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I. NUMERICAL RESULTS: SUPPORT VECTOR MACHINE (SVM) LEARNING

A. Dataset preparation: environments and distributions of PF

We define an environment as a D-dimensional torus with unitary volume in which each neuron i = 1...N of the
Continuous Attractor Neural Network (CANN) has a randomly located place field, i.e. a D-dimensional hyper-sphere
of volume φ0 < 1, centered at position ri. We want to store in the network L = αN maps that differ through
random rearrangements of the place-field (PF) center positions, r`i , ` = 1...L . Each map ` is approximated through
a collection of p random positions r`,µ in the environment; the maps become continuous in the large p limit. For
every position r`,µ we extract a pattern of activity of the network in the following way: all the neurons i whose place
field overlap with the position are active (σi = 1), the others are silent (σi = 0). A sketch representation of how we
construct the patterns to store is drawn in the Fig. 1(b) of the main text. We end up with a data-set of p×L binary

patterns {σ`,µi }, where i is the neuron index, ` the environment index and µ the index of the position in map `.

B. SVM learning procedure implementation

After we have generated a data-set of activity patterns, we want to learn the connections Wij of the CANN that
maximize the stability κ at fixed α and p. This choice of the weights will ensure the biggest basins of attraction in
the pattern space, i.e. robustness against thermal noise. In order to do that we will implement SVM learning [1].
In practice, for each neuron i, we want to compute the connections Wij from the other neurons j (with Wii = 0, no
self-connection), which are solution of the following primal constrained convex optimization problem

minimize
{Wij}

1

2

∑
j(6=i)

W 2
ij ,

subject to (2σ`µi − 1)
∑
j(6=i)

Wij σ
`µ
j ≥ 1, ∀ `, µ .

(1)

We have to solve N such problems to extract all the rows of the coupling matrix. The dual form of this problem is

maximize
{λ`,µ}

L∑
`=1

p∑
µ=1

λ`µ −
1

2

L∑
`,m=1

p∑
µ,ν=1

(2σ`µi − 1)(2σmνi − 1)λ`µλmν

N∑
j(6=i)

σ`µj σ
mν
j ,

subject to λ`,µ ≥ 0, ∀ `, µ ,

(2)

where the λ`µ’s are Lagrange multipliers enforcing the constraints in (1). This optimization problem can be solved
using available numerical routines [2]. Once we obtain the λ`µ’s we can compute the connections through

Wij =
L∑
`=1

p∑
µ=1

λ`µ (2σ`µi − 1)σ`µj . (3)

We then normalize the rows of the couplings matrix to unity, i.e.
∑
j(6=i)W

2
ij = 1. Finally, the stability κ is computed

through formula (3) of the main text. We have checked that the same values for κ are obtained with a standard
package for SVM, LinearSVC [3].

As an illustration of the learning procedure, we show in Fig. 1 how the number of stored patterns (with positive
stabilities) grows as a function of the number of iterations of the quadratic optimization algorithm solving (2), until
all p prescribed patterns are stabilized.

C. Couplings obtained by SVM

Hereafter, we report some qualitative features of the couplings obtained by SVM. As shown in Fig. 2 the couplings
Wij are correlated with the distances d`ij = |r`i−r`j | between the PF centers of the neurons i and j in the different maps
`. Note that the dependence on distance is less marked as the number L of maps increases, due to the interferences
between the maps.

In order to sustain a bump state with average activity φ0, couplings are excitatory at short distances, up to roughly
the radius rc of the PF, and inhibitory at longer ones. The sign of the couplings can be intuitively understood. Two
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FIG. 1: Number of patterns with positive stabilities (y-axis) vs. number of iterations of the quadratic optimization solver
(x-axis) for one map (L = 1) with p = 500 points stored by a network with N = 1000 neurons. Parameter values: D = 2,
φ0 = .3.

neurons at short distances have largely overlapping PF: their activities are likely to be equal, and having a large
coupling helps increasing the stability, see eqn (3) in main text. If the distance is bigger than rc, the activities are
likely to be different, hence inhibitory (negative) couplings will increase the stability.

Histograms of couplings in Fig. 2 (right) show that the amplitudes decay with N . In agreement with [6] we expect

the average values and standard deviations to scale, respectively, as 1/N and 1/
√
N .

D. Miscellaneous results on optimal stability and capacity

1. Comparison with Hebb rule

Here we show that, as it should be by construction, the stability obtained by SVM is always much higher than the
one obtained by the Hebb rule (2) defined in the main text. In order to do that we consider the cases of an exponential
kernel,

w(d) = a e−d/b − 1 , (4)

and of a Gaussian kernel,

w(d) = a e−d
2/b − 1 . (5)

We then optimize over a and b; the value of the negative offset at large distance is arbitrary, since couplings are
normalized row by row. Results for a typical sample are shown in Fig. 3. The stability for the best kernel w is always
much lower (and negative in the examples considered here) than the optimal stability κ found with SVM.

