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I. INTRODUCTION

Tuning optimally an algorithm is often done w.r.t. a very specific dataset, making it not robust to different problems. Majorize-Minimize (MM) algorithms aim at minimizing a functional F relying on majorant surrogates of F built at each iteration. Such algorithms have good performance in practice, no parameters to tune, and encompass a large number of famous algorithms. The good performance of adaptive stepsize methods in a deterministic setting have encouraged their use in a stochastic setting. Recently, methods such as ADAGRAD or ADAM have shown good performance. Yet, these algorithms lack theoretical guarantees. Our contribution is to propose a version of the MM Subspace algorithm in a stochastic setting.

II. PROPOSED ALGORITHM

In this paper, we consider that we minimize a functional F : R N → R through an oracle returning noisy observations g k of the true gradient ∇F (x k ). A classical MM methods would compute at each iteration a quadratic function

h(x, x k ) = g k (x -x k ) + 1 2 (x -x k ) A(x k )(x -x k ) (1)
for all x ∈ R N and iterate

x k+1 = argmin x∈R N h(x, x k ) = x k -γ k A(x k ) -1 g k (2)
where γ k is a decreasing stepsize. The main drawback of these algorithms is the (necessary) inversion of the matrix A(x k ) to solve (2). To circumvent this problem, MM Subspace Algorithms [START_REF] Chouzenoux | A majorize-minimize strategy for subspace optimization applied to image restoration[END_REF] solve the minimization of h within a subspace rather than in the whole space. To do so, one should choose the collection D k of supporting directions of this subspace. Following [START_REF] Chouzenoux | A stochastic 3mg algorithm with application to 2d filter identification[END_REF], we define

D k = [g k |x k -x k-1 ]
, the subspace version of (2) reads

x k+1 = x k -γ k D k (D k A(x k )D k ) -1 D k g k (3) 
Assuming that the function F is smooth and strongly convex, and under classical assumptions from stochastic approximation, the iterates (x k ) k∈N generated by the MM Subspace algorithm (3) satisfy

E[F (x k )] -→ k→∞ 0 (4) 
and

E[ x k -x * 2 ] -→ k→∞ 0 (5)
This result can be extended to the case where F satisfies a global Kurdyka-Łojasiewicz inequality with exponent θ ∈ [1/2, 1]. A convergence rate in O(1/k) is also obtained with some conditions on the convergence rate of γ k .

III. APPLICATION TO BINARY CLASSIFICATION

In our stochastic setting, a widely spread application is binary classification. The problem can be formulated as

min θ∈R N F (θ) = E[f (x, y, θ)] (6) 
where (x, y) is a random variable, whose realizations (x k , y k ) ∈ R N × {-1; +1} are observations of couples of input-ouputs. In this setting, y contains the labels, and x the features. In this configuration, we choose f as

f (x, y, θ) = log 1 + e -yθ x + µ 2 θ 2 2 (7)
Simulations show a good behaviour of the algorithm, in particular when the initialization of the algorithm is done at random. In this case, our algorithm outperforms other commonly used algorithm (cf Figure 1). 
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 1 Fig. 1. Convergence of SGD, SAGA, ADAGRAD and different versions of the proposed stochastic MM Subspace algorithm on the W8A dataset [3].