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Capacity-resolution trade-off in the optimal learning of multiple low-dimensional
manifolds by attractor neural networks
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CNRS UMR 8023 & PSL Research, Paris, France
(Dated: October 11, 2019)

Recurrent neural networks (RNN) are powerful tools to explain how attractors may emerge from
noisy, high-dimensional dynamics. We study here how to learn the ∼ N2 pairwise interactions in a
RNN with N neurons to embed L manifolds of dimension D � N . We show that the capacity, i.e.
the maximal ratio L/N , decreases as | log ε|−D, where ε is the error on the position encoded by the
neural activity along each manifold. Hence, RNN are flexible memory devices capable of storing a
large number of manifolds at high spatial resolution. Our results rely on a combination of analytical
tools from statistical mechanics and random matrix theory, extending Gardner’s classical theory of
learning to the case of patterns with strong spatial correlations.

How sensory information is encoded and processed by
neuronal circuits is a central question in computational
neuroscience. In many brain areas, the activity of neu-
rons, σ, is found to depend strongly on some continuous
sensory correlate r; examples include simple cells in the
V1 area of the visual cortex coding for the orientation of
a bar presented to the retina, and head direction cells in
the subiculum or place cells in the hippocampus, whose
activities depend, respectively, on the orientation of the
head and the position of an animal in the physical space.
Over the past decades, Continuous Attractor (CA) neu-
ral networks have emerged as an appealing concept to ex-
plain such findings, more precisely, how a large and noisy
neural population can reliably encode ‘positions’ in low-
dimensional sensory manifolds, σ = Φ(r), and continu-
ously update their values over time according to input
stimuli [1–5].

Models for the embedding of a CA in Recurrent Neural
Network (RNN) generally assume that, after a Hebbian-
like learning phase, the connection Wij between the neu-
rons i, j having their place fields centered in positions ri
and rj , takes value

Wij = w
(
|ri − rj |

)
, (1)

where | · | denotes the distance in the sensory space. If w
is sufficiently excitatory at short distances and inhibitory
at long ones, a bump state spontaneously emerges, in
which active neurons tend to code for nearby positions
in the sensory space. Weak external inputs suffice to
move the bump and span the D-dimensional manifold of
all possible positions r (Fig. 1(a)). This mechanism was
observed in the ellipsoid body of the fly, where a bump of
activity points towards the heading direction [6]. Indirect
evidences for the presence of CA have been reported, e.g.
in the grid-cell system [7] and in the prefontal cortex [8].

Hebbian connections (1) can be modified to embed in
the same network of N neurons multiple, unrelated CAs
(Fig. 1(a)), such as multiple hippocampal spatial maps
corresponding to different environments [9] or contextual
situations [10]. Assuming each one of the L maps con-
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Optimal capacity-resolution trade-o↵ in memories of multiple continuous attractors
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Continuous attractors neural networks are an important concept in computational neuroscience,
explaining how collective coordinates can be memorized in a noisy neural population. In this paper,
we present a theory of optimal storage of multiple quasi-continuous attractors with prescribed spatial
resolution. We determine how the capacity depends on the spatial resolution. As a byproduct, our
work also extends the theory of Euclidean Random Matrices to the case of multiple spaces.

INTRODUCTION

Continuous attractors neural networks (CANN) are an important concept in computational neuroscience, explaining
how collective coordinates can be memorized in a noisy neural population. Originally ring attractor for V1 neurons
and HD cells, then extension to 2D attractors for place and grid cells. Experimental evidence is increasing: paper on
fly, grid cells, (see references in talk at Pasteur)
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FIG. 1: (a) A recurrent network with N neurons and connec-
tivity matrix W (top left) generates high-dimensional activity
configurations attracted to multiple low-dimensional mani-
folds (right); on each manifold, we require to memorize p
points (bottom left, red crosses), whose separation defines
the spatial resolution ε. (b) Place fields of N = 5 neurons
in two maps, e.g. pink and orange in panel (a), with peri-
odic boundary conditions; the table lists, for each map, p = 3
activity patterns corresponding to the marked points.

tributes equally to the learning process, connections take
the form [11]

Wij =

L∑
`=1

w
(
|r`i − r`j |

)
, (2)

where r`i is the center of the place field (PF) of neuron
i in environment ` (Fig. 1(b)). Theoretical calculations
show that a bump state can exist (in any map) as long
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as L < αcN , where αc defines the critical capacity that
can be sustained by the network [12, 13].