2. Heterogeneous distribution of positions

Throughout this work we have considered for simplicity that the p positions were drawn uniformly at random to
produce statistically homogeneous maps, i.e. without preferred positions. It is straightforward to extend this setting
to the case of heterogeneous densities of prescribed positions.

Figure 4 show the spatial distribution of stabilities for homogeneously scattered points (left) and a heterogeneous
repartition on points, densely packed in a subregion (diagonal). In the latter case, the strong heterogeneity in the
local distribution of stabilities will favor the location of the bump along the zones with a major density of positions.
As a consequence, a 1D-attractor is effectively built in the D = 2-dimensional space, see videos described in Section
I.E.3.
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FIG. 2: Couplings obtained after training with SVM for L = 1 (top) and L = 2 (bottom) maps. Left: dependence of the
average coupling with the distance between the corresponding neurons; the vertical line locates the radius rc of the place fields.
Averages were computed over 500 samples of the p positions per map at fixed PF centers; N = 1000 neurons. Right: histograms
of the couplings, for sizes N = 100 (blue) and N = 1000 (orange). Parameters: D = 2, φ0 = .3 and p× L = N .

3. Dependence on φ0 and D

Figure 5(left) indicates that the behaviour of αc(p) vs. p changes from a 1
p -scaling to a slower decay at a cross-over

value pc.o. ' 1
φ0

.

Figure 5(right) shows that the behaviour of αc(p) with φ0, obtained from SVM, is in qualitative agreement with
equation (10) in the main text. In particular, we see that the critical capacity is largely independent of φ0 in dimension
D = 1, while it increases as the PF size φ0 shrinks in dimensions D = 2, and even more so for D = 3. Notice that the
agreement with the asymptotic result given in equation (10) of the main text is not perfect here, due to the moderate
value of the number of points in simulations (p = 100).

Last of all, Fig. 6 shows the spatial error of trained recurrent neural network and the optimal stability κ vs. the
load α for patterns generated in dimensions D = 1 and 3, completing the results shown for D = 2 in the main text.
We observe the faster decay of the critical capacity predicted by equation (10) in the main text with increasing values
of D.

In these figures, as well as in the ones shown in the main text, the critical capacity αc(p) was estimated as follows
from SVM data. We estimated the optimal stabilities κ (at fixed p) for M different values of the load α, with M
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FIG. 3: Stabilities obtained with the Hebb rule with exponential (left) and Gaussian (right) kernels on a given representative
sample. The kernel parameters a and b vary from 0 to 10 with a step of .01. Parameter values: N = 1000, D = 2, φ0 = .3,
α = .1 and p = 5. The optimal value of the stability on that sample obtained by SVM is κ ' .55.
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FIG. 4: Distribution of local stabilities after the learning of a map with SVMs. Left) Homogeneous case: the p positions of
the data-set are drawn randomly. Right) Heterogeneous case: here the data-set has 150 positions on the diagonal of the maps
and the other 150 positions are drawn at random. Here, D = 2, φ0 = .3, N = 1000, p = 300 and L = 1. We show the contour
map made from 2500 realization of random positions, for which we evaluate the stabilities of the corresponding patterns. The
overall network stabilities (minimal pattern stabilities) in the homogeneous and heterogeneous cases are, respectively, κ ' .44
and κ ' .53 for the samples considered here.

generally equal to 20. Then we fitted these points with the empirical function (depending on the parameters a, b, c)

κ =
a√
α

+ b α+ c , (6)

and extrapolated from the fit the value of the load at which the fitted function vanished; this defined our estimate for
αc(p). Note that the small α behaviour in equation (6) above can be justified analytically from Gardner’s calculation.
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FIG. 5: (Left) Scaling cross-over of αc(p) vs. p for different values of Φ0. The vertical lines correspond to the values of
pc.o. ∼ 1

φ0
. We use for this results D = 2, N = 5000, and we have averaged over 50 different realization of the environments

and different realizations of the p positions. (Right) Critical capacity obtained by SVM vs. φ0 for different values of D in
log-log scale. Parameter values: N = 5000, p = 100, Samples= 25.

E. Monte Carlo simulations

Once the coupling matrix Wij has been learned, we may perform Monte Carlo simulations to investigate the behavior
of the network.

