

Influence of automation on mind wandering frequency in sustained attention

Jonas Gouraud, Arnaud Delorme, Bruno Berberian

► To cite this version:

Jonas Gouraud, Arnaud Delorme, Bruno Berberian. Influence of automation on mind wandering frequency in sustained attention. Consciousness and Cognition, 2018, 66, pp.54-64. 10.1016/j.concog.2018.09.012 . hal-02314045

HAL Id: hal-02314045 https://hal.science/hal-02314045

Submitted on 11 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Influence of Automation over Mind Wandering Frequency in Sustained Attention
2	Jonas Gouraud ¹ , Arnaud Delorme ^{2,3} , Bruno Berberian ¹
3	1. System and Information Processing Department, ONERA, Salon de Provence, France
4	2. Center of Research on Brain and Cognition (UMR 5549), CNRS, Toulouse, France
5	3. Swartz Center for Computational Neurosciences, University of California, San Diego,
6	California, USA
7	
8	
9	
10	Correspondence concerning this article should be addressed to Jonas Gouraud,
11	ONERA Salon de Provence, 13661, Salon Air, France. Contact: contact@jonasgouraud.com

13

Abstract

14 Recent evidences showing that mind wandering might fill the time saved by automation 15 are particularly worrying when taking into account the negative effect of mind wandering 16 on short-term performance. 17 participants performed an obstacle avoidance task under 17 manual and automated conditions in 2 sessions lasting 45 minutes each. We recorded 18 attentional probes, oculometry and answers to the Task Load Index after each session. 19 Subjects perceived the manual condition as more demanding than the automated one. We 20 highlighted a significant influence of automation on the mind wandering frequency after 21 some time. Multiple phenomena may play a role, such as complacency and decoupling 22 from the task at hand. Pupil diameter decreased during mind wandering versus focus 23 periods, with a stable amplitude. Mind wandering knowledge could be used in a near 24 future to characterize and quantify an operator's state of mind regarding automation 25 related problems. 26

27

- *Keywords*: mind wandering; automation; vigilance; oculometry; complacency;

decoupling

28

2	C
1	ч
_	/

Introduction

30	In order to continuously improve system safety, the critical systems industry
31	makes extensive use of automation (Baxter, Rooksby, Wang, & Khajeh-Hosseini, 2012;
32	Parasuraman, 1987). In cockpits (Wise, Tilden, Abbott, Dyck, & Guide, 1994), in cars
33	(Naujoks, Purucker, & Neukum, 2016), and in power plant consoles (Cummings,
34	Sasangohar, Thornburg, Xing, & D'Agostino, 2010), automation has been introduced to
35	increase performance and respond to new safety requirements. Unfortunately, while
36	implementing higher levels of automation indeed improves the efficiency and capacity of
37	a system, it also creates new challenges for human operators. Particularly, the externally
38	imposed task to maintain sustained attention focused for long periods of time in low
39	probability environments causes progressive vigilance decrement - or invigilance
40	increment (Hancock, 2013) - preventing efficient automation supervising (Amalberti,
41	1999). As targets are hidden – naturally, voluntarily or because of poor display design –,
42	the task to detect and react to these targets is often stressful and increasingly difficult
43	(Mackworth, 1948). These problems result in out-of-the-loop (OOTL) performance
44	problem, referring to a performance decrease whenever attempts are made to regain
45	manual control after a critical system failure.
46	Such problems have been studied in laboratories (Endsley & Kiris, 1995; Sarter,

Woods, & Billings, 1997), but are also regularly reported in operational conditions.
Mosier and collaborators (1994) examined NASA's Aviation Safety Reporting System
(ASRS) database and reported that 77% of the incidents involved an over-reliance on
automation leading to a probable vigilance failure. Similarly, Gerbert and Kemmler

51 (1986) studied German aviators' anonymous responses to questionnaires about

52 automation-related incidents and pointed out failures of vigilance as the largest

53 contributor to human error. Several studies showed that efficient sustained attention for

hours cannot be achieved (Cabon, Coblentz, Mollard, & Fouillot, 1993; Mackworth,

55 1948; Methot & Huitema, 1998).

Such a context may favor the occurrence of mind wandering (MW) episodes. MW 56 57 is a family of experiences relating to the mind's tendency to engage in thoughts unrelated 58 to the here and now (Smallwood & Schooler, 2006). It is an ubiquitous phenomenon that 59 can be intentional or spontaneous (Golchert et al., 2016; Seli, Risko, & Smilek, 2016), be 60 guided or unguided (Smallwood, 2013), emerge when performing a task or at rest (Smallwood, Baracaia, Lowe, & Obonsawin, 2003) while its ignition point can be 61 62 triggered by the environment or generated internally (McMillan, Kaufman, & Singer, 63 2013; Smallwood & Schooler, 2006). In the following paper, we focused on MW when 64 performing a task without discriminating other dimensions. MW is more likely to occur 65 in monotonous environments (Eastwood, Frischen, Fenske, & Smilek, 2012), or when 66 operators perform familiar (Bastian et al., 2017) or long tasks (Smallwood & Schooler, 67 2015). Its occurrence favors a decoupling from the ongoing task at perceptual and stimuli processing levels (Kam et al., 2012; Schooler et al., 2011), which can be seen both on 68 69 behavioral and physiological data. Reading tasks were particularly used to uncover the 70 influence of MW over oculometric markers like blink frequency (Smilek, Carriere, & 71 Cheyne, 2010b), fixation duration and saccade frequency (Uzzaman & Joordens, 2011). 72 In simulators, Yanko and Spalek (2014) studied MW influence over driving performance. 73 They observed a longer reaction time to unexpected events, a shorter headway distance 74 and a higher velocity. Their results were corroborated by other studies in driving

