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Introduction

In this paper, we consider smooth actions of finitely generated-by-cyclic groups on compact manifolds, motivated by the study of fibered hyperbolic 3-manifold groups. We let S be a compact, orientable surface of negative Euler characteristic, possibly with boundary. Thus, π 1 pSq is either a finitely generated free group, or the fundamental group of a closed surface of genus g for some g ě 2. If φ P HomeopSq is a (possibly orientation reversing) homeomorphism, then we may form T " T φ , the mapping torus of φ. We have that π 1 pT q fits into a short exact sequence of the form

1 Ñ π 1 pSq Ñ π 1 pT q Ñ Z Ñ 1,
where the conjugation action of Z on π 1 pSq is by the induced action of φ. It is well-known that, up to an inner automorphism of π 1 pSq, this action depends only on the homotopy class of φ, and is therefore an invariant of the (extended) mapping class of φ. It follows that the isomorphism type of π 1 pT q depends only on the mapping class of φ.

Fibered 3-manifold groups fall into a much larger class of groups which we will be able to investigate with our methods. Here and throughout, we will let M be a compact Riemannian manifold. Recall a short exact sequence of finitely generated groups 1 Ñ H Ñ G Ñ Z Ñ 1 naturally determines ψ P OutpHq, and hence, induces a unique automorphism ψ ˚of H 1 pH, Rq. Abstractly as groups, we have that G -H ψ Z, and the outer automorphism ψ is given by the conjugation action of Z -G{H on H. The map ψ ˚is said to be hyperbolic if every eigenvalue of ψ ˚has modulus different from one. We will study HompG, Diff 1 pM qq, the space of C 1 actions on M . 1.1. Main result. We will use the symbol 1 to mean the identity map, the trivial group, the identity group element or the real number 1 depending on the context, as it will not cause confusion. The principal result of this paper is the following: Theorem 1.1. Suppose we have a short exact sequence of finitely generated groups

1 Ñ H Ñ G Ñ Z Ñ 1,
which induces a nontrivial hyperbolic automorphism ψ ˚of H 1 pH, Rq. Then there exists a neighborhood U Ď HompG, Diff 1 pM qq of the trivial representation such that ρpHq " 1 for all ρ P U.

Thus, sufficiently small actions of G on compact manifolds necessarily factor through cyclic groups, provided the monodromy maps are hyperbolic on cohomology. The reader is directed to Subsection 2.1 for a discussion of the topology on HompG, Diff 1 pM qq. Theorem 1.1 may be viewed as an analogue of a result of A. McCarthy [START_REF] Mccarthy | Rigidity of trivial actions of abelian-by-cyclic groups[END_REF], who proved a statement with the same conclusion for abelian-by-cyclic groups.

For certain manifolds and with certain natural hypotheses, abelian-by-cyclic group actions by diffeomorphisms enjoy rather strong rigidity properties [START_REF] Hurtado | A Tits alternative for surface group diffeomorphisms and abelian-by-cyclic actions on surfaces containing an Anosov diffeomorphism[END_REF].

Note that if H is a left-orderable group then it is not difficult to find a faithful action of G by homeomorphisms of r0, 1s which is arbitrarily close to the identity, so the C 1 regularity assumption in Theorem 1.1 is essential.

By applying Theorem 1.1 to the above short exact sequence for a fibered 3-manifold group, we obtain the following result.

Corollary 1.2. Let S, φ, and T be as above. If φ induces a hyperbolic automorphism of H 1 pS, Rq, then there exists a neighborhood U of the trivial representation in Hompπ 1 pT q, Diff 1 pM qq such that ρpHq " 1 for all ρ P U.

The hypotheses in Theorem 1.1 may be contrasted with the following result of Bonatti-Rezaei [START_REF] Bonatti | Residually torsion-free nilpotent groups are C 1 -close to the identity[END_REF], which generalizes some work of Farb-Franks [START_REF]Groups of homeomorphisms of one-manifolds. III. Nilpotent subgroups, Ergodic Theory Dynam[END_REF] and Jorquera [START_REF] Jorquera | A universal nilpotent group of C 1 diffeomorphisms of the interval[END_REF].

Theorem 1.3 (Bonatti-Rezaei). Every finitely generated, residually torsion-free nilpotent group G admits a faithful representation ρ : G Ñ Diff 1 pr0, 1sq that is C 1 -close to the identity.