1. Zero temperature scheme (T = 0)

In order to compute the spatial error ε we consider that the dynamics of the system follows a sequential updating
rule of the form

σi(t+ 1) = Θ
( ∑
j(6=i)

Wij σj(t)
)
, (7)

where Θ is the Heaviside step-function and at every time t+1 we choose uniformly at random the neuron i to update.
Starting from an initial activity configuration, we track the system dynamics for at most N2 MC steps (N sweeps),
and retain the visited configuration with the minimum number of violated constraints, i.e. with the highest number
of non-negative stabilities

∆i = (2σi − 1)
∑
j( 6=i)

Wij σj ≥ 0 . (8)

The choice of N sweeps as a maximal simulation time is empirical: we do not find that significantly better results are
obtained by increasing this bound. Actually, the dynamics often ends up in a fixed point with ∆i > 0 for all neurons
i in much less sweeps.

We generate L environments and p points in each of them, learn the coupling matrix corresponding to these p× L
patterns. We then pick at random a position in one of the learned maps, and use that position to construct the initial
activity configuration of the dynamics. After the dynamics described above is done we keep the final configuration
and use it to decode the final position on that map, as the center of mass of PF (on the map) of the active neurons in
the final configuration. The distance between this estimated position and the initial one (taking care of the periodic
boundary conditions), after averaging over many initial positions (100 in the figures showed), defines the spatial error
ε.
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FIG. 6: Same as Fig. 2(a) and Fig. 3 in the main text for dimensions D = 1 (left) and D = 3 (right).

2. Finite temperature scheme (T > 0)

In order to show the diffusion of the activity bump within a map and the transitions between maps, we implement
a noisy dynamical scheme, where neuronal states are updated stochastically according to the probabilities

Prob
(
σi(t+ 1)|{σj(t)}

)
=

1

1 + exp

[
− 1

T

(
2σi(t+ 1)− 1

)∑
j( 6=i)

Wij σj(t)

] . (9)

The bump of activity may form and sustain itself when T is comparable to, or smaller than the stability κ of the
network.
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3. Description of videos

We illustrate the dynamical properties of the model with three examples:

• First, we consider a network with N = 1000 neurons, in which we store one map (L = 1) in dimension D = 2
and with average activity φ0 = .3. We consider than the case in which the learning is done on a small number
of points, p = 30, resulting in a large value of the stability, κ = 1.7. And then the case in which p = 300 is
higher, and the stability is smaller: κ = .6. Our noise parameter T is set to .8 to allow the bump to form in
both cases. In the large κ case, the bump gets stuck very quickly in one of the p training positions, depending
on the initial configuration, see attached videos LargeKappaL1.mp4 and LargeKappaL1Bis.mp4. In the small κ
case, the bump diffuses on the map, see attached video SmallKappaL1.mp4. For larger p, the bump can easily
travel through the environment, with a large diffusion coefficient; in contrast, in the small p case, the stability
landscape is very rough and the bump is stucked close to the stored positions.

• In the second example we consider the case of L = 2 maps and p = 150 points. The other parameters have the
same values as in the first example, e.g. the stability is fixed to κ = .5. In the video SmallKappaL2.mp4 we see
that, as κ is small, the bump diffuses in one maps and sporadically jumps to the other map.

• The third example corresponds to the heterogeneous distribution of positions shown in Fig. 4, right. The video
SmallKappaL1Hetero.mkv was obtained with the same parameters as in SmallKappaL1.mp4, but with 150 out
of the p = 300 positions drawn on the diagonal of the map; the stability of the network was κ = .5.

II. THEORETICAL RESULTS: STATISTICAL PHYSICS OF OPTIMAL CANN

A. Gardner’s framework for CANN

Here we are going to extend the Gardner theory for capacity of the perceptron (SVM with linear kernel and hard

margin) [4] to the case of continuous attractors. The training set consist of p× L binary patterns {σ`µi } constructed
by drawing randomly p positions in each of the L environments so that the resulting patterns are spatially correlated.
The stability of the i component of the pattern that correspond to position µ in the environment ` is given by

∆`µ
i = (2σ`µi − 1)

∑
j(6=i)

Wij σ
`µ
j . (10)

The training set is said to be stored if all the patterns have stabilities larger than some threshold κ ≥ 0.
The volume in the space of couplings that corresponds to admissible solutions of the storage problem, is

Z =

∫ N∏
i 6=j

dWij

∏
i

δ

( ∑
j(6=i)

W 2
ij − 1

) ∏
i,`,µ

θ
(

(2σ`µi − 1)
∑
j( 6=i)

Wij σ
`µ
j − κ

)
(11)

and is equal to the product of the N single-site volumes Zi, with i = 1...N . So we may focus for example on the
volume associated with i = 1:

Z1 =

∫ N∏
j=2

dWj δ

(∑
j≥2

W 2
j − 1

)∏
`,µ

θ
(

(2σ`µ1 − 1)
∑
j≥2

Wj σ
`µ
j − κ

)
, (12)

where Wj ≡ W1j . Using the replica method [5], we compute the average of logZ1 over the patterns. Introducing
integral representations of the Heaviside function and exploiting the statistical independence of the different maps,
we write the average of the nth power of the volume,

〈Zn1 〉 =

∫ ∏
j,a

dWja

∏
a

δ
(∑

j

W 2
ja − 1

)
χ(W)αN (13)

with a = 1, ..., n is the replica index, and

χ(W) =

∫ p∏
µ=1

dr̂µ

∫ N∏
j=1

drj

∫ ∞
κ

∏
µ,a

dtµa

∫ ∞
−∞

∏
µ,a

dt̂µa
2π

ei
∑
µ,a t̂µatµa

∏
j

e−i
∑
µ,a t̂µa(2σµ1−1)Wjaσ

µ
j , (14)
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where r̂µ denotes the p prescribed locations in the environment, and rj the N PF of the neurons in the map. We first
carry out explicitly the integrals over the PF with indices j = 2, 3, ..., N , leaving the integrals over r1 and all r̂µ in
χ(W). We introduce the order parameters

ma = φ0

∑
j≥2

Wja (15)

and

qab =
∑
j≥2

WjaWjb , (16)

and rewrite

〈Zn1 〉 =

∫ ∏
j,a

dWj,a

∫ ∏
a

dûa

4π
e
∑
a
ûa

2 (1−
∑
jW

2
ja)

∫ ∏
a

dm̂adma

2π
e
∑
a m̂

a(ma−
∑
jWja)

×
∫ ∏

a≤b

dq̂abdqab

2π
e
∑
a≤b q̂

ab(qab−
∑
jWjaWjb) χ(W)αN

(17)

where we have used the integral representation of the Dirac-delta function. Let Φ(r) be the indicator function of the
place field centered in 0: Φ = 1 if |r| < rc, where rc is the radius of the PF (with

∫
dr Φ(r) = φ0), and 0 otherwise.

Let Γ(r) =
∫
dr′Φ(r′) Φ(r−r′) the correlation function of Φ. Given p points r̂µ, µ = 1, ...p drawn uniformly at random

in space, we define the p× p Euclidean random matrix with entries

Γµ,ν
(
R̂ ≡ {r̂µ}

)
= Γ

(
rµ − rν

)
− φ2

0 . (18)

We can rewrite χ as

χ(W) =

∫ ∏
µ

dr̂µ

∫
dr1

∫ ∞
κ

∏
µ,a

dtµa√
2π

∫ ∞
−∞

∏
µ,a

dt̂µa√
2π
e−

1
2

∑
µ,ν,a,b q

abΓµ,ν(R̂)t̂µa t̂νb

e−i
∑
µ,am

a t̂µaΦ(r1−r̂µ)+i
∑
µ,a t̂µatµa .

(19)

Due to translation invariance, the integral over r1 is irrelevant, and we can set r1 = 0. We can now make the RS
Ansatz (expected to be valid since the domain of suitable couplings is convex) on the structure of the order parameters
and their conjugate variables, and, after standard manipulation, we write the nth power of the volume in the small n
limit as

〈Zn1 〉 − 1

nN
' 1

2ε

{
1− α

∫ ∏
µ

dr̂µ

∫ ∏
µ

dzµ√
2π

exp
(
− 1

2

∑
µ,ν zµΓ(R̂)−1

µ,νzν
)√

det Γ(R̂)
(20)

× min
{tµ≥κ+wφ0}

∑
µ,ν

[
tµ − (zµ + 2mΦ(r1 − r̂µ)

]
Γ(R̂)−1

µ,ν

[
tν − (zν + 2mΦ(r1 − r̂ν)

]}
+O

(∣∣∣ log
1

ε

∣∣∣) ,

where we have computed the integrals over the order parameters and related conjugate variables thanks to the
saddle-point method. Since we are interested in the critical capacity we have also restricted our analysis to the case
ε = 1−q � 1, in which the space of solutions reduces to the optimal coupling matrix. We finally obtain the expression
for the critical capacity αc(κ, p) = max

m
αc(m;κ, p), where αc(m;κ, p) is the load α cancelling the terms inside the

curly brackets in (20).

B. Case of a single location per map (p = 1)

We now show that, when a single pattern is present in each map (p = 1), the equations above are equivalent to the
celebrated Gardner calculation in the case of biased patterns [4].