75 environments (Dündar, 2015; He, Becic, Lee, & McCarley, 2011; Lerner, Baldwin,

76 Higgins, Lee, & Schooler, 2015).

77 Given that MW diverts an operator's attention from his primary task, it could play 78 an important role in vigilance failures observed in highly reliable automated 79 environments. Casner and Schooler (2015) studied the impact of automation on MW in 80 an aeronautical context. Their results on 16-minute sessions did not show a significant 81 correlation between automation and the frequency of MW reports. However, the 82 propensity to mind wander appeared to increase when everything seemed under control. 83 Supervising ultra-reliable systems could encourage operators to decrease cognitive 84 resources allocated to the monitoring task. In that context, time saved by automation, 85 which should normally be used for other productive tasks and for monitoring, could 86 instead be filled by task-unrelated thoughts. Operators in such a state would not be 87 prepared to regain manual control over the system in response to rare critical events. 88 Such analysis is already considered in the debate regarding the origin of the vigilance 89 decrement (Fraulini, Hancock, Neigel, Claypoole, & Szalma, 2017; Pattyn, Neyt, Henderickx, & Soetens, 2008; Thomson, Besner, & Smilek, 2016), recent evidences 90 91 showing that both phenomena share many features (Gouraud, Delorme, & Berberian, 92 2017).

We believe automation might influence MW during longer sessions within
ecological environments. We think that this impact may be observable on the MW
frequency, as well as on the physiological markers of MW. Our experiment addresses
these hypotheses.

97

98	Material and methods
99	Participants
100	17 participants (5 female) performed the experiment (age ranging from 21 to 42
101	years old; $M = 27.3$, $SD = 6.0$). The participants enrolled in this study were volunteers
102	from our company (ONERA organization). All participants had normal or corrected-to-
103	normal visual acuity. All participants signed a written declaration of informed consent.
104	The protocol was conducted in accordance with the Declaration of Helsinki.
105	Task
106	Environment. We used the LIPS (Laboratoire d'Interactions Pilote-Système, or
107	Pilot-System Interactions Laboratory) environment developed at the ONERA
108	organization to program our experiment (see Figure 1). An unmanned air vehicle (UAV)
109	depicted as a plane seen from above stayed at the center of a 2D radar 22-inch screen and
110	moved following waypoints arranged in a semi-straight line with clusters of obstacles
111	along the way (every 45s on average). Each cluster contained between 1 to 5 obstacles,
112	including one on the trajectory. The participants were instructed to control the
113	movements of the UAV to avoid obstacles. The LIPS environment includes a physics
114	engine to reproduce convincing Rafale aircraft motion behavior. The LIPS was displayed
115	on a screen within the SIMPIT environment shown in Figure 1.
116	

6

117

Figure 1. Screenshot of the LIPS interface and the environment. One of the screen is used for the task and the other one for questionnaire probes. For the task, the plane in the center is static and the surround (yellow and red numbered symbols) are moving. During, left and right avoidance maneuvers, again the plane is static and the background is rotated.

122

123 MW probes. Python 3.6 was used to program mental probes. On average every 2 124 minutes, the probe appeared on a secondary 10-inch screen next to the main screen. For 125 technical reasons, the obstacle avoidance task was not paused when the probe was 126 displayed. Participants were asked to fill it as soon as it appeared, and any successful or 127 failed trial during this interval would not be taken into account. Participants were 128 informed that the probe was not part of the evaluation to lower the impact of instructions 129 over their natural propensity to mind wander. Participants were required to answer the 130 following questions (originally in French, see Figure 2): "When this probe appeared, 131 where was your attention directed?" Answers could be "On the task" (e.g., thinking about 132 the next obstacle, the decision to make, the incoming waypoint), "Something related to 133 the task" (e.g., thinking about performance, interface items, last trial), "Something 134 unrelated to the task" (e.g., thinking about a memory, their last meal, or a body sensation,

hereafter defined as MW) or "External distraction" (e.g., conversation, noise). The

136 preceding examples were given to participants to illustrate each category. We were

- primarily interested in reports of being "On the task" and MW reports. Reports of
- thoughts "Related to the task" were integrated to avoid participants to report MW when
- thinking about their performance (Head & Helton, 2016). Noises were integrated to avoid
- 140 participants to report MW if they were focused on any external signal.
- 141

142

143Figure 2. Screenshot of the French MW probes. The question is "When this probe appeared, where144was your attention directed?" Answers could be "On the task", "Something related to the task", "Something145unrelated to the task" or "External distraction"

