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Small C1 actions of semidirect products on compact manifolds

CHRISTIAN BONATTI, SANG-HYUN KIM, THOMAS KOBERDA, AND MICHELE TRIESTINO

Abstract. Let T be a compact fibered 3–manifold, presented as a mapping torus of a compact, ori-

entable surface S with monodromy ψ, and let M be a compact Riemannian manifold. Our main result
is that if the induced action ψ˚ on H1pS,Rq has no eigenvalues on the unit circle, then there exists a

neighborhood U of the trivial action in the space of C1 actions of π1pT q on M such that any action in
U is abelian. We will prove that the same result holds in the generality of an infinite cyclic extension

of an arbitrary finitely generated group H, provided that the conjugation action of the cyclic group on

H1pH,Rq ‰ 0 has no eigenvalues of modulus one. We thus generalize a result of A. McCarthy, which
addressed the case of abelian–by–cyclic groups acting on compact manifolds.

1. Introduction

In this paper, we consider smooth actions of finitely generated–by–cyclic groups on compact manifolds,
motivated by the study of fibered hyperbolic 3–manifold groups. We let S be a compact, orientable surface
of negative Euler characteristic, possibly with boundary. Thus, π1pSq is either a finitely generated free
group, or the fundamental group of a closed surface of genus g for some g ě 2. If φ P HomeopSq is a
(possibly orientation reversing) homeomorphism, then we may form T “ Tφ, the mapping torus of φ. We
have that π1pT q fits into a short exact sequence of the form

1 Ñ π1pSq Ñ π1pT q Ñ ZÑ 1,

where the conjugation action of Z on π1pSq is by the induced action of φ. It is well–known that, up to an
inner automorphism of π1pSq, this action depends only on the homotopy class of φ, and is therefore an
invariant of the (extended) mapping class of φ. It follows that the isomorphism type of π1pT q depends
only on the mapping class of φ.

Fibered 3–manifold groups fall into a much larger class of groups which we will be able to investigate
with our methods. Here and throughout, we will let M be a compact Riemannian manifold. Recall a
short exact sequence of finitely generated groups

1 Ñ H Ñ GÑ ZÑ 1

naturally determines ψ P OutpHq, and hence, induces a unique automorphism ψ˚ ofH1pH,Rq. Abstractly
as groups, we have that

G – H oψ Z,
and the outer automorphism ψ is given by the conjugation action of Z – G{H on H. The map ψ˚ is said to
be hyperbolic if every eigenvalue of ψ˚ has modulus different from one. We will study HompG,Diff1

pMqq,
the space of C1 actions on M .

1.1. Main result. We will use the symbol 1 to mean the identity map, the trivial group, the identity
group element or the real number 1 depending on the context, as it will not cause confusion. The principal
result of this paper is the following:

Theorem 1.1. Suppose we have a short exact sequence of finitely generated groups

1 Ñ H Ñ GÑ ZÑ 1,

which induces a nontrivial hyperbolic automorphism ψ˚ of H1pH,Rq. Then there exists a neighborhood
U Ď HompG,Diff1

pMqq of the trivial representation such that ρpHq “ 1 for all ρ P U .

Thus, sufficiently small actions of G on compact manifolds necessarily factor through cyclic groups,
provided the monodromy maps are hyperbolic on cohomology. The reader is directed to Subsection 2.1
for a discussion of the topology on HompG,Diff1

pMqq. Theorem 1.1 may be viewed as an analogue of
a result of A. McCarthy [36], who proved a statement with the same conclusion for abelian–by–cyclic
groups.
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For certain manifolds and with certain natural hypotheses, abelian–by–cyclic group actions by diffeo-
morphisms enjoy rather strong rigidity properties [27].

Note that if H is a left-orderable group then it is not difficult to find a faithful action of G by
homeomorphisms of r0, 1s which is arbitrarily close to the identity, so the C1 regularity assumption in
Theorem 1.1 is essential.

By applying Theorem 1.1 to the above short exact sequence for a fibered 3-manifold group, we obtain
the following result.

