = 17 220 s (4.8 h). In the next experiment, we thus investigate how this time budget can be
mitigated while maintaining acceptable reconstruction quality.

4.3. Subsampling

In this second experiment, we investigate whether the subsampling can maintain reconstruction
quality under acquisition-time budgets than are lower than the one of Section 4.2. To do so, we
compare the performance of the subsampling strategies proposed in Section 3.4. For convenience,
our images are reconstructed retrospectively, based on the full set of DFT coefficients, as in [30].
Each subsampling method is evaluated in terms of the SNR using the fully sampled result of
Section 4.2 as reference.
First, we consider the case where γ = 1/4, i.e., a four-fold reduction in the acquisition time.

The images reconstructed here are shown in Figure 4. Repetition subsampling (Fig. 4a) yields



(a) (b) (c) (d)

Fig. 3: The proposed paradigm compared to conventional object acquisition. (a) Reference
object profile. (b) Image from the conventional optical device. (c) Magnified central area of 8× 8
pixels of (b). (d) Image reconstructed using our diffraction-unlimited approach; N = 64 × 64,
K = 2050.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Comparison between different subsampling methods. (a-d) Reconstructions for each
method with a limited time budget of 1.2 h (γ = 1/4). (a) Repetition subsampling (SNR = 12.37
dB). (b) Diamond subampling (SNR = 17.87 dB). (c) Adaptive subsampling (SNR = 18.59
dB). (d) Oracle subsampling (SNR = 22.22 dB). (e) Reconstruction in the extreme case of a
single repetition (γ = 1/50) for repetition subsampling (SNR = −0.12 dB). (f-h) Acquired DFT
coefficients (white pixels with redundant coefficients also shown) associated with the results of
(b-d). (f) Diamond subampling. (g) Adaptive subsampling. (h) Oracle subsampling.

the worst result, due to noise. The noise issue is further exacerbated in the extreme case where
the image is reconstructed from a single repetition (Fig. 4e), which illustrates the need for
repeat measurements. Compared to both non-adaptive approaches (Fig. 4a, b), the proposed
adaptive subsampling scheme (Fig. 4c) yields the best result. This last is closest to the ideal
oracle subsampling (Fig. 4d), where the highest-energy coefficients are determined and selected
a posteriori from the full acquisition (L = 50; K = N/2 + 2). Reconstruction from adaptive
sampling is also less blurry than from nonadaptive sampling, which confirms the potential of
adaptive approaches to better preserve high-frequency information. The sampling pattern of



Fig. 5: Performance of the different subsampling methods for the various time budgets. The
signal-to-noise ratio (in decibels) is plotted for each method as a function of the time budget in
hours, varying γ accordingly.

the adaptive scheme (Fig. 4g) is also close to that of the oracle (Fig. 4h), as opposed to the
nonadaptive case (Fig. 4f).

Figure 5 illustrates the SNR of the image reconstructed with different subsampling strategies
with increasing sampling ratios. Adaptive sampling consistently outperforms its nonadaptive
counterpart over a large range of sampling ratios. Its drop in performance at low sampling ratios
is due to the constant time-budget overhead that is used to determine the coefficients relevant for
repetition, as detailed in Appendix A.4. Overall, these results highlight the critical impact of the
subsampling strategy and the potential of adaptive methods to preserve reconstruction quality
with smaller time budgets.

5. Discussion

Our experiments confirm that the proposed paradigm can be used to resolve objects beyond
the native capabilities of an optical device. It is worth emphasizing that in these experiments,
the classical resolution benchmark that is outperformed by this method is the pixel size of the
webcam, which is comparable to an ideal diffraction limit, as mentioned in Section 4. The actual
resolving power of the webcam is even lower than this benchmark due to device nonidealities,
such as optical aberrations, which also account for the blur observed in Figure 3c.

Our paradigm potentially extends to a relatively broad class of optical devices and applications.
In this regard, it is important to note that the only property of the point-spread function h that is
exploited to derive Equation (8) is its preservation of the total light energy, as shown in Appendix
A.2. For this reason, Equation (8) also holds in the presence of optical aberrations, which can be
seen as phase components of a generalized pupil function [20, p. 145]. Our acquisition approach
would also remain valid if h were not isoplanatic, or if the light emitted from the object were
spatially coherent, in which case diffraction effects would become nonlinear in intensity but
remain energy preserving.