For p = 1, the Euclidean random matrix C reduces to the scalar

C1,1 = φ0(1− φ0) ≡ 1−M2

4
, (21)
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where M is the average activity of the binary pattern in ±1 notations, i.e. under the change of variable Φ(r1− r̂1) =
{0, 1} → ξ = {−1,+1}. The convex optimization problem to be solved in (20) thus amounts to compute

F (z1, v, κ) = min
{t1≥κ}

[
4

1−M2

(
t− (z1 + v ξ)

)2]
, (22)

where v = mφ0 and the Gaussian variable z1 in (20) has zero mean and variance C1,1. The minimum over t1 in (22)
can easily be determined, with the result

F (z1, v, κ) =


4

1−M2

(
κ− (z1 + v ξ)

)2
if κ ≥ z1 + v ξ

0 otherwise.
(23)

As r̂1 is drawn uniformly at random, ξ is a random binary variable:

ξ =


+1 with probability

1 +M

2
,

−1 with probability
1−M

2
.

(24)

We get, with the normalized Gaussian variable z = z1 × 2/
√

1−M2 and the measure Dz = dz/
√

2π exp(−z2/2),

1

αc(v;κ, p = 1)
=

1 +M

2

∫ ∞
2vM−2κ√

1−M2

Dz

(
2κ− 2vM√

1−M2
+ z

)2

+
1−M

2

∫ ∞
−2κ−2vM√

1−M2

Dz

(
2κ+ 2vM√

1−M2
+ z

)2

, (25)

where v is chosen in order to maximize αc(v;κ, p = 1):

1 +M

2

∫ ∞
2vM−2κ√

1−M2

Dz

(
2κ− 2vM√

1−M2
+ z

)
=

1−M
2

∫ ∞
−2κ−2vM√

1−M2

Dz

(
2κ+ 2vM√

1−M2
+ z

)
. (26)

These equations coincide with the results of [4] up to the change κ → 2κ due to the fact that the neuron activities
take here values 0,1 and not ±1.

C. Gaussian theory with quenched PF

In order to compute the critical capacity αc(κ) with the approach of Section II A we have to solve a p-dimensional
constrained quadratic optimization problem, depending on p correlated Gaussian random variables, see (20), and then
average over p random positions. This task becomes quickly intractable in practice as p increases. In this section,
following closely [6], we present an alternative approximate approach that allows us to reach arbitrarily large values
of p. While this calculation is approximate, it is argued that it becomes exact in the large p limit. A potentially
interesting feature of this approach is that it holds at fixed PF, instead of averaging over them as in Section II A, and
could be applied to specific situations, e.g. sets of PF measured in experiments.

1. Replica calculation

Starting from the replicated volume 〈Zn1 〉 in (13), we now perform first the average over each one of the p locations
in χ(W) in (14) as follows

∫
dr̂µ exp

−i∑
a

t̂µa(2σ`,µ1 − 1)
∑
j≥2

Wja σ
`,µ
j

 = exp

−i∑
a

ma
` t̂µa −

1

2

∑
a,b

t̂µa(qab` −ma
`m

b
`)t̂µb +O(t̂3)

 (27)

where we have reintroduced the map index ` to underline that the PF are kept fixed here. The order parameters in
the formula above are

ma
` =

∑
j≥2

Wja

(
2 Γ
(
|r`j − r`1|

)
− φ0

)
(28)
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and

qab` =
∑
j,k≥2

WjaWkb Γ
(
|r`j − r`k|

)
. (29)

We simplify the calculation with two approximations:

• We truncate the expansion in powers of t̂ in (27) to the second order, and omit all higher order terms. This
amounts to approximate the distribution of couplings Wij (at fixed PF) by a Gaussian. This approximation
is valid only if the couplings fluctuate weakly around their means, which is the case in the large-p limit, see
Section II.C.4.

• We also neglect the dependence of the order parameters m` and q` above on the map `. The histogram of the
overlaps q` measured by SVM are shown in Fig. 7. As can be seen from the figure, the distribution of overlaps
is not concentrated in the large-N limit at fixed p. Therefore, while ma

` = ma and qab` = qab is a valid Ansatz
for the saddle-point equations of the log. partition function (due to the statistical equivalence between the
maps), we expect Gaussian fluctuations to be relevant even in the infinite-N limit. However, as p increases,
these fluctuations are smaller and smaller, and are asymptotically negligible. The order parameters then reduce
to, after summation over the maps ` = 1...L,

ma ≡ 1

L

M∑
`=1

ma
` =

∑
j≥2

Wja

(
2C1j

(
{r`j}

)
− φ0

)
(30)

and

qab ≡ 1

L

M∑
`=1

qab` =
∑
j,k≥2

WjaWkb Cjk
(
{r`j}

)
. (31)

