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Abstract—In this paper, we propose a version of the MM Subspace
algorithm in a stochastic setting. We prove the convergence of the
algorithm and show its good practical performances.

I. INTRODUCTION

Tuning optimally an algorithm is often done w.r.t. a very spe-
cific dataset, making it not robust to different problems. Majorize-
Minimize (MM) algorithms aim at minimizing a functional F relying
on majorant surrogates of F built at each iteration. Such algo-
rithms have good performance in practice, no parameters to tune,
and encompass a large number of famous algorithms. The good
performance of adaptive stepsize methods in a deterministic setting
have encouraged their use in a stochastic setting. Recently, methods
such as ADAGRAD or ADAM have shown good performance. Yet,
these algorithms lack theoretical guarantees. Our contribution is to
propose a version of the MM Subspace algorithm in a stochastic
setting.

II. PROPOSED ALGORITHM

In this paper, we consider that we minimize a functional F :
RN → R through an oracle returning noisy observations gk of the
true gradient ∇F (xk). A classical MM methods would compute at
each iteration a quadratic function

h(x, xk) = g>k (x− xk) +
1

2
(x− xk)>A(xk)(x− xk) (1)

for all x ∈ RN and iterate

xk+1 = argmin
x∈RN

h(x, xk) = xk − γk A(xk)−1gk (2)

where γk is a decreasing stepsize. The main drawback of these
algorithms is the (necessary) inversion of the matrix A(xk) to
solve (2). To circumvent this problem, MM Subspace Algorithms
[1] solve the minimization of h within a subspace rather than in
the whole space. To do so, one should choose the collection Dk
of supporting directions of this subspace. Following [2], we define
Dk = [gk|xk − xk−1], the subspace version of (2) reads

xk+1 = xk − γkDk(D>k A(xk)Dk)−1D>k gk (3)

Assuming that the function F is smooth and strongly convex,
and under classical assumptions from stochastic approximation, the
iterates (xk)k∈N generated by the MM Subspace algorithm (3) satisfy

E[F (xk)] −→
k→∞

0 (4)

and
E[‖xk − x∗‖2] −→

k→∞
0 (5)

This result can be extended to the case where F satisfies a global
Kurdyka-Łojasiewicz inequality with exponent θ ∈ [1/2, 1]. A
convergence rate in O(1/k) is also obtained with some conditions
on the convergence rate of γk.

III. APPLICATION TO BINARY CLASSIFICATION

In our stochastic setting, a widely spread application is binary
classification. The problem can be formulated as

min
θ∈RN

F (θ) = E[f(x, y, θ)] (6)

where (x, y) is a random variable, whose realizations (xk, yk) ∈
RN ×{−1;+1} are observations of couples of input-ouputs. In this
setting, y contains the labels, and x the features. In this configuration,
we choose f as

f(x, y, θ) = log
(
1 + e−yθ

>x
)
+
µ

2
‖θ‖22 (7)

Simulations show a good behaviour of the algorithm, in particular
when the initialization of the algorithm is done at random. In this
case, our algorithm outperforms other commonly used algorithm (cf
Figure 1).

0 1 2 3 4 5 6 7 8

iteration number 10 4

0

0.2

0.4

0.6

0.8

1

lo
s
s

SGD

SAGA

ADAGRAD

MM

MM1D

MM batch

first pass

Fig. 1. Convergence of SGD, SAGA, ADAGRAD and different versions of
the proposed stochastic MM Subspace algorithm on the W8A dataset [3].
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