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ABSTRACT: Renewable Energies (RES) penetration is progressing rapidly: in France, the installed capacity of 

photovoltaic (PV) power rose from 26MW in 2007 to 8GW in 2017 [1]. Power generated by PV plants being highly 

dependent on variable weather conditions, this ever-growing pace is raising issues regarding grid stability and 

revenue optimization. To overcome these obstacles, PV forecasting became an area of intense research. In this paper, 

we propose a low complexity forecasting model able to operate with multiple heterogenous sources of data (power 

measurements, satellite images and Numerical Weather Predictions (NWP)). Being non-parametric, this model can be 

extended to include   inputs. The main strength of the proposed model lies in its ability to automatically select 

the optimal sources of data according to the desired forecast horizon (from 15min to 6h ahead) thanks to a feature 

selection procedure. To take advantage of the growing number of PV plants, a Spatio-Temporal (ST) approach is 

implemented. This approach considers the dependencies between spatially distributed plants. Each source has been 

studied incrementally so as to quantify their impact on forecast performances. This plurality of sources enhances the 

forecasting performances up to 40% in terms of RMSE compared to a reference model. The evaluation process is 

carried out on nine PV plants from the Compagnie Nationale du Rhône (CNR).  

Keywords: PV System, Forecast, NWP, Satellite Images 

 

 

1 INTRODUCTION 

 

 Over the past years, environmental concerns and 

sustainable development have played a key role in the 

development of renewable energies sources (RES) in 

many countries. To promote carbon-free technologies, 

such as photovoltaic (PV) generation, policies based on 

subsidy schemes like feed-in tariffs were put in place for 

a period up to 20 years. These policies are coming to an 

end in several European countries and RES power plants 

have to participate directly in electricity markets. To do 

so, reliable power production forecasts for the next hours 

to the next days are needed. In addition to allow the 

participation to the intraday market, Intra-hourly 

forecasts can also contribute to optimize operation of 

storage units coupled to RES plants. From the perspective 

of grid operator, RES forecasts are also important to 

ensure a secure and economic power system operation 

especially under high RES penetration conditions. 

 Research in solar forecasting has been very active in 

the last years [2,3]. Currently, there are several ways of 

forecasting power production of a PV plant. On one hand, 

based on incidental irradiance level and ambient 

temperature, extracted from Numerical Weather 

Predictions (NWP), physical models of PV plants 

production can be developed. The contribution of NWP 

data is meaningful for horizons above some hours ahead. 

On the other hand, by using the time series of the PV 

plant production combined with statistical models, short-

term production can be forecasted. Thus, these two 

approaches are efficient in two distinct time ranges as 

presented in Figure 1. A third family of so-called hybrid 

models consists in combining heterogeneous input data. 

 

2 OBJECTIVES AND APPROACH 

 

 The aim of this paper is to present a novel 

deterministic hybrid approach able to use multiple 

heterogeneous sources of data as inputs. First we consider 

measured production data from nearby power plants as 

input to forecast the output of a specific PV plant. This 

data allows to exploit the correlation between the 

production data of spatially distributed PV sites. The 

classical spatio-temporal (ST) approach in the literature, 

based only on this source of data [4,5], improves 

predictability for the next few minutes up to 6 hours 

ahead. 

 Then we extend the model by considering satellite 

images (i.e. global horizontal irradiance (GHI)) and 

Numerical Weather predictions (NWPs). The satellite 

images provide spatio-temporal information. The NWP 

data allows to extend the applicability of the model to 

day-ahead lead times so that, overall, the resulting model 

covers efficiently horizons ranging from a few minutes to 

day ahead. The modeling approach considered is an 

extension of the state-of-the-art ST models [5].    

 The proposed model is designed according to the 

following criteria: low computational intensity for on-line 

application and robustness for situations of missing or 

corrupt data. 

 

 
Figure 1 Spatial and temporal resolution of PV 

forecasting methods [3]. 

 

The remaining parts of this article are structured as 

follows: section 2 describes the data used as inputs. Then 

section 3 presents the methodology and the extended 

models and section 4 presents the outcomes of the 

models. Section 5 draws the conclusions of the paper. 



2 DATA PRESENTATION 

 

 In this approach, multiple heterogeneous inputs are 

considered, namely production measurements, satellite 

images and NWP. These inputs cover a period of 2 years 

starting from 2015-01-01 to 2016-12-31 with a temporal 

resolution of 15 minutes. 

 
Figure 2: PV farms located in southeast France.  

 

2.1 PV power production 

 PV production measurements are provided by the 

Compagnie Nationale du Rhône (CNR), the France’s 

leading producer of energy exclusively generated from 

renewable sources. The dataset is composed of nine PV 

farms located in the Rhône valley (Figure 2). The 

distance between each unit ranges from 7.3 to 133 km, 

while the installed power ranges from 1.2 to 12 MWp. 