146

147 **Conditions**. Two conditions were proposed. The first one was the "manual" 148 condition and required participants to manually avoid obstacles. The system detected 149 obstacles on the trajectory 13s before impact. Then, an orange circle appeared around the 150 UAV and the participant could initiate an avoidance maneuver. Participants were able to 151 choose the way in which they wished to avoid the obstacle by clicking on "*Evitement* 152 *Gauche*" (left maneuver) or "*Evitement Droite*" (right maneuver). Once they clicked, the 153 simulator turned the trajectory of the UAV on the chosen side, following a predefined 154 angle. Each obstacle had a safe circle similar to that of the UAV (see Figure 1). A 155 collision warning – i.e., an orange circle around both the UAV and the obstacle with a 156 message "Collision" - was displayed if the UAV safe circle penetrated inside the obstacle 157 safe circle. A trial with a collision warning triggered was marked as failed. To resume the 158 initial trajectory, they had to click on the "Retour trajectoire" (return to original 159 trajectory) button. If no action was taken within 16 seconds after the first change in 160 trajectory, the aircraft automatically resumed the trajectory and the trial was marked as 161 failed. 162 The second condition was the "automated" condition. Participants were required 163 to monitor the system avoiding obstacles. They had to click on an "Acquittement" 164 (acknowledgement) button to acknowledge automated avoidance decisions as soon as 165 they saw it – twice per trial, once to acknowledge avoidance of the object and once to 166 acknowledge the return to normal trajectory after avoiding the object. A feedback 167 message was displayed to the participants. The acknowledgement ensured that 168 participants would have the same motor input under both the manual and the automated 169 conditions. If participants detected an automation error, i.e. choosing the wrong side for 170 avoidance trajectory, they were instructed to click on the button "Changement d'altitude" 171 (change altitude) so that the UAV would perform an emergency descent. A feedback 172 message was displayed in that case as well. The altitude change ensured that participants 173 were facing a supervision task.

Procedure. Participants were explicitly instructed that detection accuracy was
more important than speed in button clicks. Each participant performed the two

176 conditions on two separate days in a counterbalanced way. Each day started with an 177 explanation of the task, followed by a 10-minute training period and a 45-minutes session 178 under the proper condition. Each session contained 60 clusters of obstacles. Each cluster 179 was considered a trial. They were separated by 45 seconds on average. 20 probes were 180 answered under each condition. The distribution of probes was not correlated with events 181 on the obstacle avoidance task in order to avoid performance to influence MW reports 182 (Head & Helton, 2016). The automated condition included 8 conflicts with a probe within 183 the 10-seconds interval following the conflict. Participants encountered one system error 184 (where they had to click on the "Changement d'altitude" button) during training, and 185 another during the automated condition at the end of the third block. Under the manual 186 condition, participants encountered at the end of the third block a conflict impossible to 187 avoid. Both the automation error and this conflict were not followed by an attentional 188 probe for at least 10 seconds after.

189

Data recording

MW Probes. Comma Separated Value (CSV) text files were used to store all
answers. The exact appearance time was saved along with each answer, in order to
synchronize probes data with the pupillometric signal.

Post-task questionnaire. We used a validated French version of the NASA Task Load Index (TLX) questionnaire to evaluate the required amount of cognitive resources – equated as workload – along several dimensions (Cegarra & Morgado, 2009; Hart & Staveland, 1988). This questionnaire includes questions pertaining to mental load, time pressure, physical strain, effort, frustration, and perceived performance. Participants were asked to answer each question using a horizontal line, ranging from 0 to 20. Although a

199 TLX questionnaire completed at each block would allow precise workload monitoring, 200 we believe that MW would have been artificially lower due to the disruption. Therefore, 201 the TLX was only filled at the end of each session. 202 **Oculometry.** Oculometric data was recorded using the hardware SmartEye Pro 203 3.0 and the software SmartEye 6.2.4. The system included 2 infrared illuminators and 204 3 cameras (120Hz) placed above the screen to avoid any direct contact with the 205 participant (see Figure 1). Gaze calibration was performed using a 4-point grid. 206 **Performance**. We recorded button clicks throughout both conditions. Each button 207 click was saved along with its timestamp within a CSV text format by the LIPS 208 environment. 209 **Data Analysis** 210 **MW probes.** Participants' clicks and probe answers were saved in CSV text 211 format. We used R-Studio and R 3.4.1 (R Core Team, 2016; RStudio Team, 2015) to 212 analyze the data. 213 **Oculometry.** The 10 seconds preceding each probe were extracted from 214 oculometric data. This period length is in line with the literature investigating MW and 215 oculometric markers (Bixler & D'Mello, 2014, 2015; Franklin, Broadway, Mrazek, 216 Smallwood, & Schooler, 2013; He et al., 2011). Extracts before "On the task" and 217 "Something related to the task" were classified as "Focus" to avoid any influence of poor 218 performance on subsequent attentional reports (Head & Helton, 2016). Extracts before 219 "Something unrelated to the task" were classified as "MW". Extracts before "External 220 distraction" were discarded as noise.

