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I. INTRODUCTION

MCMC methods proceed in two main steps. First, a Markov chain is built with a given transition rule so that its stationary states follow the posterior law. Once the Markov chain has reached its stationary distribution, Monte Carlo approximation is used to infer the posterior characteristics. One typical approach to explore the parameter space is the Random Walk (RW) whose adaptive proposal law takes the form of a Gaussian distribution centered at the current state. The popularity of this algorithm is mainly related to its simplicity of implementation. However, the RW usually takes too many steps to reach stability for high dimensional models. In this respect, a large amount of works has been devoted to construct proposals in Metropolis-Hastings (MH) algorithms having a better performance [START_REF] Pereyra | A survey of stochastic simulation and optimization methods in signal processing[END_REF]. In this work, we are interested in proposals based on the Euler discretization of the Langevin stochastic differential equation where the drift term accounts for the slope and curvature of the target law. Our main contribution is to propose a preconditioned version of the standard MH adapted Langevin algorithm using an adaptive matrix based on a Majorize-Minimize (MM) strategy.

II. PROPOSED APPROACH

To extend the idea behind MM quadratic optimization strategies to the context of stochastic samplers, the idea is to push the proposal distribution of the MH algorithm at each iteration from the current state to a region with high density value. More precisely, the mean of the proposal density is picked by using an MM search step and then the space around this center is explored according to an MM curvature matrix Q(x (t) ) that describes the local variations of the target distribution. This results in a preconditioned Langevin proposal where the scale matrix, equal to the inverse of the curvature matrix Q(x (t) ), is constructed according to the MM strategy.

We focus on the case when the minus-log of the target density function J = -log p(• | z) can be expressed up to an additive constant as

(∀x ∈ R Q ) J (x) = Φ(Hx -z) + Ψ(x) (1) 
where z ∈ R N is the vector of observed data, H = 0N×Q, and

Ψ(x) = S s=1 ψs( Vsx -cs ) (2) 
with (∀s ∈ {1, . . . , S}) Vs ∈ R Ps×Q , cs ∈ R Ps , and (ψs) 1 s S is a set of nonnegative continuous functions.

Under technical assumptions, convex quadratic tangent majorants of (1) can be obtained by setting (see [START_REF] Chouzenoux | A majorizeminimize subspace approach for ℓ 2 -ℓ 0 image regularization[END_REF]):

(∀x ∈ R Q ) Q1(x) = µH ⊤ H + V ⊤ Diag{ω(x)}V + ζ IQ (3) where µ ∈ ]0 + ∞[, V = V ⊤ 1 , . . . , V ⊤ S ⊤ and ω(x) = (ωi(x)
) 1≤i≤P is such that, for every s ∈ {1, . . . , S} and p ∈ {1, . . . , Ps},

ωP 1 +P 2 +...+P s-1 +p(x) = ψs( Vsx -cs ) Vsx -cs . (4) 
Hereabove, ζ is a nonnegative constant that can be useful to ensure the invertibility of Q1(x) for every x ∈ R Q . Other simpler constant curvature matrix Q2 and diagonal curvature matrix Q3(x) can be derived by majorizing Q1(x).

It is worth emphasizing that the geometric ergodicity of the chain generated by the proposed algorithm can be established for the class of super-exponential distributions.

III. APPLICATION TO MULTISPECTRAL IMAGE DENOISING

We denoise a Hydice hyperspectral dataset containing images of size R = 256 × 256 over B = 60 spectral channels. A multivariate Gaussian likelihood is adopted, whereas a generalized multivariate exponential power distribution is chosen for modelling the prior distribution of the wavelet coefficients of the sought images. We compare the performance of the Gibbs sampler when the posterior law of the wavelet coefficients is explored using various algorithms. Fig. 1 illustrates the evolution of the scale parameter of the prior in the horizontal subband at the first decomposition level. 
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 1 Fig. 1. Convergence speed of RW, MALA and proposed 3MH method.