While the strength of the current study is its broad applicability to a large set of optical devices,
dedicated optics can also be envisaged, drawing from previous studies on one-pixel cameras, for
instance. For current single-pixel cameras, one major difference is that the SLM is primarily
meant to compensate for the lack of multiple sensors, and it is integrated into the device itself
instead of being placed externally. The achievable resolution is thus currently determined by the



diffraction limit of the device [24], as opposed to our acquisition approach where modulation
from the SLM occurs before diffraction. However, our approach described in Section 3 is
computationally similar to what is used in single-pixel cameras. In particular, both involve the
acquisition of scalar products with the object using a SLM. In further work, the single-pixel
architecture can thus be adapted to implement our approach, and its single sensor could physically
replace the numerical-integration process in Equation (7).
In terms of applications, our paradigm can be used to either better resolve objects – as in our

experiments here – or to better track them. The proposed approach can also be exploited to
image objects where the distance is out of reach, for either practical or technical reasons, e.g., at
infinity. In that regime, the ability of our method to increase angular resolution, or, equivalently,
to increase spatial resolution independent of the object distance becomes key, as there is no
way to access, illuminate, or increase the size of the object in the image field of view. This is
typically the case in astronomical imaging, in which case an additional SLM placed at sufficient
distance inside or outside the Earth’s atmosphere might further enhance the resolution limits
of an existing ground or space-based telescope. Such a configuration could borrow from the
external occulter concept [31], except that the SLM would not only allow to mask the light from
unwanted sources, but also to modulate the light from the object of interest and reconstruct a
more detailed image, based on our paradigm. For astronomical applications, the robustness of
our paradigm to diffraction and the use of differential measurements might also prove useful, to
mitigate the effects of atmospheric seeing and turbulence, depending on the relative location of
the SLM. This remains the topic of further investigations.
An important limiting factor of our approach is the acquisition time required to produce a

suitable reconstruction, which is caused by the very low amounts of light that can be collected by
the sensor array. However, we show how particular acquisition strategies can mitigate this issue
to some extent. In further work, the proposed acquisition and reconstruction methods can be
adapted to decrease the time budget, to maximize the reconstruction quality, and to operate in
more complex settings. For instance, satisfactory reconstructions might be obtained from fewer
coefficients based on the compressed-sensing framework, assuming wavelet, total-variation, or
nonlocal image priors [1, 2, 32]. Recent advances in deep learning for inverse problems might
also be of benefit to our paradigm. Indeed, image reconstruction based on neural networks is
intrinsically faster than compressed-sensing-based iterative algorithms, and provides improved
reconstruction quality by learning image features during an offline training phase [33].

Adaptive-acquisition methods that are more advanced than the one proposed in Section 3.4 can
also be developed to limit the acquisition time. Such methods might avoid repetitions of the same
SLM pattern by producing specifically optimized patterns for each new measurement, based
on information on signal and noise properties that would be gathered from all of the previous
measurements. Furthermore, acquisition settings where the object is moving or changing might
be handled by adapting our acquisition model and our algorithms.

6. Conclusion

We here propose and demonstrate experimentally a novel imaging paradigm where an optical
device can be used in conjunction with a SLM to acquire and resolve remote objects with resolution
that exceeds the diffraction limit of the optical device. Our acquisition strategy can be seen as the
transformation of the optical device that produces degraded measurements—due to diffraction
and instrument response—into a new device that produces compressed measurements. Then,
the image of the scene is reconstructed by solving a simple inverse problem. Our experiments
represent the first proof-of-concept that the loss of spatial and angular resolution that is intrinsic
to diffraction can be circumvented through the use of specific acquisition and reconstruction
strategies.



A. Appendix

A.1. Unbiasedness of the measurements

By linearity of the expectation, we obtain, from the differential expression of gδ
k
given by Equation

(15),

E
[
gδk

]
= (E

[
gδk,1

]
− E

[
gδk,2

]
) + j(E

[
gδk,3

]
− E

[
gδk,4

]
). (21)

Under the noise model of Equation (14), the additive biases, which include the effects of ambient
light, cancel out mathematically as

E
[
gδk

]
= (gk,1 − gk,2) + j (gδk,3 − gδk,4). (22)

Using the forward model of Equation (13), we then obtain

E
[
gδk

]
= (SD{qk,1(M·) f (M·)} − SD{qk,2(M·) f (M·)})
+ j (SD{qk,3(M·) f (M·)} − SD{qk,4(M·) f (M·)}), (23)

which simplifies, by linearity of both S and D, to

E
[
gδk

]
= SD{qk(M·) f (M·)} = gk . (24)

A.2. Robustness to diffraction and sampling

We now demonstrate that vδ
k
are robust to diffraction and sampling. In more detail, they provide

inner products between the degradation-free image f and the modulating patterns qk , up to a
multiplicative constant. By linearity of the expectation, we haveE

[
vδ
k

]
= E

[
u>gδ

k

]
= u> E

[
gδ
k

]
.