221 We performed filtering on pupillometry using the R package reshape (Wickham, 222 2007), psych (Revelle, 2017), ggplot2 (Wickham, 2009, p. 2) and robfilter (Fried, 223 Schettlinger, & Borowski, 2014). Filtering was done in two passes, following a method 224 already used in the literature (Grandchamp, Braboszcz, & Delorme, 2014). Firstly, we 225 filtered the signal. Pupil diameter had to be between 1 and 10 mm (due to the physical 226 limits of pupil diameter, see (Lemercier, 2014), had to be less than 80% different from 227 the preceding value (due to pupil dynamic limits) and had to be of a quality (computed by 228 the SmartEye software) over 0.01. Extracts were discarded if their resulting pupil 229 diameter series consisted of less than 70% compliant values. The proportion of extracts 230 excluded due to low quality (9.6%) is in line with that excluded in other investigations 231 (Smallwood et al., 2011). Resulting extracts were completed using basic linear 232 interpolation. A second filtering pass was applied with a median filter (moving window 233 of 50 frames). Finally, the data of each participant were normalized by subtracting the 234 mean and dividing by the root mean square of all good-enough quality extracts for this 235 participant. 236 Fixations, saccades and blinks were computed by the SmartEve Pro software. Blinks were computed using sliding windows of 700ms. Saccades were defined in 237

238 SmartEye Pro parameters as gaze velocity over 35 deg/s. Saccades were limited to

239 200ms. Fixations were frames where the gaze velocity remained below 15 deg/s.

Performance. Performance was assessed by determining if participants clicked
when they were required to do so. Reaction time were computed by comparing
participants button click time delay in the manual condition to the moment the system

detected an obstacle, and in the automated condition to the time at which theyacknowledged each automation decision.

- 245
- 246

Results

247 Mind Wandering Frequency

248 We split the 45-minute sessions into 4 blocks lasting 10-minutes and containing 5 reports each. MW propensity was calculated as a percentage of all reports in the block 249 250 (see Figure 3). Participants reported MW episodes for almost half of the probes (M =251 49%, SD = 30%). This rate is consistent with previous studies on the subject (Kam et al., 252 2011; Smallwood & Schooler, 2006, 2015). Each participant reported on average 4% 253 "external distraction" thoughts in each session (SD = 5). Such a low rate justified 254 discarding "external distraction" reports as noise without thwarting subsequent analysis. 255 We used the ezANOVA function (Lawrence, 2016) to perform a two-way 256 repeated measure ANOVA. We entered time (block) and level of automation (condition) 257 as independent variables. We used the MW frequency as a dependent variable. Mauchly's 258 test indicated that the assumption of sphericity had been verified for the main effect of 259 block, W = 0.64, p = .251, and block \times condition, W = 0.90, p = .906. There were significant main effects of time over the MW frequency, F(3, 48) = 8.88, p < .001, as 260 well as of the level of automation over the MW frequency, F(1, 16) = 12.67, p = .003. 261 262 There was also a significant interaction effect between the time and the level of 263 automation, F(3, 48) = 5.22, p = .003. Without specific *a priori* predictions on the 264 evolution of MW frequency through time, we conducted Tukey's post-hoc tests on the 265 model including Block variable for each condition separately. We used the *glht* (Hothorn

et al., 2017) and mes (AC Del Re, 2014) functions. For the manual condition, all

267 differences were non-significant (p > .366). For the automated condition, the third and

- 268 fourth blocks had significantly higher MW frequency compared to the first block, p =
- 269 .001, d = 0.54 and p = .003, d = 0.32, respectively. Similarly, the blocks 3 and 4 had
- significantly higher MW frequency compared to the block 2, p = .007, d = 0.12 and p = .007
- 271 .016, d = 0.12, respectively.

273

274

275

276

277 NASA TLX Scores

Each participant filled 2 TLX questionnaires (one after each session). The mean score for each TLX of each subject (see Figure 4) varied substantially (ranging from 2 to 14.17, M = 5.81, SD = 2.44). Shapiro-Wilk's test indicated that the assumption of normality had been violated for the TLX values, W = .921, p = .012. Therefore, we used

intervals based on bootstrap

282 Wilcox's robust version of the *t*-test proposed in the WRS2 package (Mair, Schoenbrodt,

283 & Wilcox, 2017). On average, participants perceived that the automated (M = 4.93, SD =

- 284 .50) condition required more cognitive resources than the manual (M = 6.68, SD = .61)
- condition, t(10) = -3.35, p = .007, d = 0.78. TLX scores show that our automated
- 286 condition succeeded in lowering workload.
- 287
- 288

290Figure 4: Normalized pupil diameter. Evolution during the 30-second interval preceding probes291display – the grey part of the signal is used for computation

292

293 Oculometry

Influence of MW over oculometric measures. Oculometric measures were first
analyzed using the 10 seconds preceding each probe. We used the lmer function (Bates,
Maechler, Bolker, & Walker, 2015, p. 4) to perform a linear mixed-effect analysis despite

297 missing values – "external distraction" reports and bad quality extracts excluded. As

random effects, we had intercepts for subjects. Visual inspection of residual plots did not
reveal any obvious deviations from normality or homoscedasticity. P-values were
obtained by likelihood ratio tests using ANOVA on the full model against the models
with no fixed effect, with only block, with block and condition, and with block and
condition and their interaction. The results are shown in Table 1. On average, participants
showed a significantly smaller pupil during MW episodes (see Figure 4). There was no
main effect of MW on other markers.