There are, however, serious practical and conceptual
issues with the current theoretical understanding of mul-
tiple CAs based on (2). First, as soon as L ≥ 2, the
activity bump gets stuck in some preferred locations in
the retrieved map due to the interferences coming from
the other L− 1 non-retrieved maps [14]. In other words,
rule (2) does not define truly CAs, as large barriers op-
pose the motion of the bump along the map [15]. The
spatial error ε with which the environment is encoded,
defined as the average discrepancy between any initial
position r for the bump and the closest stable position in
which it finally settles after neural relaxation dynamics,
becomes quite large as L increases (Fig. 2(a)). The is-
sue of spatial resolution is also unclear from a theoretical
point of view. Capacity calculations [12, 13] require that
a bump can form in any of the L maps, in at least one
position: they offer no guarantee about the existence of
other memorized positions, and, more generally, about
the value of ε.

(a) (b)

FIG. 2: (a) Spatial error ε vs. number L of two-dimensional
maps in a network of N = 1000 neurons. Black: rule (2), with

w(d) = e−d/.01 +w0, where w0 < 0 enforces a fraction φ0 = .3
of active cells. Colors: SVM results for different numbers p
of prescribed positions. Line widths show the error bars, see
SM Sec. I.E for details about the calculation of ε. (b) Spatial
error ε vs. number p of positions in a network of N = 1000
neurons storing L = 5 maps, in dimensions D = 1, 2, 3. Lines
show the expected scalings ε ∼ p−1/D in log-log scale.

Secondly, the values of the critical capacity αc with
rule (2) are generally quite low. It is reasonable to expect
that the optimal storage capacity could be much higher:
a ∼ 15-fold increase was found from the Hebb-rule criti-
cal capacity, ' 0.14 [17], to the optimal capacity, αc = 2
[18] in the case of 0-dimensional attractors, correspond-
ing to the Hopfield model [19]. Optimal learning could
also provide detailed insights on the statistical structure
of the neural couplings Wij , which could be compared
to the physiological distribution of synaptic connections
[20].

In this Letter, we present a theory of optimal storage
of multiple quasi-continuous maps with prescribed spatial
resolution in a RNN with N binary neurons (σi = 0, 1)
and real-valued, oriented connections Wij . A map in this

context is defined through the set of the input (place)
fields of the N neurons, each covering a volume fraction
φ0 of the D-dimensional cube (Fig. 1(b)). In practice, the
centers of the fields are uniformly drawn at random in the
cube, independently of each other, in all L = αN maps.
For each map ` = 1...L, we draw uniformly at random p
positions r̂`,µ, µ = 1...p, and collect the p corresponding
patterns of activity: the neuron i is active (σ`,µi = 1)
if the position is covered by its input field, and silent
(σ`,µi = 0) otherwise (Figs. 1(a)&(b)).
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FIG. 3: Optimal stability κ as a function of the load α and
the number p of positions. Dots: SVM results; Dashed lines:
Gardner’s theory (4); Dashed-dotted lines: quenched PF the-
ory (7). Parameter values: D = 2, φ0 = .3, N = 1000 for
SVM. Inset: αc(p) decreases proportionally to 1/p (straight
line) at low p, and much more slowly for large p. Dots indi-
cate results from SVM (N = 5000), averaged over 50 samples,
see SM Sec. I.D for details on the estimation of αc(p); the dot
size indicates the maximal error bar. The dashed-dotted line
shows the predictions from the quenched PF theory.

In order to learn these patterns we use Support Vector
Machines (SVM) with linear kernels and hard margin
classification [21]. We train N SVM, one for every row
i in the coupling matrix Wij , in which we consider the
neuron i as the output and the other N−1 neurons j(6= i)

as the inputs [22]. The training set {σ`,µi } is common to
all SVM. Once learning is complete, we normalize each
row of the coupling matrix to

∑
j( 6=i)W

2
ij = 1. SVM find

the coupling matrix W maximizing the stability of the
stored patterns,

κ = min
{i=1...N,`=1...L,µ=1...p}

[(
2σ`,µi − 1

) ∑
j( 6=i)

Wij σ
`,µ
j

]
.

(3)
SVM couplings share some qualitative features with

their Hebbian counterparts. First, the couplings Wij are



3

correlated with the distances d`ij = |r`i − r`j | between
the PF centers of the neurons i and j in the different
maps `, see SM Sec. I.C. Secondly, when simulating the
trained network with simple rules for updating the neu-
ron activities (SM, Sec. I.E), the activity bump forms and
diffuses within a map, and occasionally jumps to other
maps [11, 15, 16]. However, with the maximal-stability
learning rule, the spatial error ε can be tuned at will by
varying p, see Fig. 2(a). For a fixed p, ε remains remark-
ably stable as the load increases until its critical value is
reached. This is in sharp contradistinction with the Hebb
rule case, for which ε quickly increases with the number
of maps. The p patterns form a discrete approximation of
the map, with average spatial error scaling as ε = p−1/D,
i.e. as the typical distance between neighboring points
(Figs. 1(a)&2(b)).