Here, a group is residually torsion-free nilpotent if every nontrivial element g P G survives in a torsionfree nilpotent quotient of G. An element ρ P HompG, Diff 1 pM qq is said to be C 1 -close to the identity if for every ą 0, there is an element h " h P Diff 1 pM q such that h conjugates ρ into an -neighborhood of the trivial representation of G, in the C 1 -topology on HompG, Diff 1 pM qq.

It is not difficult to check that if G satisfies the hypotheses of Theorem 1.1 then the only torsion-free nilpotent quotient admitted by G is Z " G{H. Thus, the hyperbolicity of the map ψ ˚plays a crucial role in the dynamics of the group G.

1.2. Unipotent monodromy maps and virtually special groups. An essential feature of Theorem 1.1 is its "unstable" nature, in the sense that it does not remain true after passing to finite index subgroups of G. Indeed, we have the following fairly easy fact: Proposition 1.4. Let N be a hyperbolic 3-manifold with finite volume. Then a finite index subgroup of π 1 pN q admits a faithful representation ρ into Diff 1 pM q such that ρ is C 1 -close to the identity.

Proof. By the work of Agol and Wise [START_REF] Agol | The virtual Haken conjecture[END_REF][START_REF] Wise | The structure of groups with a quasiconvex hierarchy[END_REF], there is a finite index subgroup G 0 ă G such that G 0 is special. In particular, G 0 embeds in a right-angled Artin group. These groups are always residually torsion-free nilpotent [START_REF] Duchamp | The lower central series of the free partially commutative group[END_REF]. Thus, the proposition follows from Theorem 1.3.

Thus if G is a group satisfying the hypotheses of Theorem 1.1, then passing to a finite index subgroup G 0 , one often obtains a group satisfying the hypotheses of Theorem 1.3. In such a case, one can build a C 1 action of G on n copies of r0, 1s, where here n " rG : G 0 s, by an analogue of the induced representation of a finite index subgroup. Such an action will permute the components of this manifold transitively. This does not contradict Theorem 1.1, since any such action will be outside of a fixed neighborhood of the trivial representation of G.

One can produce many fibered 3-manifold groups, even hyperbolic ones, which are residually torsionfree nilpotent, without using the deep results of Agol and Wise. Indeed, it suffices to use monodromy maps φ such that φ ˚is unipotent (i.e. has all eigenvalues equal to one). In this case, the resulting G will always be residually torsion-free nilpotent [START_REF] Koberda | Residual properties of fibered and hyperbolic 3-manifolds[END_REF]. In fact, a semidirect product of Z with a finitely generated, residually torsion-free nilpotent group H will again be residually torsion-free nilpotent if the Z-action on H 1 pH, Rq is unipotent.

It is not true that if G is residually torsion-free nilpotent then ψ ˚is unipotent. Indeed, considering a fibered hyperbolic 3-manifold group π 1 pT q satisfying the hypotheses of Theorem 1.1 and passing to a finite index subgroup which is special, we can obtain a new mapping torus structure on a finite cover T 0 of T with monodromy φ 0 , and with a fiber S 0 which covers S. The action of φ 0 on H 1 pS 0 , Rq will not be unipotent, since H 1 pS, Rq will naturally sit inside H 1 pS 0 , Rq via pullback and will be invariant under φ 0 .

The regularity assumption in Theorem 1.3 is subtle. Nonabelian nilpotent groups cannot admit faithful C 2 actions on any compact one-manifold [START_REF] Plante | Polynomial growth in holonomy groups of foliations[END_REF]. Right-angled Artin groups and specialness do not provide any help in producing higher regularity actions, since in dimension one they almost never admit faithful C 2 actions on compact manifolds [START_REF]Unsmoothable group actions on compact one-manifolds[END_REF][START_REF] Kim | Free products and the algebraic structure of diffeomorphism groups[END_REF]. The compactness of the manifold acted upon here is also essential; see [START_REF] Baik | Right-angled Artin groups in the C 8 diffeomorphism group of the real line[END_REF]. 1.3. General group actions on compact manifolds. A robust trend in the theory of group actions on manifolds is that "large" groups should not act on "small" manifolds. Among the striking results in this area are the facts that irreducible lattices in higher rank semisimple Lie groups do not admit infinite image C 1 actions (and often even C 0 actions) on compact 1-manifolds [START_REF] Burger | Bounded cohomology of lattices in higher rank Lie groups[END_REF][START_REF]Actions de réseaux sur le cercle[END_REF][START_REF] Morris | Arithmetic groups of higher Q-rank cannot act on 1-manifolds[END_REF]. For higher dimensional manifolds, the work of Brown-Fisher-Hurtado shows that for n ě 3, groups commensurable with SL n pZq do not admit faithful C 1 actions on m-dimensional compact manifolds for m ă n ´2, and for m ă n ´1 if the actions preserve a volume form [START_REF]Zimmer's conjecture for actions of SLpm[END_REF]. They obtain similar results for cocompact lattices in SL n pRq, Sp 2n pRq, SOpn, nq, and SOpn, n `1q [START_REF] Brown | Zimmer's conjecture: Subexponential growth, measure rigidity, and strong property (T)[END_REF].