- 305
- 306

Table 1: Comparison of oculometric measures during MW and focus episodes

Parameter	MW values		Focus values		Mental State model	
	М	SD	М	SD	$\chi^{2}(1)$	p-value
Pupil size (mm)	4.90	0.97	5.05	0.97	7259	<.001
Saccade frequency (sacc/s)	3.92	2.36	3.89	2.39	0.07	.795
Mean fixation duration (s)	2.87*10 ⁻¹	6.65*10-1	3.22*10-1	6.52*10-1	0.08	.774
Blink frequency (blink/s)	6.90*10-2	1.10*10-1	5.43*10-2	9.81*10-2	2.09	.148

307

308 Influence of time and automation on oculometric differences. We looked for 309 any influence of time or automation over the pupillometric differences previously 310 observed between MW and focus periods. We used the lmer function to perform the 311 linear mixed-effect analysis, as in the previous paragraph. As fixed effects, we entered 312 time (block), level of automation (condition) and their interaction. As random effects, we 313 had intercepts for subjects, as well as by-subject random slopes for the effect of block and 314 condition. Visual inspection of residual plots did not reveal any obvious deviations from normality and homoscedasticity. Results are gathered in Table 2. Pupillometric difference 315 316 remained stable through time and condition.

317

INFLUENCE OF AUTOMATION OVER MIND WANDERING

318 Table 2: Influence of Time mode

Table 2: Influence of time and level of automation over the difference

Parameter	Time model		Time + C	ondition model	Time*Condition model		
	$\chi^{2}(3)$	p-value	$\chi^{2}(1)$	p-value	$\chi^{2}(3)$	p-value	
Pupil size	1.83	.609	0.40	.528	0.30	.959	

319

320

Discussion

321 We studied the impact of automated compared to manual environments on MW 322 and its behavioral and oculometric markers. The automated condition revealed 323 significantly lower TLX scores compared to the manual condition, showing a protocol in 324 line with usual goals regarding automation introduction (Wiener, 1988). Performance 325 remained very high throughout both conditions whereas MW increased in the automated 326 condition, ruling out the possibility that our attentional reports might be significantly 327 influenced by poor performance (Head & Helton, 2016). This demonstrates that our 328 results were as close as possible to ecological settings. Building on this, three main 329 results have been shown: (1) MW increases after some time has elapsed in an automated 330 environment, (2) there is a difference in pupil diameter between MW and focus episodes 331 but not for other oculometric markers and (3) pupillometric difference between 332 attentional states remains stable through time and condition. We discuss these results 333 below.

The first result is the significant increase of the MW frequency under the automated condition between blocks two and three. No significant time-related evolution of MW was observed under the manual condition. Since both conditions lasted the same amount of time, had similar number of actions and pursued the same goal – avoid incoming obstacles –, time-related phenomena (drowsiness, habituation, tiredness) cannot 339 explain entirely the fact that MW increased only under the automated condition. The 340 absence of MW increase in the manual condition is interesting considering the well-341 established vigilance decrement observed in sustained attention (Cabon et al., 1993; 342 Davies & Parasuraman, 1982; Jeroski, Miller, Langhals, & Tripp, 2014; Mackworth, 343 1948). It may point to a fundamental difference between MW and vigilance decrement 344 when considering the influence of automation. However mediating factors have still to be 345 investigated, such as anxiety and motivation, which have demonstrated essential link with 346 both phenomena separately (Killingsworth & Gilbert, 2010; Szalma et al., 2004; Szalma 347 & Matthews, 2015). Nevertheless, the level of automation alone cannot explain the 348 observed data. Even though MW frequency highlighted significant differences between 349 conditions, the trend did not evolve linearly with time-on-task and showed no difference 350 between conditions for the first two blocks. Moreover, this evolution happened despite 351 TLX scores remaining low for both conditions, which rules out the possibility that MW 352 may be explained by workload evolution. Together, these findings argue for an effect 353 linked to time spent supervising automation.

354 There are two explanations, which may be complementary, for this interaction 355 between time and level of automation over MW frequency. First, complacency might be 356 generated by the high reliability of the system and lower monitoring performance. 357 Complacency is an issue of monitoring automation generated by an uncritical reliance on 358 the system (Parasuraman, Molloy, & Singh, 1993). Complacency has been linked to 359 higher reaction time (Bahner, Hüper, & Manzey, 2008; Manzey, Bahner, & Hüper, 360 2006), loss of situation awareness (Endsley & Kiris, 1995) and failures of detection 361 (Parasuraman et al., 1993). In our experiment, participants encountered no error during