The optimal stability κ (3) is shown in Fig. 3 as a
function of the load α and of the number p of prescribed
fixed points; it is much higher than the maximal stability
achievable with rule (2) after optimization over the inter-
action kernel w, see SM, Sec. I.D. As expected, κ(α, p) is a
decreasing function of α and p: increasing the number of
maps or enforcing finer spatial resolution reduces the sta-
bility. The value of the load at which κ(α, p) vanishes de-
fines the critical capacity αc(p), that is, the maximal load
sustainable by the network as a function of the required
spatial resolution. Figure 3(inset) shows that αc(p) de-
creases proportionally to 1/p at low p, and then much
more slowly as p grows. For small p, all L × p patterns

are roughly independent, and we have αc(p) ' αc(1)
p ,

where αc(1) is the capacity of the perceptron with inde-
pendent, biased patterns having a fraction φ0 of active
neurons [18]. As p gets large, substantial redundancies
between the p patterns within a map appear, as nearby
positions define similar patterns (Fig. 1(b)), and the ca-
pacity is expected to decrease less quickly with p. The
cross-over takes place at pc.o. ∼ 1/φ0 (SM, Sec. I.D).
The non-trivial behavior of αc(p) when p� pc.o. will be
characterized in the theoretical study below.

Gardner’s framework [18] can, in principle, be ap-
plied to the optimal couplings corresponding to maxi-
mal stability κ (3). Following standard calculations (SM,
Sec. II.A), we find that the maximal load at fixed κ and
p is given by

αc(κ, p) = 1/min
m
〈Ep(R̂,Z,m;κ)〉R̂,Z , (4)

where the minimum is taken over m = φ0
∑
j(6=i)Wij . In

the formula above, 〈·〉 denotes the average over the vec-
tors R̂ = (r̂1, ..., r̂p) of p positions r̂µ drawn uniformly at
random in the D-dimensional cube, and Z = (z1, ...zp)
drawn from the multivariate centered Gaussian distribu-
tion with R̂–dependent covariance matrix

Γµ,ν(R̂) = Γ
(
|̂rµ − r̂ν |

)
− φ20 . (5)

Here, Γ(d) is the overlapping volume between two PFs,
whose centers are at distance d from one another; hence,
Γ(0) = φ0. Function Ep in (4) is defined through

Ep(R̂,Z,m;κ) = min
{tµ≥κ+m,µ=1...p}

p∑
µ,ν=1

(
tµ − zµ − 2mσ(|̂rµ|)

)
Γ−1µ,ν(R̂)

(
tν − zν − 2mσ(|̂rν |)

)
, (6)

where σ(d) = 1 if d < rc, 0 otherwise; rc is the radius of
the PF, i.e. the smallest number such that Γ(2 rc) = 0.

In practice, computing αc(κ, p) from (4) is quite in-
volved from a numerical point of view, as it requires
to solve the p-dimensional semi-definite quadratic opti-
mization problem in (6), as well as to average over the
random vectors R̂ and Z. This can be accurately done
for small enough p, with results in excellent agreement
with the SVM simulations, see Fig. 3. Notice that, for
p = 1, our calculation reproduces Gardner’s critical ca-
pacity αc(1) for independent and biased patterns (SM,
Sec. II.B). This is expected as spatial correlations be-
tween patterns within a map appear when p ≥ 2.

Formula (4) seems, unfortunately, intractable for large
p. The intricate dependence on p, e.g. showing up
through the Gaussian correlations between the p ran-
dom fields zµ in (6), stems from the average (in each

map `) over the N PF centers, {r`i}, at fixed positions
{r`,µ}. To avoid introducing these correlations and have
an explicit dependence on the parameter p, we consider
an alternative calculation scheme, where the p positions
in each map are averaged out, while keeping the L × N
centers quenched. To further simplify the calculation we
neglect in the effective action all terms of order ≥ 3 in
the couplings Wij [23]; this Gaussian approximation is
expected to be exact in the large-p limit. Details about
the calculation can be found in SM, Sec. II.C. Within our
quenched PF theory the optimal load αc(κ, p) is the root
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of F defined through

F (α;m, q, U, V, T ) = V

(
q + U − m2

1− 4
g(U) + 4U

)
(7)

+T

(
1 +

U g(U)− 1

V

)
− αp(q −m2)

∫ ∞
x

dz
e−

z2

2

√
2π

(z − x)2

with x = m−κ√
q−m2

. In (7), m =
∑
j(6=i)(2Cij − φ0)Wij ,

q =
∑
j,k(6=i)WijCjkWik, and the Lagrange multipliers

U, V, T enforcing, respectively, the normalization of W
and the definition of the order parameters, are all cho-
sen to optimize F . C denotes the N × N multi-space
Euclidean Random Matrix (ERM)