Lattices in rank one Lie groups often do admit faithful smooth actions on compact one manifolds. By [START_REF] Bergeron | Hyperplane sections in arithmetic hyperbolic manifolds[END_REF], many arithmetic lattices in SOpn, 1q are virtually special, which by virtue of Proposition 1.4 furnishes many faithful C 1 actions by such lattices.

McCarthy's result [START_REF] Mccarthy | Rigidity of trivial actions of abelian-by-cyclic groups[END_REF] furnishes a class of solvable groups which admit no small C 1 actions on compact manifolds whatsoever. Topologically, her groups arise as fundamental groups of torus bundles over the circle, with no restrictions on the dimension. Our main result identifies a larger class of such groups, including ones within the much more dimensionally restricted and algebraically different class of compact 3-manifolds groups. For fibered 3-manifolds groups acting without at least some smallness assumptions, we can only make much weaker statements: Proposition 1.5. If T is a hyperbolic fibered 3-manifold, then the universal circle action of π 1 pT q on S 1 is not topologically conjugate to a C 3 action. Proposition 1.5 follows immediately from the work of Miyoshi [START_REF] Miyoshi | On foliated circle bundles over closed orientable 3-manifolds[END_REF]. We will deduce Proposition 1.5 from a stronger fact (Proposition 4.3) in Section 4 for the convenience of the reader.

There is no hope of establishing a result as sweeping as the Brown-Fisher-Hurtado resolution of many cases of the Zimmer Conjecture for 3-manifold groups acting on the circle, even with maximal regularity assumptions: Proposition 1.6 (e.g. [START_REF] Calegari | Real places and torus bundles[END_REF]). There exist finite volume hyperbolic 3-manifold subgroups of PSL 2 pRq.

Any such groups act by projective (and hence analytic) diffeomorphisms on S 1 . We remark that Proposition 1.6 seems well-known to experts. 1.4. Uniqueness of the presentation of G. We remark briefly that if G " π 1 pT q satisfies the hypotheses of Corollary 1.2 then there is an essentially unique homomorphism G Ñ Z whose kernel is isomorphic to a finitely generated group, and in particular the fibered 3-manifold structure on T is unique (see [START_REF]A norm for the homology of 3-manifolds[END_REF][START_REF] Stallings | On fibering certain 3-manifolds, Topology of 3-manifolds and related topics[END_REF]). Thus, the induced map ψ ˚is canonically defined, and one may therefore speak of the monodromy action. For fibered 3-manifold groups with b 1 ą 1 this is no longer the case.

Preliminaries

In this section, we gather the tools we will need to establish the principal result of this paper.

2.1. The space of C 1 actions of G. Recall that in our notation, M denotes a fixed compact Riemannian manifold. We denote by Diff 1 pM q the group of C 1 -diffeomorphisms of M . For f P Diff 1 pM q, we will write

D x f : T x M Ñ T f pxq M
for the Jacobian of f . It will be convenient for us to assume that M is C 1 -isometrically embedded in a Euclidean space R N for some N " 0. This is always possible, by the Nash Embedding Theorem [START_REF] Nash | C 1 isometric imbeddings[END_REF]. For brevity, we let }X} denote the 8 norm when X is a function, a vector, a matrix or a tensor. We may replace distances in M by distances in R N , and the Jacobian acquires the 8 -norm }D x f } as a multi-linear map. Note that if V -R N is a vector space equipped with the 8 norm and T P EndpV q, then we have the estimate }T v} ď N }T }}v} for all v P V . We will make use of this estimate in the sequel.

We define the C 1 -metric on Diff 1 pM q by dpf, gq " f ´g `sup

xPM D x f ´Dx g ,
where all these distances and norms are now interpreted in the ambient Euclidean space. If G is generated by a finite set S, then we may define a metric d S on HompG, Diff 1 pM qq via d S pρ, ρ 1 q " max sPS dpρpsq, ρ 1 psqq.