362 the first three blocks. Given that the system never did any miss or error, participants may 363 have thought that it would remain perfectly reliable. In this context, their perception of 364 the required workload might evolve: since the automated system does not seem to require 365 their attention to function properly, participants would redirect their cognitive resources 366 towards more personal matters and mind-wander more. The higher perceived workload 367 under the manual condition supports our analysis. Moreover, this could explain why 368 participants, novice in supervising the system, exhibited an increase of MW frequency 369 only after some time, while pilots in Casner and Schooler (2015), who were pilots with 370 thousands of hours dealing with autopilot, mind wandered immediately without temporal 371 evolution. These evidences suggest a mediating influence of system familiarity in MW 372 frequency temporal evolution. This position would introduce a third possibility within the 373 overload/underload theory debate (Pattyn et al., 2008; Warm, Parasuraman, & Matthews, 374 2008). Although the task complexity does not change, the operator's perception could 375 evolve based on their trust in the system and their feelings toward the overall situation. 376 As pointed by Seli and colleagues (Seli, Carriere, & Smilek, 2015; Seli et al., 2016), there 377 is strong evidence that people can exert some control over their MW. This follows Casner 378 and Schooler's (2015) results, who demonstrated that cognitive resources freed by 379 automation in peaceful situations are not allocated to task planning, but rather to MW. 380 Our analysis is in line with studies that observed MW increase in a low probability signal 381 environment (Berthié et al., 2015; Casner & Schooler, 2015; Galera et al., 2012), with the 382 time elapsed performing the task (McVay & Kane, 2009; Smallwood, Baracaia, Lowe, & 383 Obonsawin, 2003; Smallwood, Riby, Heim, & Davies, 2006) and the view of 384 complacency as a multiple-task strategy (Bahner et al., 2008; Moray & Inagaki, 2000).

385 Operators save cognitive resources allocated to the low-event automated task in order to 386 perform better on another task – MW –, which is considered more interesting or useful, 387 independently of experiment instructions. 388 The second possible explanation is a decoupling of operators' attention from the 389 task at hand. When dealing with automation, operators give up their direct control over 390 the system for a monitoring role in the supervisory control loop (Moray, 1986; Sheridan, 391 1992). They may experience a loss of agency -i.e., the ability to feel in control (Wegner, 392 2002). Multiple studies pointed to a limit to the automation level beyond which users felt 393 less in control (Berberian, Sarrazin, Le Blaye, & Haggard, 2012; Coyle, Moore, 394 Kristensson, Fletcher, & Blackwell, 2012), leading to a form of disengagement from the 395 task at hand (Haggard, 2017). Interestingly, Szalma (2014) described a similar 396 disengagement when applying the Self-Determination Theory (Ryan & Deci, 2000) to 397 human-system interactions. The inability of a system to support autonomous behavior 398 may lower motivation and create an externalization of task goals – i.e. a process by which 399 operators rejects the value of a goal. In our experiment, since participants do not validate 400 but rather only acknowledge the system's actions, they could firstly experience a loss of 401 agency, their motivation would decrease, leading to a faint sense of responsibility. This 402 process chain could lead participants to reallocate cognitive resources from the task to 403 MW, unconsciously trying to optimize time and mental resources from their perspective. 404 Further studies are needed to distinguish the respective impacts of agency drop and 405 complacency on MW emergence. 406 Our second result concerns oculometric measures. We highlighted a lower pupil 407 diameter during MW, as did several studies on MW (Faber, Bixler, & D'Mello, 2017;

408 Grandchamp et al., 2014; Mittner et al., 2014). Our probes included action required for 8 out of 20 probes in each condition, ruling out the possibility that performance may have 409 410 significantly influenced subsequent attentional reports (Head & Helton, 2016). Moreover, 411 literature on vigilance already linked a lower pupil baseline to periods of lower sensibility 412 to external stimuli (K. McIntire, P. McIntire, Mckinley, & Goodyear, 2014; Nishiyama, 413 Tanida, Kusumi, & Hirata, 2007). Taken together, these results are in line with the view 414 of MW as a phenomenon inducing a decoupling from the environment. However, other 415 research linked large pupils with slow and inaccurate responses (Gilzenrat, Nieuwenhuis, 416 Jepma, & Cohen, 2010; Smallwood et al., 2011), or more directly to MW during a word-417 by-word reading task (Franklin et al., 2013). A recent study by Konishi et al. (2017) was 418 aimed at explaining these results to all appearances contradictory. During 0-back and 1-419 back tasks, they observed a smaller pupil preceding MW reports. They also linked a 420 higher pupil baseline and slower or inaccurate responses, highlighting a different state of 421 under-processing of external stimuli and ruling out a potential increase in pupil diameter 422 during MW episodes. These results corroborate our study and stress the need to 423 investigate these attentional states. Contrary to pupillometry, other oculometric measures 424 did not exhibit significant sensitivity to MW. However, our experiment is the first to our 425 knowledge to investigate MW influence over blink, saccade frequency and fixation 426 duration in operational settings. Indeed, previous research used most exclusively reading 427 tasks (Bixler & D'Mello, 2014, 2015; Reichle, Reineberg, & Schooler, 2010; D. Smilek 428 et al., 2010; Uzzaman & Joordens, 2011), with the notable exception of meditation 429 (Grandchamp et al., 2014). Our result could point to important task mediators of MW 430 influence over oculometric markers, such as event rate or cognitive demands.