The N ×N multi-space Euclidean random matrix C appearing in the expressions above is defined in equation
(8) of the main text. In the following, we denote by ρ(λ) the density of eigenvalues λ of C. This density is
self-averaging when the PF are randomly drawn in the large L,N double limit. Its resolvent, defined as

g(U) =

∫
dλ

ρ(λ)

λ+ U
, (32)

where the integral runs over the support of ρ, is solution of the implicit equation (9) of the main text [7].
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FIG. 7: Distributions of the overlaps q` for different values of N and p. It is clear that the histograms are roughly Gaussian.
We use for this results D = 2, φ0 = .3, α = .1, and we have averaged over 500 realization of the p positions at fixed PF.
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Within the RS Ansatz, the overlap matrix qab is fully characterized by its diagonal and off-diagonal elements that
we denote by, respectively, s and q:

s =
∑
i,j≥2

〈Cij [W1iW1j ]〉 , q =
∑
i,j≥2

〈Cij [W1i] [W1j ]〉 . (33)

where, as before, the brackets denotes the average over the random patterns, and the square parenthesis stand for the
average over all couplings satisfying the inequalities (1).

Following closely [6], we obtain the expression of the average logarithm of the volume,

〈logZ1〉
N

= −1

2
qq̂ + sŝ+mm̂+ û− 1

2

∫
dλ ρ(λ)

[
log(2û+ (2ŝ− q̂)λ) +

q̂λ

2û+ (2ŝ− q̂)λ

]
+

m̂2 Ξ

2(2ŝ− q̂)
+ αp

∫
Dz logH

(
z
√
q −m2 −m+ κ√

s− q

) (34)

where Dz denotes the Gaussian measure, H(x) =
∫∞
x
Dz = 1

2 erfc( x√
2
), and the ·̂ Lagrange parameters enforce the

definitions of the order parameters (û enforces the normalization condition over the rows of the W matrix). The
quantity Ξ is a function of the argument

U =
2û

2ŝ− q̂
, (35)

and is defined as

Ξ(U) =
∑
j,k≥2

Hj

(
U Id + C

)−1

jk
Hk with Hj = 2C1j − φ0 , (36)

and Id is the identity matrix. In the above equation, the inverse is intended over the N − 1-dimensional restriction
of the matrix U Id + C to entries j, k ≥ 2.

2. Computation of Ξ

Expanding the terms in Ξ(U) in eqn. (36) above, we write Ξ(U) = Ξ1(U) + Ξ2(U) + Ξ3(U) with

Ξ1(U) = 4
∑
j,k≥2

C1j

(
U Id + C

)−1

jk
C1k , (37)

Ξ2(U) = φ2
0

∑
j,k≥2

(
U Id + C

)−1

jk
, (38)

Ξ3(U) = −4φ0

∑
j,k≥2

C1j

(
U Id + C

)−1

jk
. (39)

Computation of Ξ1: Consider the N × N matrix C(N), with entries Cij for i, j comprised between 1 and N . Let us

also define Id(N) the identity matrix in dimension N , while Id above referred to the identity matrix in dimension
N − 1. Using block-matrix inversion formulas, we write that(

U Id(N) + C(N)
)−1

11
=

1

U + C11 −
∑
j,k≥2

C1j

(
U Id + C

)−1

jk
C1k

(40)

The left hand side of the equation above is equal, in the large–N limit, to the resolvent g(U) of C defined in (32).
Using C11 = Γ(0) = φ0 and the definition of Ξ1(U), we obtain

Ξ1(U) = 4

(
U + φ0 −

1

g(U)

)
. (41)
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Computation of Ξ2: Let |v+〉 be the normalized vector with N identical components, (v+)i = 1√
N

. We have

Ξ2(U) = N φ2
0

〈
v+

∣∣∣(U Id + C
)−1∣∣∣v+

〉
. (42)

For large N , |v+〉 is the top eigenvector of C, with (extensive) eigenvalue λ+ = N
∫
dr Γ(r) = Nφ2

0. Hence,

Ξ2(U) = N φ2
0 ×

1

U +Nφ2
0

→ 1 , (43)

in the large-N limit (since U remains bounded, see below).

Computation of Ξ3: As Cjk with j, k ≥ 2 does not depend on the locations r`1 of the place fields associated to neuron

i = 1 in the different maps `, we may substitute C1j in eqn. (39) with its average over those positions, equal to φ2
0.

We obtain

Ξ3(U) = −4φ3
0

∑
j,k≥2

(
U Id + C

)−1

jk
= −4φ0 , (44)

in the large-N limit, see calculation of Ξ2(U) above.