This metric d S determines the C 1 -topology of HompG, Diff 1 pM qq, and this topology is independent of the choice of the generating set S.

For an arbitrary group G, we will write ρ 0 P HompG, Diff 1 pM qq for the trivial representation of G. We see that in order to prove Theorem 1.1, it suffices to find some ą 0 such that every ρ P HompG, Diff 1 pM qq satisfying d S pρ, ρ 0 q ă maps H to the identity 1.

Hyperbolic monodromies.

Here, we recall some basic facts from linear algebra of hyperbolic automorphisms of a real vector space. Let V be a d-dimensional vector space over R, and let } ¨}d be a fixed norm on V . If A P GLpV q, we say that A is hyperbolic if every eigenvalue of A has modulus different from one.

Lemma 2.1. Let A P GLpV q be hyperbolic. Then there is an A-invariant splitting V " E ´' E `and a positive integer p 0 such that the following conclusions hold for all p ě p 0 :

(1) if v P E ´then }A p v} d ď 1 2 }v} d ; (2) if v P E `then }A p v} d ě 2}v} d .
We omit the proof of the lemma, which is well-known; see [29, Chapter 1] for instance. As is standard from dynamics, E ´and E `are the stable and unstable subspaces of V associated to A. In the sequel, we will use the notation π `and π ´to denote projections V Ñ E `and V Ñ E ´with kernels E ´and E `respectively. Observe that invariance of the splitting implies that A commutes with each projection π `and π ´.

Approximate linearization.

A fundamental tool for proving Theorem 1.1 is the following result of Bonatti [START_REF] Bonatti | Feuilletages proches d'une fibration, Ensaios Matemáticos[END_REF][START_REF] Bonatti | Rigidity for C 1 actions on the interval arising from hyperbolicity I: solvable groups[END_REF], which arose as an interpretation of Thurston Stability [START_REF] Thurston | A generalization of the Reeb stability theorem[END_REF], and which we refer to as approximate linearization.

Lemma 2.2. Let M be a compact manifold, let η ą 0, and let k P N. Then there exists a neighborhood of the identity U Ď Diff 1 pM q such that for all x P M , for all f 1 , . . . , f k P U and for all 1 , . . . , k P t´1, 1u, we have the following:

› › › › › f k k ˝¨¨¨˝f 1 1 pxq ´x ´k ÿ i"1 i pf i pxq ´xq › › › › › ď η max i"1,...,k }f i pxq ´x} .
Throughout the rest of this paper, we will often suppress the notation ρ P HompG, Diff 1 pM qq and just write gx " gpxq " ρpgqpxq for g P G and x P M . We define a displacement vector for g at x as ∆ ρ

x pgq :" ρpgqpxq ´x, regarded as an N -dimensional row vector. More generally, if B " tb 1 , . . . , b n u Ď G is a finite set then we define an n ˆN matrix ∆ ρ x pBq :" p∆ ρ x pb i qq 1ďiďn . We often write ∆ x for ∆ ρ

x when the meaning is clear. Then the above lemma asserts that

∆ x pg k k ˝¨¨¨˝g 1 1 q ´k ÿ i"1 i ∆ x pg i q ď η ∆ x ptg 1 , . . . , g k uq ,
in the case when g i P G and ρpg i q P U.

2.4.

First homology and cohomology groups. We briefly recall for the reader unfamiliar with group homology that the first homology group of a group H is given by the abelianization H 1 pH, Zq " H{rH, Hs.

When R P tZ, Ru, the first cohomology group H 1 pH, Rq coincides with the abelian group of homomorphisms from H to R. In particular, H 1 pH, Zq is a free abelian group of the same rank as H 1 pH, Zq.

Proof of Theorem 1.1

We are now ready to give a proof of Theorem 1.1. For this, we will fix ψ P AutpHq such that G can be written as G " xH, t | tht ´1 " ψphq for all h P Hy.

3.1. Reducing to homologically independent generators. We first establish Lemma 3.1 below, which will say that we may more or less assume that H is finitely generated and free abelian. Let d ě 1 be the rank of H 1 pH, Zq. We can find a finite generating set

S " S 0 \ S 1
of H such that all of the following hold.