431 Finally, the last result is the stability of pupillometric markers with respect to 432 automation and time. Cheyne and colleagues (2009) recently proposed the integration of 433 intensity of environment decoupling as a characteristic of MW episodes. They used a 434 Sustained Attention to Response Task (SART, a form of GO/NOGO task; see 435 (Robertson, Manly, Andrade, Baddeley, & Yiend, 1997) to match errors and reaction 436 time evolution with each level of their model. If this model were true, there is little doubt 437 that physiological markers would show some sensibility to intensity of MW. However, no 438 influence over oculometric markers was observed. Several explanations can be proposed. 439 First, our protocol, which differ from previous protocols, may not be able to uncover such 440 a tendency. Second, intensity may not regulate MW impact over pupillometry. Third, 441 there may not be any intensity in MW episodes, each inducing the same environment 442 decoupling. Indeed, the study Cheyne and colleagues (2009) falls under the concerns 443 expressed by Head and Helton (2016), see next paragraph). Further neural studies are 444 necessary to answer this question.

One could argue about the absence of analysis of performances, in order to clarify the relation between MW and stimuli processing. However, our study aimed to explore a different question: the impact of automation on MW occurrence. Addressing both questions would have required modifications to our protocol – add more conflicts, increase the duration, synchronize probes with conflicts –, with the possibility to introduce biases and produce an environment far from an ecological one. In such condition, OOTL phenomenon occurrence would be difficult to induce.

452 Nevertheless, the question of how MW influences performance remains to be 453 answered. The extended literature on the subject (Esterman, Noonan, Rosenberg, &

454 DeGutis, 2013; Smallwood et al., 2003; Smilek, Carriere, & Cheyne, 2010a; Thomson, 455 Seli, Besner, & Smilek, 2014) was recently criticized by Head and Helton (2016). They 456 put forward the possibility that poor performance observed before MW may influence 457 subsequent attentional reports, and not the other way around. The result of their reading study did not show any significant link between MW and awareness of stimuli. Certainly, 458 459 studies using high rates of discrete events without high cognition – like the Sustained 460 Attention to Response Task (SART) – may be particularly biased by this logical flaw, as 461 performance monitoring and self-corrections are easy to perform. On the other hand, 462 continuous metrics – as in tracking tasks (Kam et al., 2012; Yanko & Spalek, 2014) – 463 cannot be similarly biased, as poor performance evaluation is harder and would lead to a 464 direct correction visible in the signal. Similarly, studies measuring stimuli awareness or 465 recognition – like reading – may avoid this flaw, as performance is evaluated either at the 466 end of the session (Franklin et al., 2013), or not at all (Uzzaman & Joordens, 2011). Be 467 that as it may, further research is needed to identify parameters mediating the perceptual 468 decoupling induced by MW.

469 In the near future, the massive use of automation in everyday systems will 470 reinforce the OOTL phenomenon. Our results show that automation increases MW 471 frequency after some time. The MW literature in ecological tasks already highlighted 472 how the phenomenon increases the risks in critical environments. Such results stress the 473 necessity to study in more detail the relation between MW and the OOTL performance 474 problem. Possible improvements include the study of reliability and complacency by 475 manipulating the number of conflicts and automation errors. Another possibility is to 476 highlight the impact of the operator's engagement in the task. Finally, perceived

477	workload is not to be overlooked. The use of electroencephalograms would allow
478	continuous measurement to precisely assess its impact over MW frequency. However,
479	such a protocol requires the influence of perceived workload and MW over neural
480	measures to be discriminated. Eventually, the expected outcome is to design automated
481	systems able to adapt themselves to operators' MW episodes. We hope that such a system
482	may enhance safety in critical automated environments.
483	
484	Acknowledgements
485	We thank the Direction Générale de l'Armement (DGA) for their financial
486	support to the first author. This work was supported by the Agence Nationale de la
487	Recherche (grant ANR-15-CE26-0010-01).
488	
489	References
490	1. AC Del Re. (2014). compute.es: Compute Effect Sizes (Version 0.2-4). Retrieved
491	from https://CRAN.R-project.org/package=compute.es
492	2. Amalberti, R. (1999). Automation in aviation: A human factors perspective. In D.
493	J. Garland, J. Wise, & D. Hopkin (Eds.), Aviation Human Factors (pp. 173-192).
494	Hillsdale, New Jersey: Lawrence Erlbaum Associates. Retrieved from
495	http://www.irit.fr/SIGCHI/old/docs/debat/Automation.in.Avia.LEA98%27.doc
496	3. Bahner, J. E., Hüper, AD., & Manzey, D. (2008). Misuse of automated decision
497	aids: Complacency, automation bias and the impact of training experience.
498	International Journal of Human-Computer Studies, 66(9), 688–699.
499	https://doi.org/10.1016/j.ijhcs.2008.06.001