The initial 10 min temporal resolution is interpolated to a 

15 min time step to match the time resolution of other 

inputs. A quality check procedure is applied to remove 

days with production shutdown. In order to allow inter-

comparisons between the different PV plants, the initial 

power unit in MW is converted into W/m² by dividing the 

production by the site total solar panel area.  

 

 

2.2 NWP 

 Two global models are considered:  

 The HRES-IFS model, which is the 

deterministic high resolution of the Integrated 

Forecasting System of the European Centre for 

Medium-Range Weather Forecasts (ECMWF). 

Forecasts are provided twice a day at 00:00 and 

12:00 UTC with an hourly period and a 

interpolated spatial resolution of 0.1°x0.1° 

(native resolution: Gaussian grid O1280).  

 The ARPEGE model (Action de Recherche 

Petite Echelle Grande Echelle), provided by 

Météo-France 4 times a day, namely at 00:00, 

06:00, 12:00 and 18:00 UTC. This model has 

an interpolated spatial resolution of 0.1°x0.1° 

and an hourly temporal resolution.  

 

 The weather forecasts models provide several 

parameters. Here, we focus on the Surface Solar 

Radiation Downwards (SSRD), which is the cumulated 

downward solar radiation at the surface. Then, the SSRD 

is interpolated from an hourly resolution to a 15 min 

resolution thanks to an interpolation method based on a 

clear sky model. An hourly-cumulated clear sky profile is 

used to normalize the hourly SSRD time series. Then an 

interpolation to a 15 min time step of the normalized time 

series is performed before being de-normalized by the 

cumulated clear sky profile with a 15 min resolution. 

Lastly, by subtracting consecutives values, the SSRD is 

transformed into GHI.   

For each site of interest, the corresponding time 

series is constructed considering only the most recent 

forecast while putting aside the dissemination schedule 

(which can delay the real availability of the NWP 

outputs). Each time series obtained this way is horizon 

independent, that is to say, for all horizons the same 

forecasting time series is used. 

 

2.3 Satellite images 

Satellite images are satellite-made observations of the 

GHI. These observations cover a large spatial range and 

provide valuable spatial information regarding the 

weather conditions of the site’s surroundings. As a result, 

this source is highly linked with the ST approach.  

In the present study, the satellite images are obtained 

from the HelioClim-3 database with the HelioSat-2 

method [6]. The spatial and time resolutions are 

respectively 0.0625°x0.0625° and 15 min. Each pixel of 

the images is converted into a time series.  

 

3 METHODOLOGY 

 

 This section presents the model used to forecast PV 

production and how heterogeneous inputs are considered. 

All developments are made with the R language [7]. 

 

3.1 A Spatio-Temporal approach 

 Initially developed for wind power forecasting, ST 

models are now drawing the attention of PV forecasting 

researchers [4], [7], [8]. This method assumes that close 

PV sites undergo similar weather conditions but shifted 

in time. As a result, by considering production 

observations from nearby sites, forecasting models can 

benefit from additional sources of information. The ST 

approach is well suited for energy producers inasmuch as 

this new source is easily available for industrials with 

several narrow spatially distributed PV sites.  

 To comply with our low computational intensity 

requirement, a deterministic autoregressive (AR) model 

coupled with a ST approach is defined [5]: 

 

𝑃𝑡+ℎ
𝑥 = 𝛽ℎ

0 + ∑ ∑ 𝛽ℎ
𝑙,𝑦

 𝑃𝑡−𝑙
𝑦

𝑦∈𝑋

𝐿𝑠

𝑙=0

 

 
 Where 𝑃𝑡+ℎ

𝑥  is the production forecast of plant 𝑥 at 

time 𝑡 + ℎ. 𝑋 stands for the set of neighboring plants 

around 𝑥 (including x) and 𝐿𝑠 is the maximum lag. The β 

parameters are fitted using the least squares method. For 

each horizon ℎ, a specific set of parameters is fitted. 

From now on, this model will be denoted as “ARST”.  

 As a reference, we will consider the non spatio-

temporal version of this approach, designated by “AR” 

and defined as follow:  

𝑃𝑡+ℎ
𝑥 = 𝛽ℎ

0 ∑ 𝛽ℎ
𝑙 𝑃𝑡−𝑙

𝑥  

𝐿

𝑙=0

 

 

3.3 Integration of exogenous data and LASSO 

regularization 

 In the literature, many solutions to integrate 

exogenous data are proposed. Regarding NWP, we can 

consider analog approaches [10] (i.e. clustering method), 

ensemble approaches [11], … As for satellite images, 

advanced methods such as Cloud Motion Vector (CMV) 

[12] can be used. In this study, we use an extended 



version of the AR model called ARX, which consists in 

adding exogenous inputs as follows:  
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𝑆𝑎𝑡  𝑆𝑎𝑡𝑡

𝑖

𝑁
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With 𝑁, the number of pixels from the satellite images. 