Corollary 1.2. Let S, φ, and T be as above. If φ induces a hyperbolic automorphism of H1pS,Rq, then
there exists a neighborhood U of the trivial representation in Hompπ1pT q,Diff1

pMqq such that ρpHq “ 1
for all ρ P U .

The hypotheses in Theorem 1.1 may be contrasted with the following result of Bonatti–Rezaei [7],
which generalizes some work of Farb–Franks [19] and Jorquera [28].

Theorem 1.3 (Bonatti–Rezaei). Every finitely generated, residually torsion–free nilpotent group G ad-
mits a faithful representation ρ : GÑ Diff1

pr0, 1sq that is C1–close to the identity.

Here, a group is residually torsion–free nilpotent if every nontrivial element g P G survives in a torsion–
free nilpotent quotient of G. An element ρ P HompG,Diff1

pMqq is said to be C1–close to the identity if
for every ε ą 0, there is an element h “ hε P Diff1

pMq such that h conjugates ρ into an ε–neighborhood
of the trivial representation of G, in the C1–topology on HompG,Diff1

pMqq.
It is not difficult to check that if G satisfies the hypotheses of Theorem 1.1 then the only torsion–free

nilpotent quotient admitted by G is Z “ G{H. Thus, the hyperbolicity of the map ψ˚ plays a crucial
role in the dynamics of the group G.

1.2. Unipotent monodromy maps and virtually special groups. An essential feature of Theo-
rem 1.1 is its “unstable” nature, in the sense that it does not remain true after passing to finite index
subgroups of G. Indeed, we have the following fairly easy fact:

Proposition 1.4. Let N be a hyperbolic 3-manifold with finite volume. Then a finite index subgroup of
π1pNq admits a faithful representation ρ into Diff1

pMq such that ρ is C1–close to the identity.

Proof. By the work of Agol and Wise [1, 44], there is a finite index subgroup G0 ă G such that G0

is special. In particular, G0 embeds in a right-angled Artin group. These groups are always residually
torsion–free nilpotent [17]. Thus, the proposition follows from Theorem 1.3. �

Thus if G is a group satisfying the hypotheses of Theorem 1.1, then passing to a finite index subgroup
G0, one often obtains a group satisfying the hypotheses of Theorem 1.3. In such a case, one can build a
C1 action of G on n copies of r0, 1s, where here n “ rG : G0s, by an analogue of the induced representation
of a finite index subgroup. Such an action will permute the components of this manifold transitively.
This does not contradict Theorem 1.1, since any such action will be outside of a fixed neighborhood of
the trivial representation of G.

One can produce many fibered 3–manifold groups, even hyperbolic ones, which are residually torsion–
free nilpotent, without using the deep results of Agol and Wise. Indeed, it suffices to use monodromy
maps φ such that φ˚ is unipotent (i.e. has all eigenvalues equal to one). In this case, the resulting G
will always be residually torsion-free nilpotent [32]. In fact, a semidirect product of Z with a finitely
generated, residually torsion–free nilpotent group H will again be residually torsion–free nilpotent if the
Z–action on H1pH,Rq is unipotent.

It is not true that if G is residually torsion–free nilpotent then ψ˚ is unipotent. Indeed, considering
a fibered hyperbolic 3-manifold group π1pT q satisfying the hypotheses of Theorem 1.1 and passing to a
finite index subgroup which is special, we can obtain a new mapping torus structure on a finite cover T0
of T with monodromy φ0, and with a fiber S0 which covers S. The action of φ˚0 on H1pS0,Rq will not be
unipotent, since H1pS,Rq will naturally sit inside H1pS0,Rq via pullback and will be invariant under φ˚0 .

The regularity assumption in Theorem 1.3 is subtle. Nonabelian nilpotent groups cannot admit faithful
C2 actions on any compact one–manifold [40]. Right-angled Artin groups and specialness do not provide
any help in producing higher regularity actions, since in dimension one they almost never admit faithful
C2 actions on compact manifolds [3, 31]. The compactness of the manifold acted upon here is also
essential; see [2].