Therefore, as measurements are unbiased as shown in Equation (24), we have E
[
vδ
k

]
= u>gk .

By definition of gk , we have

E
[
vδk

]
= u>SD{qk(M·) f (M·)}. (25)

Substituting the sampling operator S with its definitions leads to

E
[
vδk

]
= ∆t

∑
p

(D{qk(M·) f (M·)} ∗ φ) (xp)

= ∆t
∑
p

∫
Σi

D{qk(M·) f (M·)}(x) φ(xp − x) dx. (26)

Assuming that the pixel instrument function φ(xp − x) indicates the location of the p-th pixel
of the sensor, the instrument function forms a partition of unity, i.e.,

∑
p φ(xp − x) = 1, and the

convolution simplifies to

E
[
vδk

]
= ∆t

∫
Σi

D{qk(M·) f (M·)}(x)dx. (27)

In a similar fashion, the convolution kernel h satisfies
∫

h(x)dx = 1 because diffraction preserves
the total light energy. Therefore, assuming that the diffractedmodulated imagesD{qk(M·) f (M·)}
lie within the field of view of the device, we obtain

E
[
vδk

]
= ∆tM−2

∫
Σ

qk(x) f (x) dx = ∆tM−2 〈qk, f 〉 , (28)

which is independent of S and D.



A.3. Discretization

Each modulation pattern qk(x) is implemented using a vector qk = [q1
k
, . . . , qN

k
]> that indicates

the value of each of the SLM pixels. Mathematically, we have

qk(x) =
∑
n

qn
k b(x − xn), (29)

where b(x) is a square box function of size ∆ that represents the shape of the SLM pixels.
Therefore Equation (28) expands as

E
[
vδk

]
= ∆tM−2

∫
Σ

∑
n

qn
k b(x − xn) f (x) dx = ∆tM−2

∑
n

qn
k

(∫
Σ

f (x)b(x − xn) dx
)
. (30)

Defining f = [ f 1, . . . , f N ]> as the discrete version of f (x) that matches the resolution and pixel
size of the SLM, i.e.,

f n = ∆tM−2
∫
Σ

f (x)b(x − xn)dx, (31)

we obtain the discrete-scalar-product relation

E
[
vδk

]
=

N∑
n=1

qn
k f n = q>k f . (32)

A.4. Adaptive subsampling

Subsampling methods such as the low-frequency diamond scheme proposed in [24] select
coefficients a priori, regardless of image properties. Therefore, such methods can miss relevant
high frequencies. Inspired by [30], we propose an adaptive subsampling scheme that mitigates
this problem. Specifically, we propose to first make a quick but exhaustive acquisition of all of
the coefficients, and then to repeat the acquisition of the highest coefficients only, to increase
their SNR.

Retaining K significant coefficients and acquiring the significant coefficients L times at most,
we obtain the adaptive measurement vector as follows:

1. Acquire all patterns, i.e., {qk} for 1 ≤ k ≤ N . The resulting measurement vector is
denoted by vδ,1

2. Low-pass filter the image of the first-pass measurements vδ,1 with a Gaussian filter of unit
variance; this yields the filtered coefficients v̂δ,1

3. Find the locations of the K highest (absolute) values of the filtered measurement vector
v̂δ,1. The set of indices indicating relevant coefficients is denoted by Ω.

4. Acquire the relevant patterns, i.e., {qk}k∈Ω, L − 1 more times. The resulting measurement
vectors are denoted by vδ,` , 2 ≤ ` ≤ L, where the coefficients that are not acquired are set
to zero. The first-pass acquisition is cleaned by setting vδ,1

k
to zero for all k < Ω.

5. Average the measurement vectors to get the adaptive measurement vector vδ . Mathemati-
cally, vδ = 1

L

∑L
`=1 v

δ,` .

The low-pass filtering in Step 2 and the elimination of nonrelevant coefficients in Step 4 both
aim to reduce the effect of noise on the initial single pass. The time budget associated with this
adaptive scheme is

tsub = (4KL + 2N + 8 − 4K)∆t, K < N/2 + 2, (33)

where the overhead (2N + 8 − 4K)∆t is due to the adaptive coefficient selection in Steps 1-3.
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