Cjk
(
{r`i}

)
=

1

L

L∑
`=1

Γ
(
|r`j − r`k|

)
, (8)

with resolvent g(U) = 1
NTrace (U Id+C)−1. While ERM

have been intensively studied in the literature [24], super-
impositions of ERM mixing up different spaces have not
been considered so far to our knowledge. The resolvent
g(U) can nevertheless be computed using tools from Ran-
dom Matrix Theory [25], and shown to be solution of the
implicit equation

U =
1

g(U)
−
∑
k 6=0

α Γ̂(k)

α+ g(U) Γ̂(k)
, (9)

where the Γ̂(k)’s are the components of the Fourier trans-
form of Γ on the D-dimensional infinite reciprocal cube.

Resolution of these equations gives access to κ(α, p), in
very good agreement with the numerical results obtained
with SVM (Fig. 3). Small deviations can, however, be
noticed and diminish with increasing p as expected. The
order parameters q and m are shown as functions of p in
Fig. 4, in good agreement with SVM results for large p (�
pc.o.). The value of p at which the confluence between the
results from the quenched theory and SVM takes place
is a decreasing function of the PF size φ0 (SM, Sec. II.D)
and of the map dimension D (SM, Sec. I.D).

Due to the explicit dependence of F on p in (7) the
asymptotic behaviour of the critical capacity can be an-
alytically determined in the large–p limit:

αc(p) ∼ A(D)
φ
−(D−1)
0

(log p)D
(p→∞) , (10)

where the constant A is made explicit in SM, Sec. II.C.
Equation (10) is our main result. Informally speaking,
the very slow decay of the critical capacity with p (Fig. 3,
inset) means that recurrent neural nets can efficiently
store multiple spatial maps, even at high spatial resolu-
tion. More precisely, enforcing a strong reduction of the
spatial error, such as ε→ ε2, results in a moderate drop
of the maximal sustainable load, αc → αc/2

D. In addi-
tion, the capacity is predicted to be a decreasing function

of the PF size in dimensions D = 2, 3, but not in dimen-
sion D = 1. This asymptotic statement is qualitatively
corroborated by SVM results, even for moderate values
of p (SM, Sec. I.D).

FIG. 4: Order parameters m (left) and q (right) vs. p. Dots:
SVM results (N = 2500), averaged over 50 samples; Dashed-
dotted lines: quenched PF theory (7). Parameters: D = 2,
φ0 = .3, α = .02 (top) and .05 (bottom), for which up to, re-
spectively, pc ' 2500 and pc ' 250 points can be memorized.

Many extensions of the current work can be contem-
plated. First, our theory can be easily generalized to the
case of spatial resolutions varying from map to map, by
substituting p with its average value over the maps in
(10). This suggests that the fraction of maps with finest
spatial resolution ε should not exceed ∼ εD when ε→ 0,
in order not to affect too much the critical capacity.

Secondly, while we have assumed here for the sake of
simplicity that the spatial resolution was statistically uni-
form across space, this need not be the case in practice.
Experiments have shown that spatial representations of
environments are enriched in place fields close to spots
of interests (such as water pots [26] or objects [27]) with
respect to void regions. Numerical simulations reported
in SM, Sec. I.D&E show that increasing the density of
prescribed positions in regions of the physical space al-
lows us to carve specific attractors in the neural activity
space, representing preferentially those regions. This re-
sult is compatible with recent studies establishing the
link between PF distribution and behavioral place pref-
erence [28]. Interestingly, our quenched PF theory can be
applied to any set of PF centers and sizes, not necessar-
ily homogeneously distributed over space; knowledge of
the PF characteristics, e.g. from experimental measure-
ments, allows us to determine the multispace correlation
matrix C in (8) and to make specific predictions. A proof
of principle of this approach is shown in SM, Sec. II.D,
where we compare the couplings found with SVM and
with our quenched PF theory on synthetic data.

Thirdly, several improvements could be brought in
terms of biological plausibility. In particular one should
study the case of continuous rather than binary neurons,
explicitly distinguish excitatory and inhibitory neurons
and impose Dale’s law on the associated synapses, and
take into account the sparse nature of synapses [29] and
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of place-cell activity [9] observed in CA3. Border ef-
fects, known to be important for hippocampal maps [30],
should also be considered instead of the simple periodic
boundary conditions assumed here. Finally, it would be
extremely interesting to study the dynamics of learning,
in particular how the network progressively maturates to
account for more and more fixed points and eventually
defines a quasi-continuous attractor (SM, Sec. I.B), as
seems to be the case during the first weeks of develop-
ment in rodents [31].
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