1.3. General group actions on compact manifolds. A robust trend in the theory of group actions
on manifolds is that “large” groups should not act on “small” manifolds. Among the striking results
in this area are the facts that irreducible lattices in higher rank semisimple Lie groups do not admit
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infinite image C1 actions (and often even C0 actions) on compact 1–manifolds [12, 24, 45]. For higher
dimensional manifolds, the work of Brown–Fisher–Hurtado shows that for n ě 3, groups commensurable
with SLnpZq do not admit faithful C1 actions on m–dimensional compact manifolds for m ă n´ 2, and
for m ă n ´ 1 if the actions preserve a volume form [11]. They obtain similar results for cocompact
lattices in SLnpRq, Sp2npRq, SOpn, nq, and SOpn, n` 1q [10].

Lattices in rank one Lie groups often do admit faithful smooth actions on compact one manifolds.
By [4], many arithmetic lattices in SOpn, 1q are virtually special, which by virtue of Proposition 1.4
furnishes many faithful C1 actions by such lattices.

McCarthy’s result [36] furnishes a class of solvable groups which admit no small C1 actions on compact
manifolds whatsoever. Topologically, her groups arise as fundamental groups of torus bundles over the
circle, with no restrictions on the dimension. Our main result identifies a larger class of such groups,
including ones within the much more dimensionally restricted and algebraically different class of compact
3–manifolds groups. For fibered 3–manifolds groups acting without at least some smallness assumptions,
we can only make much weaker statements:

Proposition 1.5. If T is a hyperbolic fibered 3–manifold, then the universal circle action of π1pT q on
S1 is not topologically conjugate to a C3 action.

Proposition 1.5 follows immediately from the work of Miyoshi [37]. We will deduce Proposition 1.5
from a stronger fact (Proposition 4.3) in Section 4 for the convenience of the reader.

There is no hope of establishing a result as sweeping as the Brown–Fisher–Hurtado resolution of many
cases of the Zimmer Conjecture for 3–manifold groups acting on the circle, even with maximal regularity
assumptions:

Proposition 1.6 (e.g. [13]). There exist finite volume hyperbolic 3–manifold subgroups of PSL2pRq.

Any such groups act by projective (and hence analytic) diffeomorphisms on S1. We remark that
Proposition 1.6 seems well-known to experts.

1.4. Uniqueness of the presentation of G. We remark briefly that if G “ π1pT q satisfies the hy-
potheses of Corollary 1.2 then there is an essentially unique homomorphism G Ñ Z whose kernel is
isomorphic to a finitely generated group, and in particular the fibered 3–manifold structure on T is
unique (see [43, 41]). Thus, the induced map ψ˚ is canonically defined, and one may therefore speak of
the monodromy action. For fibered 3–manifold groups with b1 ą 1 this is no longer the case.

2. Preliminaries

In this section, we gather the tools we will need to establish the principal result of this paper.

2.1. The space of C1 actions of G. Recall that in our notation, M denotes a fixed compact Riemannian
manifold. We denote by Diff1

pMq the group of C1–diffeomorphisms of M . For f P Diff1
pMq, we will

write

Dxf : TxM Ñ TfpxqM

for the Jacobian of f .
It will be convenient for us to assume that M is C1–isometrically embedded in a Euclidean space RN

for some N " 0. This is always possible, by the Nash Embedding Theorem [38]. For brevity, we let }X}
denote the `8 norm when X is a function, a vector, a matrix or a tensor. We may replace distances in
M by distances in RN , and the Jacobian acquires the `8–norm }Dxf} as a multi-linear map. Note that
if V – RN is a vector space equipped with the `8 norm and T P EndpV q, then we have the estimate

}Tv} ď N}T }}v}

for all v P V . We will make use of this estimate in the sequel.
We define the C1–metric on Diff1

pMq by

dpf, gq “ ‖f ´ g‖` sup
xPM

‖Dxf ´Dxg‖,

where all these distances and norms are now interpreted in the ambient Euclidean space.
If G is generated by a finite set S, then we may define a metric dS on HompG,Diff1

pMqq via

dSpρ, ρ
1q “ max

sPS
dpρpsq, ρ1psqq.