Expression of Ξ: Gathering the three terms above, we obtain

Ξ(U) = 1 + 4U − 4

g(U)
. (45)

3. Expression of log. volume and saddle-point equations close to the critical line

As α reaches its maximal value (at fixed κ), the set of couplings satisfying the inequalities (1) shrink to a single
solution, and we expect s, q to reach the same value according to (33). We therefore look for an asymptotic expression
for 1

N2 〈logZ〉 in (34) when

ε = s− q , (46)

is very small and positive. In this regime, we expect the conjugated Lagrange parameters to diverge as inverse powers
of ε. More precisely, calling

ε̂ = 2ŝ− q̂ , (47)

we assume that

ε̂ =
V

ε
, q̂ =

T

ε2
. (48)

as ε→ 0. To the leading order, we obtain

1

N
〈logZ1〉 =

F (α)

2ε
+O

(
| log ε|

)
, (49)

where F (α) is the extremum over m, q, U, V, T of

F (α;m, q, U, V, T ) = V

(
q + U − m2

Ξ(U)

)
+ T

(
1− 1

V

∫
dλ ρ(λ)

λ

λ+ U

)
− αp(q −m2)

∫ ∞
x

dz√
2π
e−

z2

2 (z − x)2 (50)

with x = m−κ√
q−m2

and U defined in (35). This equation is equivalent to equation (7) of the main text. Note that, in

order to obtain (50), the saddle point equation over m̂ in (34) was derived and solved for m̂ explicitly. Extremizing
over U, T, V , we obtain

V =

∫
dλ ρ(λ)

λ

λ+ U
, (51)

T = −
(
q + U − m2

Ξ(U)

) ∫
dλ ρ(λ)

λ

λ+ U
, (52)

1 +
m2

Ξ(U)2

dΞ

dU
=

(
q + U − m2

Ξ(U)

) ∫
dλ ρ(λ)

λ

(λ+ U)2
. (53)
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Note that the derivative of Ξ with respect to U can be easily computed from the derivative of g with respect to U
according to eqn (45). Following the implicit equation over g in equation (9) in the main text, we find

dg

dU
(U) =

1∑
k 6=0

α Γ̂(k)

(α+ g Γ̂(k))2
− 1

g2

. (54)

We may now write the saddle-point equations over q and m, which give, after some elementary manipulation,

αpH(x) =

∫
dλ ρ(λ)

λ

λ+ U
, (55)

m

m− κ

(
1

Ξ(U)
− 1

)
=

1
√

2π x ex
2/2H(x)

− 1 . (56)

The three coupled equations (53,55,56) allows one, in principle, to compute q,m,U and, and therefore T, V and
F (α). In addition, the optimization of 〈logZ〉 in (49) over ε immediately gives F (α) = 0, hence, a fourth equation to
determine the critical value of α at fixed κ. This last equation read, after simplification according to eqn (56),

U

κ
= m

(
1

Ξ(U)
− 1

)
. (57)

4. Large-p behavior of the critical capacity

We now focus on the maximal capacity, obtained when κ→ 0. According to (57), U vanishes, and equations (55,56)
as a well as the implicit equation (9) of the main text on the resolvent g give a set of two coupled equations for x and
the resolvent g:

1

g
=
∑
k6=0

Γ̂(k)

1 + g pH(x) Γ̂(k)
, (58)

1− 4

g
= x
√

2πH(x) ex
2/2 . (59)

from which the capacity can be computed as a function of the number p of points,

αc(p) =
1

pH(x)
. (60)

In practice, we can choose x at will, compute g from (59), then p from (58), and, finally, αc from (60).
Remark that equation (58) can be rewritten as

pH(x) = G
(
g pH(x)

)
with G(y) =

∑
k6=0

y Γ̂(k)

1 + y Γ̂(k)
. (61)

According to dimensional analysis, the large momentum scaling of the Fourier coefficients is given by

Γ̂(k) ∼ φ2
0(

k φ
1
D
0

)D+1
=
φ

1− 1
D

0

kD+1
, (62)

where k = |k| and D is the dimension of the physical space. We deduce that, for large arguments y,

G(y) ∼ A1(D) φ
D−1
D+1

0 y
D
D+1 with A1(D) =

∫
dDu

|u|D+1 + 1
. (63)

In addition, using the asymptotic expansion of the erfc function, we have

x
√

2πH(x) ex
2/2 ' 1− 1

x2
(64)
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for large x. Combining these expressions allows us to obtain the asymptotic relation between x and y,

y
1

D+1 = 4A1(D)φ
D−1
D+1

0 x2 . (65)

and, to the leading order in p,

x '
√

2 log p−
(
D +

1

2

) log log p√
2 log p

. (66)

We then deduce the asymptotic scaling of the critical capacity given by equation (10) of the main text, with

A(D) =
1

8D A1(D)D+1
. (67)