Thereafter, this model is denoted as “ARXST” if the 

spatio-temporal approach is taken into account, “ARX” 

otherwise.  

 By taking into account the satellite images, a high 

number of new variables are introduced. To tackle the 

issue induced by the increased dimensionality, a feature 

selection procedure is implemented. The Least Absolute 

Shrinkage and Selection Operator (LASSO) is defined as:   

 

�̂�𝐿𝐴𝑆𝑆𝑂 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝛽
{
1

2
𝑅𝑆𝑆(𝛽) + 𝜆|𝛽|} 

 

With RSS the Residual Sum of Squares function.  

 

3.1 Data stationarity 

 Time series forecasting methods such as Auto-

Regressive Integrated Moving Average (ARIMA) models 

need a stationary time series. In the literature, different 

approaches are proposed to stationarize inputs: the 

Seasonal-Trend decomposition procedure based on Loess 

(STL) [13], normalization by a clear sky profile [14] … 

A clear-sky model is a model which estimates the 

irradiance considering a sky without clouds. In this study, 

we consider the MacClear clear-sky model [15].  To take 

into account the tilt angle of PV panels of the plants, the 

GHI projection formula from [16] is implemented.  

 Moreover, the normalization procedure enables to 

remove the deterministic component of the irradiation 

due to the sun path. Consequently, only the stochastic 

part linked to clouds motion remains. This process 

enables to highlight the correlation between neighboring 

sites, which are impacted by the same clouds.  

 

3.5 Performance measurement  

 To assess the performance of the proposed models, we 

use the Root Mean Square Error (RMSE): 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑃𝑖

𝑝𝑟𝑒𝑑
− 𝑃𝑖

𝑜𝑏𝑠 )
2

𝑁

𝑖=1

 

 

 With 𝑃𝑖
𝑝𝑟𝑒𝑑

, the re-normalized production forecast and 

the 𝑃𝑖
𝑜𝑏𝑠, the corresponding observation. In the following 

section, all RMSE scores are averaged considering the 

performance of the nine available PV plants. 

 To compare the performances of the extended models 

(ARST, ARX, and ARXST) with the reference model 

(AR), the following comparison skill score is used: 

 

𝑆𝑆(ℎ) = 1 −
𝑅𝑀𝑆𝐸(𝑚𝑜𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑(ℎ))

𝑅𝑀𝑆𝐸(𝑚𝑜𝑑𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(ℎ))
 

 

 

 

 

 

4 EVALUATION RESULTS 

 

 This section presents the outcomes obtained with the 

proposed models. The forecasts are computed using the 

year 2015 as a learning set, and the year 2016 as a testing 

set. 

 

4.1 Integration of satellite images  

For each of the nine available PV plants, the pixels 

inside a radius of 150 km around the position of the site 

of interest are considered, which represents around 2 000 

pixels. Even if LASSO selection procedure can determine 

the relevant features, to reduce computational time, the 

number of features to compute must be reduced. 

The first step is to determine the optimal radius 

around each site. As it can be seen on Figure 3, the main 

information from satellite images are contained in a 50 

km radius area. This radius will be considered for the 

next part of the study. It is worth mentioning that the 

shape of the best correlated area is highly linked with the 

Rhône valley’s topography. 

 

 
Figure 3 Pearson correlation between the normalized 

production time series and the normalized satellite data 

for various lags. Site considered: Saulce. 

 

 Nevertheless, with a 50 km radius, the number of 

pixels is still high (i.e. around 230) and quite 

computationally expensive. The second selection step 

consists of determining the optimal number of pixels to 

use with the ARX model. To do so, for each horizon, 

each pixel is ranked accordingly to its correlation score 

with production data. Then different forecasts 

considering the N best correlated pixels (𝑁 ∈
[10,50,100,150,200]) are performed. Performance 

scores are displayed in Figure 4. 

 

 
Figure 4 Skill score obtained for ARX models using 

different number of pixels in regard to the AR model 

considering only measurement time series.  

 



 The more pixels are included, the better are the 

performances. With only the 10 best correlated pixels, a 

6.00% improvement of the RMSE is reached at 1 hour 

horizon. By considering 100, 150 or 200 pixels, the mean 

performances improvement is slight. To find a trade-off 

between forecasting performances and computational 

time, for the next sections of this study, the number of 

pixels held is 100.  

 The influence of satellite images over performance 

forecast is prevailing for short-term horizon (i.e. from 30 

min to 3-hour). Beyond 3-hour, the influence of satellite 

images is still visible. A further study regarding the 

coefficients weight of the pixels (attributed by the 

LASSO procedure) and their distance from the site of 

interest should be carried out to better understand this 

phenomenon.   