This metric dS determines the C1–topology of HompG,Diff1
pMqq, and this topology is independent of

the choice of the generating set S.
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For an arbitrary group G, we will write ρ0 P HompG,Diff1
pMqq for the trivial representation of G. We

see that in order to prove Theorem 1.1, it suffices to find some ε ą 0 such that every ρ P HompG,Diff1
pMqq

satisfying dSpρ, ρ0q ă ε maps H to the identity 1.

2.2. Hyperbolic monodromies. Here, we recall some basic facts from linear algebra of hyperbolic
automorphisms of a real vector space. Let V be a d–dimensional vector space over R, and let } ¨ }d be a
fixed norm on V . If A P GLpV q, we say that A is hyperbolic if every eigenvalue of A has modulus different
from one.

Lemma 2.1. Let A P GLpV q be hyperbolic. Then there is an A–invariant splitting V “ E´ ‘E` and a
positive integer p0 such that the following conclusions hold for all p ě p0:

(1) if v P E´ then

}Apv}d ď
1

2
}v}d;

(2) if v P E` then

}Apv}d ě 2}v}d.

We omit the proof of the lemma, which is well–known; see [29, Chapter 1] for instance. As is standard
from dynamics, E´ and E` are the stable and unstable subspaces of V associated to A. In the sequel,
we will use the notation π` and π´ to denote projections V Ñ E` and V Ñ E´ with kernels E´ and
E` respectively. Observe that invariance of the splitting implies that A commutes with each projection
π` and π´.

2.3. Approximate linearization. A fundamental tool for proving Theorem 1.1 is the following result
of Bonatti [5, 6], which arose as an interpretation of Thurston Stability [42], and which we refer to as
approximate linearization.

Lemma 2.2. Let M be a compact manifold, let η ą 0, and let k P N. Then there exists a neighborhood of
the identity U Ď Diff1

pMq such that for all x P M , for all f1, . . . , fk P U and for all ε1, . . . , εk P t´1, 1u,
we have the following:

›

›

›

›

›

f εkk ˝ ¨ ¨ ¨ ˝ f ε11 pxq ´ x´
k
ÿ

i“1

εipfipxq ´ xq

›

›

›

›

›

ď η max
i“1,...,k

}fipxq ´ x} .

Throughout the rest of this paper, we will often suppress the notation ρ P HompG,Diff1
pMqq and just

write gx “ gpxq “ ρpgqpxq for g P G and x PM . We define a displacement vector for g at x as

∆ρ
xpgq :“ ρpgqpxq ´ x,

regarded as an N–dimensional row vector. More generally, if B “ tb1, . . . , bnu Ď G is a finite set then we
define an nˆN matrix

∆ρ
xpBq :“ p∆ρ

xpbiqq1ďiďn .

We often write ∆x for ∆ρ
x when the meaning is clear. Then the above lemma asserts that∥∥∥∥∥∆xpg

εk
k ˝ ¨ ¨ ¨ ˝ g

ε1
1 q ´

k
ÿ

i“1

εi∆xpgiq

∥∥∥∥∥ ď η‖∆xptg1, . . . , gkuq‖,

in the case when gi P G and ρpgiq P U .

2.4. First homology and cohomology groups. We briefly recall for the reader unfamiliar with group
homology that the first homology group of a group H is given by the abelianization

H1pH,Zq “ H{rH,Hs.

When R P tZ,Ru, the first cohomology group H1pH,Rq coincides with the abelian group of homomor-
phisms from H to R. In particular, H1pH,Zq is a free abelian group of the same rank as H1pH,Zq.

3. Proof of Theorem 1.1

We are now ready to give a proof of Theorem 1.1. For this, we will fix ψ P AutpHq such that G can
be written as

G “ xH, t | tht´1 “ ψphq for all h P Hy.
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3.1. Reducing to homologically independent generators. We first establish Lemma 3.1 below,
which will say that we may more or less assume that H is finitely generated and free abelian.

Let d ě 1 be the rank of H1pH,Zq. We can find a finite generating set

S “ S0 \ S1

of H such that all of the following hold.

‚ The image of S0 in H1pH,Zq “ H{rH,Hs is a basis for the free part.
‚ The image of each element in S1 is torsion or trivial in H1pH,Zq.