' The image of S 0 in H 1 pH, Zq " H{rH, Hs is a basis for the free part. ' The image of each element in S 1 is torsion or trivial in H 1 pH, Zq. We pick K ě 2 so that τ K " 0 for all

τ P kertH 1 pH, Zq Ñ H 1 pH, Rq " H 1 pH, Zq b Z Ru,
where here the map between the homology groups is the tensoring map. We enumerate S 0 " ts 1 , s 2 , . . . , s d u, and regard S 0 as an ordered set. Let A :" pα ij q be the matrix of the hyperbolic linear map

ψ ˚: H 1 pH, Zq Ñ H 1 pH, Zq
with respect to the basis which is dual to S 0 , viewed as real homology classes. The action ψ ˚on H 1 pH, Zq is then given by the transpose pα ji q. In this case, we can write each ψps j q as (3.1) ψps j q " ts j t ´1 "

d ź i"1 s αji i τ j
for some τ j P H such that τ K j P rH, Hs. It will be convenient for us to define a set S 1 :" tu K : u P S 1 Y tτ 1 , . . . , τ d uu Ď rH, Hs.

Observe that each h P rH, Hs can be expressed as a product of commutators in S. It follows that h can be expressed as a balanced word in S, which is to say that all generators in S occur with exponent sum zero. Since S 1 Ď rH, Hs, we can find an integer k 0 ě K such that every element in S 1 is a balanced word of length at most k 0 in S. Recall our convention }A} :" max i,j |α ij |. We set

(3.2) k :" k 0 `d}A}. Lemma 3.1. Let 0 ă η ă 1.
Then there exists a neighborhood U Ď HompG, Diff 1 pM qq of ρ 0 such that each of the following relations hold for all ρ P U and x P M .

(1) ∆ ρ x pS 1 q ď η ∆ ρ x pSq ; (2) ∆ ρ

x pS 1 Y tτ 1 , . . . , τ d uq ď η ∆ ρ x pSq ; (3) ∆ ρ

x pSq " ∆ ρ x pS 0 q ; (4) ∆ ρ

x pψpS 0 qq ´A∆ ρ x pS 0 q ď 2η ∆ ρ x pS 0 q . Proof. Let k be defined as in (3.2). We have an identity neighborhood V Ď Diff 1 pM q furnished by Lemma 2.2 for η and k. We define U by U " ρ P HompG, Diff 1 pM qq : ρpS Y tτ 1 , . . . , τ d uq Ď V ( .

We now fix ρ P U, and we suppress ρ from the notation by writing gpxq :" ρpgqpxq. Similarly, we write ∆ x pgq :" ∆ ρ x pgq, and we propagate this notation functorially in g and in x. (1) Let u P S 1 , so that u can be expressed as a balanced word in S with length at most k 0 ă k. We see from Lemma 2.2 that ∆ x puq ď η ∆ x pSq . This proves part (1).

(2) Let u P S 1 Y tτ 1 , . . . , τ d u. Since u P V by assumption, we again use Lemma 2.2 to see that

∆ x pu K q ´K∆ x puq ď η ∆ x puq .
Using the triangle inequality and part (1), we see that

K ∆ x puq ď ∆ x pu K q `η ∆ x puq ď η ∆ x pSq `η ∆ x puq .
Since K ě 2, we obtain the desired conclusion as

∆ x puq ď η K ´η ∆ x pSq ď η ∆ x pSq .
Part (3) is obvious from the previous parts. For part (4), let us pick an arbitrary s j P S 0 . From the expression (3.1) for ψps j q " ts j t ´1 and from Lemma 2.2, we can deduce that ∆ x pψps j qq ´d ÿ

i"1 α ji ∆ x ps i q ´∆x pτ j q ď η ∆ x pS Y tτ j uq " η ∆ x pS 0 q .

The triangle inequality and the second and third parts of the lemma imply the conclusion of part (4). ). For all η P p0, 1{3q, there exists a neighborhood U Ď HompG, Diff 1 pM qq of the trivial representation ρ 0 such that whenever ρ P U and x P M we have ∆ ρ ρpt ´1qpxq pS 0 q ´A∆ ρ x pS 0 q ď η ∆ ρ x pS 0 q .

Roughly speaking, under the above hypothesis if we denote the displacement matrix of S 0 at x as v, then Av will be near from the displacement matrix of S 0 at t ´1x. Thus, one can apply hyperbolic dynamics to estimate the change of displacement matrices as points are moved under iterations of t:

x Þ Ñ t ´1x Þ Ñ t ´2x Þ Ñ ¨¨¨Þ Ñ t ´nx Þ Ñ ¨¨S
ince McCarthy's arguments concerned the case where H abelian and hence do not apply in this situation, let us reproduce proofs here which work for general groups.