The scaling for x in eqn. (66) entails the following relation between the order parameters q and m in the large–p
regime,

q

m2
− 1 ∼ 1

2 log p
. (68)

To interpret the consequences of the equation above, we consider a set of replicated couplings, {Wia}. For any random
position r in map ` defining the pattern σ, we define the rescaled and centered random variable

Y
(
r|{Wia}

)
=

1

ma
`

((
2σ`i − 1)

∑
j≥2

Wja σ
`
j −ma

`

)
. (69)

By definition of the order parameter m, the average value of Y vanishes:〈
Y
(
r|{Wia}

)〉
r

= 0 . (70)

Equation (68) implies that the variance of Y is〈
Y
(
r|{Wia}

)2〉
r
' 1

2 log p
, (71)

as p gets large and the load takes its maximal value (critical capacity). In other words, the standard deviation of
Y scales as (log p)−1/2 for large p. We thus expect that the kth cumulant of Y will scale as (log p)−k/2. Under this
assumption, the distribution of the stability t has mean value m and fluctuations of the order of ∆t = m/

√
log p.

These fluctuations are negligible in the large–p limit, since resolution of the saddle-point equation (53) shows that

m ' D

4
− D2

256 (log p)3
+ o

(
1

(log p)3

)
(72)

at the critical point. Hence, ∆t ∼ (log p)−1/2 is smaller and smaller as p increases, and the distribution of t is well
approximated by a Gaussian in the large–p limit. The Gaussian approximation obtained by discarding all powers of
t̂ of order ≥ 3 in eqn (27) in our quenched PF theory is therefore expected to be exact in this limit.

D. Comparison between Quenched PF theory and SVM

1. Values of couplings

Figure 8 compares how the couplings Wij depend on the size of the network, N , and of the distances between the
PF of neurons i, j in the maps. We generally find that the couplings Wij obtained by SVM and the ‘thermal’ averages
[Wij ] predicted by the quenched PF theory for a fixed set of PF centers are in excellent agreement, see equations (23)
and (24) in [6] for details on the calculation of the average couplings and associated standard deviations.

• Both sets of couplings have mean values scaling as 1
N and standard deviations scaling as 1√

N
.

• The sign of couplings depend on the distance between their PF centers in the maps. We get excitatory couplings

for distances up to the radius of the PFs (rc =
√

φ0

π in D = 2), and inhibitory interactions for larger distances.
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FIG. 8: Comparison of couplings obtained with SVM (left) and with the Quenched PF Theory (right). Top: Dependence of
couplings on N . Bottom: Dependence of the couplings on distance; The vertical line locates the radius rc of the PF. These
results were obtained for D = 2, φ0 = .3, α = .1, p = 5; we have averaged over 100 different realizations of the p positions at
fixed PF centers for the SVM results. Space was divided in 50 bins with values ranging from 0 to

√
2/2 (the maximal distance

achievable in unit square with periodic boundary conditions). Couplings were then put in the corresponding bins for all maps,
and the averages and standard deviations were plotted as functions of the bin centers. Average couplings and associated
standard deviations with quenched PF theory were computed with (23) and (24) of [6], with the substitution αc → pαc as the
number of patterns is here p× L.

2. Dependence on φ0

In Fig. 9 we show that the value of p such that the results obtained with the quenched PF theory and with SVMs
match increases as φ0 decrease.
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FIG. 9: Scaling cross-over of αc(p) vs. p for different values of φ0. Quenched PF Theory (dashed-dotted lines) gets closer to
SVM (scatter plots) as p increase, the value of p for which Quenched PF Theory and SVM matches increase as φ0 decrease.
We use for this results D = 2, N = 5000, and we have averaged over 50 different realization of the environments and different
realizations of the p positions.

An analysis of equations (58,59), valid in the small φ0 limit, indicate that this minimal value of p scales as

pmatch(φ0) ∼ e1/(8φ0)

φ
3/2
0

, (73)

and becomes very large as φ0 is small. Realistic values for φ0 are reported in the experimental literature to range
between .2 and .3.

[1] Scholkopf, Bernhard, and Alexander J. Smola. Learning with kernels: support vector machines, regularization, optimization,
and beyond. MIT press, 2001.

[2] Diamond, Steven, and Stephen Boyd. ”CVXPY: A Python-embedded modeling language for convex optimization.” The
Journal of Machine Learning Research 17.1 (2016): 2909-2913.

[3] Pedregosa, Fabian, et al. ”Scikit-learn: Machine learning in Python.” Journal of machine learning research 12.Oct (2011):
2825-2830.

[4] Gardner, Elizabeth. ”The space of interactions in neural network models.” Journal of physics A: Mathematical and general
21.1 (1988): 257.
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