We pick K ě 2 so that τK “ 0 for all

τ P kertH1pH,Zq Ñ H1pH,Rq “ H1pH,Zq bZ Ru,
where here the map between the homology groups is the tensoring map. We enumerate S0 “ ts1, s2, . . . , sdu,
and regard S0 as an ordered set. Let A :“ pαijq be the matrix of the hyperbolic linear map

ψ˚ : H1pH,Zq Ñ H1pH,Zq
with respect to the basis which is dual to S0, viewed as real homology classes. The action ψ˚ on H1pH,Zq
is then given by the transpose pαjiq. In this case, we can write each ψpsjq as

(3.1) ψpsjq “ tsjt
´1 “

d
ź

i“1

s
αji

i τj

for some τj P H such that τKj P rH,Hs. It will be convenient for us to define a set

S1 :“ tuK : u P S1 Y tτ1, . . . , τduu Ď rH,Hs.

Observe that each h P rH,Hs can be expressed as a product of commutators in S. It follows that h
can be expressed as a balanced word in S, which is to say that all generators in S occur with exponent
sum zero. Since S1 Ď rH,Hs, we can find an integer k0 ě K such that every element in S1 is a balanced
word of length at most k0 in S. Recall our convention }A} :“ maxi,j |αij |. We set

(3.2) k :“ k0 ` d}A}.

Lemma 3.1. Let 0 ă η ă 1. Then there exists a neighborhood U Ď HompG,Diff1
pMqq of ρ0 such that

each of the following relations hold for all ρ P U and x PM .

(1) ‖∆ρ
xpS

1q‖ ď η‖∆ρ
xpSq‖;

(2) ‖∆ρ
xpS1 Y tτ1, . . . , τduq‖ ď η‖∆ρ

xpSq‖;
(3) ‖∆ρ

xpSq‖ “ ‖∆ρ
xpS0q‖;

(4) ‖∆ρ
xpψpS0qq ´A∆ρ

xpS0q‖ ď 2η‖∆ρ
xpS0q‖.

Proof. Let k be defined as in (3.2). We have an identity neighborhood V Ď Diff1
pMq furnished by

Lemma 2.2 for η and k. We define U by

U “
 

ρ P HompG,Diff1
pMqq : ρpS Y tτ1, . . . , τduq Ď V

(

.

We now fix ρ P U , and we suppress ρ from the notation by writing gpxq :“ ρpgqpxq. Similarly, we write
∆xpgq :“ ∆ρ

xpgq, and we propagate this notation functorially in g and in x.
(1) Let u P S1, so that u can be expressed as a balanced word in S with length at most k0 ă k. We

see from Lemma 2.2 that
‖∆xpuq‖ ď η‖∆xpSq‖.

This proves part (1).
(2) Let u P S1 Y tτ1, . . . , τdu. Since u P V by assumption, we again use Lemma 2.2 to see that∥∥∆xpu

Kq ´K∆xpuq
∥∥ ď η‖∆xpuq‖.

Using the triangle inequality and part (1), we see that

K‖∆xpuq‖ ď
∥∥∆xpu

Kq
∥∥` η‖∆xpuq‖ ď η‖∆xpSq‖` η‖∆xpuq‖.

Since K ě 2, we obtain the desired conclusion as

‖∆xpuq‖ ď
η

K ´ η
‖∆xpSq‖ ď η‖∆xpSq‖.

Part (3) is obvious from the previous parts. For part (4), let us pick an arbitrary sj P S0. From the
expression (3.1) for ψpsjq “ tsjt

´1 and from Lemma 2.2, we can deduce that∥∥∥∥∥∆xpψpsjqq ´
d
ÿ

i“1

αji∆xpsiq ´∆xpτjq

∥∥∥∥∥ ď η‖∆xpS Y tτjuq‖ “ η‖∆xpS0q‖.
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The triangle inequality and the second and third parts of the lemma imply the conclusion of part (4). �

3.2. McCarthy’s Lemma. Retaining previous notation, we have a group G presented as H oψ xty.
Another ingredient for the proof of the main theorem is the following lemma, which was proved by
McCarthy [36, Lemmas 4.1 and 4.2] in the case when H is abelian:

Lemma 3.2 (cf. Lemmas 4.1 and 4.2 of [36]). For all η P p0, 1{3q, there exists a neighborhood U Ď

HompG,Diff1
pMqq of the trivial representation ρ0 such that whenever ρ P U and x PM we have∥∥∥∆ρ

ρpt´1qpxq
pS0q ´A∆ρ

xpS0q

∥∥∥ ď η‖∆ρ
xpS0q‖.