Proof of Lemma 3.2. Fix η 1 P p0, ηq, which will be nailed down later. We pick a sufficiently small neighborhood U Ď HompG, Diff 1 pM qq of ρ 0 , which is at least as small as the set U in Lemma 3.1 for this choice of η 1 . We let ρ P U, and again suppress the notation ρ in expressions. We also fix x P M , and set y :" t ´1x.

Suppose we have s P S 0 . From the definition of the derivative, we have that ∆ x pψpsqq " ∆ ty ptst ´1q " tspyq ´tpyq " D y tp∆ y psqq `op}∆ y psq}q.

Replacing U by a smaller neighborhood if necessary, we may assume that (with a slight abuse of notation) op}∆ y psq}q ă η 1 }∆ y psq} in norm, and that N D x t ´1 ď η 1 , where here 1 denotes the identity map, and N is the dimension of the Euclidean space where M is embedded. It then follows that (3.3) ∆ x pψpsqq ´∆y psq ď N D x t ´1 ¨ ∆ y psq `op∆ y psqq ď 2η 1 ∆ y psq .

Here, we are using the 8 norm estimate }T v} ď N }T }}v} for arbitrary vectors v and linear maps T : R N Ñ R N . Applying the triangle inequality, Lemma 3.1 (4) and (3.3), we deduce that (3.4) ∆ y pS 0 q ´A∆ x pS 0 q ď 2η 1 ∆ y pS 0 q ` ∆ x pψpS 0 qq ´A∆ x pS 0 q ď 2η 1 p ∆ y pS 0 q ` ∆ x pS 0 q q .

From the inequality (3.4), we note that (3.5) p1 ´2η 1 q ∆ y pS 0 q ď A∆ x pS 0 q `2η 1 ∆ x pS 0 q ď pd}A} `2η 1 q ∆ x pS 0 q .

We will now choose η 1 P p0, ηq sufficiently small so that ˆd}A} `2η

1 1 ´2η 1 `1˙¨2 η 1 ď ˆd}A} `2{3 1{3 `1˙¨2 η 1 ď η.
Combining inequalities (3.4) and (3.5) we obtain the desired conclusion as ∆ y pS 0 q ´A∆ x pS 0 q ď 2η 1 ˆd}A} `2η 1 1 ´2η 1 `1˙ ∆ x pS 0 q ď η ∆ x pS 0 q .

3.3. Finishing the proof. We can now complete the proof of the main result.

Proof of Theorem 1.1. Let ρ be sufficiently near from ρ 0 . By Lemma 3.1 (3), it suffices for us to prove that the d ˆN matrix ∆ x pS 0 q is equal to 0 for all x P M . The hyperbolic automorphism ψ ˚on H 1 pH, Zq induces an invariant splitting

R d " ' d i"1 Rs i " E `' E ´,
as in Lemma 2.1. We may assume p 0 " 1 in that lemma after replacing ψ ˚by a sufficiently large power; this is the same as passing to the kernel of the natural map G Ñ Z{pZ given by reducing G{H modulo p.

Let us pick x P M such that the quantity max p π `∆z pS 0 q , π ´∆z pS 0 q q is itself maximized at z " x. Here, π ˘is regarded as a map from

' N i"1 R d to ' N i"1 E ˘.
For a proof by contradiction, we will suppose that this maximum is nonzero. We may further assume the maximum occurs for the unstable direction. Since the stable and unstable subspaces of a hyperbolic matrix are symmetric under inversion, the case where the maximum is in the stable direction is analogous.

Let us choose η P p0, 1{3q and an identity neighborhood U Ď HompG, Diff 1 pM qq so that the conclusion of Lemma 3.2 holds for ρ P U. With this choice, using also the contraction property of π `, we estimate π `∆t ´1x pS 0 q ´π`A ∆ x pS 0 q ď ∆ t ´1x pS 0 q ´A∆ x pS 0 q ď η ∆ x pS 0 q ď η p π `∆x pS 0 q ` π ´∆x pS 0 q q ď 2η π `∆x pS 0 q .

On the other hand, applying the triangle inequality and Lemma 2.1 (2) we have π `∆t ´1 x pS 0 q ´Aπ `∆x pS 0 q ě Aπ `∆x pS 0 q ´ π `∆t ´1 x pS 0 q ě 2 π `∆x pS 0 q ´ π `∆t ´1x pS 0 q .