 

4.2 Integration of NWP 

 
Figure 5 Performance comparison between the ARX 

model using ARPEGE or ECMWF NWP inputs. 

 

 In this section, we compare the performances of the 

ARX model fed with the ARPEGE or the ECWMF NWP 

(Figure 5). Both models performance are very similar. 

Nevertheless, the ARX model using ARPEGE NWP 

input is slightly better for very short horizon (i.e. 15 and 

30 min) and for horizons higher than 3h. Consequently, 

in the rest of this study we will focus on the ARPEGE 

NWP data. 

 The integration of NWP to the AR model, 

significantly improves performances for high horizons, 

because NWP are forecasted inputs whereas power 

measurements and satellite images are observations.   

 

4.3 Integration of satellite images and NWP 

 This section presents the performances of the ARX 

model using production measurements, satellites images 

and ARPEGE NWP. 

 
Figure 6 Performance comparison between ARX model 

considering measurements, satellite images and NWP 

inputs. 

 

 For horizons higher than 1-hour, the main source of 

improvements is due to NWP data. For shorter horizon, 

the ARX model with satellite images is slightly better 

(Figure 6). At this stage, it is worth mentioning that 

outcomes obtained with NWP data are the best we can 

get. Indeed, our approach did not take into consideration 

the dissemination schedule of forecasts. Nevertheless, our 

results are consistent with those found in the literature 

(Figure 1).  

 The best performances for horizons higher than 45 

min are obtained with the ARX model considering 

measurements, satellite images and NWP data. 

Nevertheless, the improvements are minor in contrast 

with performances reached by the ARX model with 

measurement and NWP inputs. This phenomenon could 

be explained by the fact that the information contained in 

the NWP data and the satellite images are redundant. 

 We observe the limitations of the LASSO procedure 

on Figure 6. For horizon shorter than 45 min, the ARX 

model with satellite data outperform the ARX model with 

satellite and NWP data. This could be explained by some 

statistical differences between the learning and the testing 

set. Even if a quality procedure has been applied to the 

measurements, some defaults are still present in the data 

(e.g. converters shutdown …). One way to improve the 

LASSO performances could be to reduce the temporal 

width of the learning and testing windows.  

 

4.4 Spatio-Temporal influence  

 In the previous section, it has been shown that 

considering heterogeneous inputs improve the 

performance of the forecasting models from 3.7% at a 15 

min horizon up to 40.2% for a 6h horizon. We will focus 

now on the influence of the ST approach. 

 The ST method enables to take into account the 

dependencies existing within a close set of PV plants (i.e. 

nearby plants are affected by the same clouds). 

Thereafter, for each site, its four closest neighbors are 

taken into account.  

 
Figure 7 Performance of the ARXST model considering 

measurements and satellite images. 

 

 The performances of the ARST model are very close 

to the performance of the ARX model with satellite 

images inputs (Figure 7). Nevertheless, the information 

contained in each data set is complementary inasmuch as 

the ARXST (with satellite images) model improves 

steadily, by around 1.25%, the forecasting performances 

in comparison with the ARST and the ARX with satellite 

images.  



 
Figure 8 Performance of the ARXST model with 

measurements and NWP. 

 

 Regarding the ARXST model with NWP inputs, a 

performances improvement is also present in comparison 

with the ARX model with NWP inputs (Figure 8). 

However, the influence of the ST approach shades off 

gradually until the 4-hour horizon. Beyond, the 

performances of the ARXST are comparable with those 

of the ARX model.  

 The same conclusions are drawn regarding the 

ARXST model with measurement, satellite images and 

NWP inputs (Figure 9). 

 
Figure 9 Performance of the ARXST model considering 

measurements satellite images and NWP. 

  

 To summarize, ARXST model is more efficient than 

the ARX model: up to 45 min horizon, the ARXST 

model with measurement and satellite images has the best 

performances, beyond; it is the ARXST model with 

satellite images and ARPEGE NWP inputs (Figure 10). 

 
Figure 10 Perfromance comparison of the ARXST 

models with measurements, satellite images, and NWP. 

 

  

5 CONCLUSION 

 

 This article proposes a deterministic approach 

considering heterogeneous sources to forecast the 

production of PV plants. Compared to the reference AR 

model, the ARX model extended with a ST approach 

improves performances, respectively from 5.7% to 40.2% 

for a 15 min and a 6h horizon.  The forecasts are obtained 

considering 2 years of training and testing. To fulfill 

operational requirements, it would be interesting to 

improve the proposed model to work with shorter 

learning periods. Moreover, in the way, the NWP time 

series is constructed, the performances of the ARX model 

extended with NWP are over-optimistic. In a future 

study, the performances of this model should be assess 

considering NWP time series, which respect the 

dissemination schedule. 
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