Roughly speaking, under the above hypothesis if we denote the displacement matrix of S0 at x as
v, then Av will be near from the displacement matrix of S0 at t´1x. Thus, one can apply hyperbolic
dynamics to estimate the change of displacement matrices as points are moved under iterations of t:

x ÞÑ t´1x ÞÑ t´2x ÞÑ ¨ ¨ ¨ ÞÑ t´nx ÞÑ ¨ ¨ ¨

Since McCarthy’s arguments concerned the case where H abelian and hence do not apply in this
situation, let us reproduce proofs here which work for general groups.

Proof of Lemma 3.2. Fix η1 P p0, ηq, which will be nailed down later. We pick a sufficiently small neigh-
borhood U Ď HompG,Diff1

pMqq of ρ0, which is at least as small as the set U in Lemma 3.1 for this
choice of η1. We let ρ P U , and again suppress the notation ρ in expressions. We also fix x PM , and set
y :“ t´1x.

Suppose we have s P S0. From the definition of the derivative, we have that

∆xpψpsqq “ ∆typtst
´1q “ tspyq ´ tpyq “ Dytp∆ypsqq ` op}∆ypsq}q.

Replacing U by a smaller neighborhood if necessary, we may assume that (with a slight abuse of notation)

op}∆ypsq}q ă η1}∆ypsq}

in norm, and that N‖Dxt ´ 1‖ ď η1, where here 1 denotes the identity map, and N is the dimension of
the Euclidean space where M is embedded. It then follows that

(3.3) ‖∆xpψpsqq ´∆ypsq‖ ď N‖Dxt´ 1‖ ¨ ‖∆ypsq‖` op∆ypsqq ď 2η1‖∆ypsq‖.
Here, we are using the `8 norm estimate

}Tv} ď N}T }}v}

for arbitrary vectors v and linear maps T : RN Ñ RN .
Applying the triangle inequality, Lemma 3.1 (4) and (3.3), we deduce that

(3.4) ‖∆ypS0q ´A∆xpS0q‖ ď 2η1‖∆ypS0q‖` ‖∆xpψpS0qq ´A∆xpS0q‖ ď 2η1 p‖∆ypS0q‖` ‖∆xpS0q‖q .
From the inequality (3.4), we note that

(3.5) p1´ 2η1q‖∆ypS0q‖ ď ‖A∆xpS0q‖` 2η1‖∆xpS0q‖ ď pd}A} ` 2η1q‖∆xpS0q‖.
We will now choose η1 P p0, ηq sufficiently small so that

ˆ

d}A} ` 2η1

1´ 2η1
` 1

˙

¨ 2η1 ď

ˆ

d}A} ` 2{3

1{3
` 1

˙

¨ 2η1 ď η.

Combining inequalities (3.4) and (3.5) we obtain the desired conclusion as

‖∆ypS0q ´A∆xpS0q‖ ď 2η1
ˆ

d}A} ` 2η1

1´ 2η1
` 1

˙

‖∆xpS0q‖ ď η‖∆xpS0q‖. �

3.3. Finishing the proof. We can now complete the proof of the main result.

Proof of Theorem 1.1. Let ρ be sufficiently near from ρ0. By Lemma 3.1 (3), it suffices for us to prove
that the dˆN matrix ∆xpS0q is equal to 0 for all x PM .

The hyperbolic automorphism ψ˚ on H1pH,Zq induces an invariant splitting

Rd “ ‘di“1Rsi “ E` ‘ E´,

as in Lemma 2.1. We may assume p0 “ 1 in that lemma after replacing ψ˚ by a sufficiently large power;
this is the same as passing to the kernel of the natural map GÑ Z{pZ given by reducing G{H modulo p.