Combining the above chains of inequalities, and using that Aπ `" π `A, we obtain π `∆t ´1x pS 0 q ě 2p1 ´ηq π `∆x pS 0 q ą π `∆x pS 0 q . This contradicts the maximality of our choices.

General group actions and questions

As remarked in the introduction, there is no hope of ruling out highly regular faithful actions of 3manifold groups on low dimensional manifolds. Thus, Theorem 1.1 can be viewed as a local rigidity phenomenon of HompG, Diff 1 pM qq near ρ 0 rather than as a global statement about this space of actions. In this section we discuss actions of 3-manifold groups on the circle which are not small, and thus are much less constrained. 4.1. Universal circle actions. First, we show that for certain types of faithful actions of 3-manifold groups, some regularity constraints persist. Let T be a fibered 3-manifold with closed, orientable fiber S and monodromy ψ P ModpS, pq. We assume that χpSq ă 0. Here, we have equipped S with a basepoint p, and we assume that elements of ModpS, pq preserve p, as do isotopies between them.

We have that π 1 pSq naturally sits in ModpS, pq as the kernel of the homomorphism ModpS, pq Ñ ModpSq which forgets the basepoint p [START_REF] Farb | A primer on mapping class groups[END_REF]. The short exact sequence 1 Ñ π 1 pSq Ñ ModpS, pq Ñ ModpSq Ñ 1 is known as the Birman Exact Sequence. The mapping class group ModpS, pq has a natural faithful action on S 1 by homeomorphisms, known as Nielsen's action (see [START_REF] Casson | Automorphisms of surfaces after Nielsen and Thurston[END_REF]). This action of ModpS, pq is not conjugate to a C 1 action, and even after passing to finite index subgroups it is known not to be conjugate to a C 2 action [START_REF] Farb | Groups of homeomorphisms of one-manifolds, I: actions of nonlinear groups[END_REF][START_REF]Unsmoothable group actions on compact one-manifolds[END_REF][START_REF] Kim | Free products and the algebraic structure of diffeomorphism groups[END_REF][START_REF] Parwani | C 1 actions on the mapping class groups on the circle[END_REF][START_REF] Mann | Rigidity of mapping class group actions on S 1[END_REF]. Moreover, this action is not absolutely continuous, as can be easily seen from Proposition 4.1 below. However, one can topologically conjugate Nielsen's action to a bi-Lipschitz one; this is a general fact for countable groups acting on the circle [START_REF] Deroin | Sur la dynamique unidimensionnelle en régularité intermédiaire[END_REF]. We remark that Nielsen's action, as it is constructed by extensions of quasi-isometries of H 2 to S 1 , enjoys a regularity property known as quasi-symmetry. See [START_REF] Casson | Automorphisms of surfaces after Nielsen and Thurston[END_REF][START_REF] Handel | New proofs of some results of Nielsen[END_REF][START_REF] Farb | The geometry of surface-by-free groups[END_REF].

If ψ P ModpS, pq then the conjugation action of ψ on the group π 1 pSq " ker tModpS, pq Ñ ModpSqu makes the group xψ, π 1 pSqy isomorphic to π 1 pT q. We thus obtain an action is called the universal circle action of π 1 pT q (see [START_REF]Foliations and the geometry of 3-manifolds[END_REF]). While it follows that π 1 pT q admits a natural faithful action on S 1 by absolutely continuous homeomorphisms, the higher regularity properties of this action are somewhat mysterious. We now give a proof of Proposition 1.5, which asserts that this action is not topologically conjugate to a C 3 action. As stated in the introduction, this result is known from the work of Miyoshi. The proof of Proposition 1.5 given in [START_REF] Miyoshi | On foliated circle bundles over closed orientable 3-manifolds[END_REF] follows similar lines to the argument given here. Proposition 1.5 is easily implied by the following two results: Proposition 4.1. Let S be a closed surface and ρ : π 1 pSq Ñ PSL 2 pRq be a faithful discrete representation. Then the normalizer of ρpπ 1 pSqq in Homeo ac pS 1 q is a discrete subgroup of PSL 2 pRq which contains ρpπ 1 pSqq as a finite-index subgroup.

Proof. Let g be an absolutely continuous homeomorphism of the circle which normalizes ρpπ 1 pSqq. Then by an argument of Sullivan (see [START_REF] Ghys | Actions localement libres du groupe affine[END_REF]Prop. III.4.1]), we see that g is actually contained in PSL 2 pRq. Now, it follows from standard facts about Zariski dense subgroups of simple Lie groups that the normalizer of a Fuchsian group in PSL 2 pRq is necessarily Fuchsian [START_REF] Katok | Fuchsian groups[END_REF], and contains the original Fuchsian group with finite index.

  3.2. McCarthy's Lemma. Retaining previous notation, we have a group G presented as H ψ xty. Another ingredient for the proof of the main theorem is the following lemma, which was proved by McCarthy [36, Lemmas 4.1 and 4.2] in the case when H is abelian: Lemma 3.2 (cf. Lemmas 4.1 and 4.2 of [36]
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Proposition 4.1 in fact implies that every pseudo-Anosov homeomorphism of ModpS, pq, other than those arising from the copy of π 1 pSq in the Birman Exact Sequence, fails to act by an absolutely continuous homeomorphim on S 1 under Nielsen's action.

The following result is known as Ghys' differentiable rigidity of Fuchsian actions [START_REF]Rigidité différentiable des groupes fuchsiens[END_REF].

Theorem 4.2. Let S be a closed surface and let ρ : π 1 pSq Ñ Diff r pS 1 q for r ě 3 be a representation which is topologically conjugate to a Fuchsian subgroup of PSL 2 pRq. Then ρ is conjugate to a Fuchsian subgroup of PSL 2 pRq by a C r diffeomorphism.

Proposition 1.5 is an immediate consequence of the following, which in turn is an obvious corollary of Proposition 4.1 and Theorem 4.2.

Proposition 4.3. Let T be a hyperbolic fibered 3-manifold with a fiber S. If an action ρ : π 1 pT q " π 1 pSq xty Ñ Homeo `pS 1 q satisfies that ρpπ 1 pSqq is topologically conjugate to a Fuchsian action, then either ρpπ 1 pSqq ď Diff 3 `pS 1 q or ρptq is not absolutely continuous.

We remark that universal circle actions enjoy a strong C 0 rigidity property, namely that actions in the same connected component of the representation variety of π 1 pT q Ñ Homeo `pS 1 q are semi-conjugate to the standard action [START_REF] Bowden | C 0 stability of boundary actions and inequivalent Anosov flows[END_REF]. In that paper, the precise notion of equivalence is "weak conjugacy", and not semi-conjugacy. 4.2. Analytic actions. Finally, we discuss faithful analytic actions of fibered 3-manifold groups on S 1 . By Agol's resolution of the virtual fibering conjecture [START_REF] Agol | The virtual Haken conjecture[END_REF], we have that every hyperbolic 3-manifold virtually fibers over the circle. Thus, if Γ ă PSL 2 pCq is discrete (i.e. a Kleinian group) with finite covolume, then Γ has a finite index subgroup which is π 1 pT q for some fibered 3-manifold T . Now, if the matrix entries of Γ are contained in a number field K Ą Q such that K has a real place (i.e. a Galois embedding σ : K Ñ C such that σpKq Ď R), then Γ can be identified with a subgroup of PSL 2 pRq.

Therefore, in order to establish Proposition 1.6, it suffices to produce such a Kleinian group. If Γ has matrix entries in a field K of odd degree over Q then K has at least one real place, since the number of complex places is even. Many such arithmetic Kleinian groups of finite covolume exist; see Section 13.7 of [START_REF] Maclachlan | The arithmetic of hyperbolic 3-manifolds[END_REF], for example.

4.3.

Questions. There are several natural questions which arise from the discussion in this paper. Question 4.4 (J. Souto). Let T be a fibered 3-manifold and let G " π 1 pT q. Is there a finite index subgroup G 0 ă G such that G 0 ă Diff 2 pIq? What about G 0 ă Diff 8 pIq?

In [START_REF] Marquis | Surface groups of diffeomorphisms of the interval[END_REF], Marquis and Souto constructed a faithful C 8 action of closed orientable surface groups, for genus g ě 2, on the unit interval. Question 4.5. Is the universal circle action of a fibered 3-manifold group topologically conjugate to a C 1 action?

In other words, Question 4.5 asks if we can replace the C 3 conclusion in Proposition 1.5 with a C 1 conclusion. We note that for arbitrary α ă 1, there are C 1`α actions of π 1 pSq that are C 0 conjugate to a Fuchsian action, but that are not conjugate to a Fuchsian action by an absolutely continuous homeomorphism; see [START_REF] Hurder | Differentiability, rigidity and Godbillon-Vey classes for Anosov flows[END_REF]. Other instances of this phenomenon arise from the theory of Hitchin representations [START_REF] Bridgeman | Simple root flows for Hitchin representations[END_REF].