Let us pick x PM such that the quantity

max p‖π`∆zpS0q‖, ‖π´∆zpS0q‖q
is itself maximized at z “ x. Here, π˘ is regarded as a map from ‘Ni“1Rd to ‘Ni“1E

˘.
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For a proof by contradiction, we will suppose that this maximum is nonzero. We may further assume
the maximum occurs for the unstable direction. Since the stable and unstable subspaces of a hyperbolic
matrix are symmetric under inversion, the case where the maximum is in the stable direction is analogous.

Let us choose η P p0, 1{3q and an identity neighborhood U Ď HompG,Diff1
pMqq so that the conclusion

of Lemma 3.2 holds for ρ P U . With this choice, using also the contraction property of π`, we estimate

‖π`∆t´1xpS0q ´ π`A∆xpS0q‖ ď ‖∆t´1xpS0q ´A∆xpS0q‖ ď η‖∆xpS0q‖
ď η p‖π`∆xpS0q‖` ‖π´∆xpS0q‖q ď 2η‖π`∆xpS0q‖.

On the other hand, applying the triangle inequality and Lemma 2.1 (2) we have

‖π`∆t´1xpS0q ´Aπ`∆xpS0q‖ ě ‖Aπ`∆xpS0q‖´ ‖π`∆t´1xpS0q‖ ě 2‖π`∆xpS0q‖´ ‖π`∆t´1xpS0q‖.

Combining the above chains of inequalities, and using that Aπ` “ π`A, we obtain

‖π`∆t´1xpS0q‖ ě 2p1´ ηq‖π`∆xpS0q‖ ą ‖π`∆xpS0q‖.

This contradicts the maximality of our choices. �

4. General group actions and questions

As remarked in the introduction, there is no hope of ruling out highly regular faithful actions of 3–
manifold groups on low dimensional manifolds. Thus, Theorem 1.1 can be viewed as a local rigidity
phenomenon of HompG,Diff1

pMqq near ρ0 rather than as a global statement about this space of actions.
In this section we discuss actions of 3–manifold groups on the circle which are not small, and thus are
much less constrained.

4.1. Universal circle actions. First, we show that for certain types of faithful actions of 3–manifold
groups, some regularity constraints persist. Let T be a fibered 3–manifold with closed, orientable fiber S
and monodromy ψ P ModpS, pq. We assume that χpSq ă 0. Here, we have equipped S with a basepoint
p, and we assume that elements of ModpS, pq preserve p, as do isotopies between them.

We have that π1pSq naturally sits in ModpS, pq as the kernel of the homomorphism ModpS, pq Ñ
ModpSq which forgets the basepoint p [20]. The short exact sequence

1 Ñ π1pSq Ñ ModpS, pq Ñ ModpSq Ñ 1

is known as the Birman Exact Sequence. The mapping class group ModpS, pq has a natural faithful
action on S1 by homeomorphisms, known as Nielsen’s action (see [15]). This action of ModpS, pq is not
conjugate to a C1 action, and even after passing to finite index subgroups it is known not to be conjugate
to a C2 action [18, 3, 31, 39, 34]. Moreover, this action is not absolutely continuous, as can be easily seen
from Proposition 4.1 below. However, one can topologically conjugate Nielsen’s action to a bi-Lipschitz
one; this is a general fact for countable groups acting on the circle [16]. We remark that Nielsen’s action,
as it is constructed by extensions of quasi-isometries of H2 to S1, enjoys a regularity property known as
quasi–symmetry. See [15, 25, 21].

If ψ P ModpS, pq then the conjugation action of ψ on the group

π1pSq “ ker tModpS, pq Ñ ModpSqu

makes the group xψ, π1pSqy isomorphic to π1pT q. We thus obtain an action is called the universal circle
action of π1pT q (see [14]). While it follows that π1pT q admits a natural faithful action on S1 by absolutely
continuous homeomorphisms, the higher regularity properties of this action are somewhat mysterious.

We now give a proof of Proposition 1.5, which asserts that this action is not topologically conjugate
to a C3 action. As stated in the introduction, this result is known from the work of Miyoshi. The proof
of Proposition 1.5 given in [37] follows similar lines to the argument given here. Proposition 1.5 is easily
implied by the following two results:

Proposition 4.1. Let S be a closed surface and ρ : π1pSq Ñ PSL2pRq be a faithful discrete representation.
Then the normalizer of ρpπ1pSqq in HomeoacpS1q is a discrete subgroup of PSL2pRq which contains
ρpπ1pSqq as a finite-index subgroup.

Proof. Let g be an absolutely continuous homeomorphism of the circle which normalizes ρpπ1pSqq. Then
by an argument of Sullivan (see [22, Prop. III.4.1]), we see that g is actually contained in PSL2pRq. Now,
it follows from standard facts about Zariski dense subgroups of simple Lie groups that the normalizer of
a Fuchsian group in PSL2pRq is necessarily Fuchsian [30], and contains the original Fuchsian group with
finite index. �
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Proposition 4.1 in fact implies that every pseudo-Anosov homeomorphism of ModpS, pq, other than
those arising from the copy of π1pSq in the Birman Exact Sequence, fails to act by an absolutely continuous
homeomorphim on S1 under Nielsen’s action.

The following result is known as Ghys’ differentiable rigidity of Fuchsian actions [23].

Theorem 4.2. Let S be a closed surface and let ρ : π1pSq Ñ DiffrpS1q for r ě 3 be a representation
which is topologically conjugate to a Fuchsian subgroup of PSL2pRq. Then ρ is conjugate to a Fuchsian
subgroup of PSL2pRq by a Cr diffeomorphism.

Proposition 1.5 is an immediate consequence of the following, which in turn is an obvious corollary of
Proposition 4.1 and Theorem 4.2.

Proposition 4.3. Let T be a hyperbolic fibered 3-manifold with a fiber S. If an action

ρ : π1pT q “ π1pSqo xty Ñ Homeo`pS1q

satisfies that ρpπ1pSqq is topologically conjugate to a Fuchsian action, then either ρpπ1pSqq ď Diff3
`pS

1q

or ρptq is not absolutely continuous.

We remark that universal circle actions enjoy a strong C0 rigidity property, namely that actions in the
same connected component of the representation variety of π1pT q Ñ Homeo`pS1q are semi-conjugate to
the standard action [8]. In that paper, the precise notion of equivalence is “weak conjugacy”, and not
semi-conjugacy.

4.2. Analytic actions. Finally, we discuss faithful analytic actions of fibered 3–manifold groups on S1.
By Agol’s resolution of the virtual fibering conjecture [1], we have that every hyperbolic 3–manifold
virtually fibers over the circle. Thus, if Γ ă PSL2pCq is discrete (i.e. a Kleinian group) with finite
covolume, then Γ has a finite index subgroup which is π1pT q for some fibered 3–manifold T . Now, if the
matrix entries of Γ are contained in a number field K Ą Q such that K has a real place (i.e. a Galois
embedding σ : K Ñ C such that σpKq Ď R), then Γ can be identified with a subgroup of PSL2pRq.

Therefore, in order to establish Proposition 1.6, it suffices to produce such a Kleinian group. If Γ has
matrix entries in a field K of odd degree over Q then K has at least one real place, since the number of
complex places is even. Many such arithmetic Kleinian groups of finite covolume exist; see Section 13.7
of [33], for example.

4.3. Questions. There are several natural questions which arise from the discussion in this paper.

Question 4.4 (J. Souto). Let T be a fibered 3–manifold and let G “ π1pT q. Is there a finite index
subgroup G0 ă G such that G0 ă Diff2

pIq? What about G0 ă Diff8pIq?

In [35], Marquis and Souto constructed a faithful C8 action of closed orientable surface groups, for
genus g ě 2, on the unit interval.

Question 4.5. Is the universal circle action of a fibered 3–manifold group topologically conjugate to a
C1 action?

In other words, Question 4.5 asks if we can replace the C3 conclusion in Proposition 1.5 with a C1

conclusion. We note that for arbitrary α ă 1, there are C1`α actions of π1pSq that are C0 conjugate to a
Fuchsian action, but that are not conjugate to a Fuchsian action by an absolutely continuous homeomor-
phism; see [26]. Other instances of this phenomenon arise from the theory of Hitchin representations [9].
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