500	4.	Bastian, M., Lerique, S., Adam, V., Franklin, M. S., Schooler, J. W., & Sackur, J.
501		(2017). Language facilitates introspection: Verbal mind-wandering has privileged
502		access to consciousness. Consciousness and Cognition, 49, 86-97.
503		https://doi.org/10.1016/j.concog.2017.01.002
504	5.	Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-
505		Effects Models Using Ime4. Journal of Statistical Software, 67(1), 1-48.
506		https://doi.org/doi:10.18637/jss.v067.i01
507	6.	Baxter, G., Rooksby, J., Wang, Y., & Khajeh-Hosseini, A. (2012). The ironies of
508		automation still going strong at 30? In Proceedings of ECCE 2012 Conference.
509		Edinburgh, North Britain.
510	7.	Berberian, B., Sarrazin, JC., Le Blaye, P., & Haggard, P. (2012). Automation
511		Technology and Sense of Control: A Window on Human Agency. PLoS ONE,
512		7(3), e34075. https://doi.org/10.1371/journal.pone.0034075
513	8.	Berthié, G., Lemercier, C., Paubel, PV., Cour, M., Fort, A., Galera, C.,
514		Maury, B. (2015). The restless mind while driving: drivers' thoughts behind the
515		wheel. Accident Analysis & Prevention, 76, 159–165.
516		https://doi.org/10.1016/j.aap.2015.01.005
517	9.	Bixler, R., & D'Mello, S. (2014). Toward Fully Automated Person-Independent
518		Detection of Mind Wandering. In User Modeling, Adaptation, and
519		Personalization (pp. 37-48). Springer. Retrieved from
520		http://link.springer.com/chapter/10.1007/978-3-319-08786-3_4
521	10	Bixler, R., & D'Mello, S. (2015). Automatic gaze-based user-independent
522		detection of mind wandering during computerized reading. In Proceedings of the

523	23rd User Modeling and User-Adapted Interactions conference (pp. 31–43).
524	Dublin, Ireland. https://doi.org/10.1007/s11257-015-9167-1
525	11. Cabon, P., Coblentz, A., Mollard, R., & Fouillot, J. P. (1993). Human vigilance in
526	railway and long-haul flight operation. Ergonomics, 36(9), 1019–1033.
527	https://doi.org/10.1080/00140139308967974
528	12. Casner, S. M., & Schooler, J. W. (2015). Vigilance impossible: Diligence,
529	distraction, and daydreaming all lead to failures in a practical monitoring task.
530	Consciousness and Cognition, 35, 33–41.
531	https://doi.org/10.1016/j.concog.2015.04.019
532	13. Cegarra, J., & Morgado, N. (2009). Étude des propriétés de la version
533	francophone du NASATLX. In B. Cahour, F. Anceaux, & A. Giboin (Eds.), Acte
534	du 5ème colloque de psychologie ergonomique (EPIQUE'2009) (pp. 233–239).
535	Nice, France.
536	14. Cheyne, A. J., Solman, G. J. F., Carriere, J. S. A., & Smilek, D. (2009). Anatomy
537	of an error: A bidirectional state model of task engagement/disengagement and
538	attention-related errors. Cognition, 111(1), 98-113.
539	https://doi.org/10.1016/j.cognition.2008.12.009
540	15. Coyle, D., Moore, J., Kristensson, P. O., Fletcher, P., & Blackwell, A. (2012). I
541	did that! Measuring users' experience of agency in their own actions. In
542	Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
543	(pp. 2025–2034). Austin, TX: ACM. https://doi.org/10.1145/1518701.1518766
544	16. Cummings, M. L., Sasangohar, F., Thornburg, K. M., Xing, J., & D'Agostino, A.
545	(2010). Human-system interface complexity and opacity part i: literature review.

546	Massachusetts Institute of Technology, Cambridge, MA. Retrieved from
547	https://www.researchgate.net/profile/Farzan_Sasangohar/publication/263315585_
548	Human-
549	system_interface_complexity_and_opacity/links/0deec53accc4413fb2000000.pdf
550	17. Davies, D. R., & Parasuraman, R. (1982). The psychology of vigilance. London,
551	England: Academic Press.
552	18. Dündar, C. (2015). The effects of mind wandering on simulated driving
553	performance. Retrieved from
554	http://etd.lib.metu.edu.tr/upload/12618921/index.pdf
555	19. Eastwood, J. D., Frischen, A., Fenske, M. J., & Smilek, D. (2012). The
556	Unengaged Mind: Defining Boredom in Terms of Attention. Perspectives on
557	Psychological Science, 7(5), 482–495.
558	https://doi.org/10.1177/1745691612456044
559	20. Endsley, M. R., & Kiris, E. O. (1995). The out-of-the-loop performance problem
560	and level of control in automation. Human Factors: The Journal of the Human
561	Factors and Ergonomics Society, 37(2), 381–394.
562	21. Esterman, M., Noonan, S. K., Rosenberg, M., & DeGutis, J. (2013). In the Zone
563	or Zoning Out? Tracking Behavioral and Neural Fluctuations During Sustained
564	Attention. Cerebral Cortex, 23(11), 2712–2723.
565	https://doi.org/10.1093/cercor/bhs261
566	22. Faber, M., Bixler, R., & D'Mello, S. K. (2017). An automated behavioral measure
567	of mind wandering during computerized reading. Behavior Research Methods.
568	https://doi.org/10.3758/s13428-017-0857-y

569	23. Franklin, M. S., Broadway, J. M., Mrazek, M. D., Smallwood, J., & Schooler, J.
570	W. (2013). Window to the wandering mind: Pupillometry of spontaneous thought
571	while reading. The Quarterly Journal of Experimental Psychology, 66(12), 2289-
572	2294. https://doi.org/10.1080/17470218.2013.858170
573	24. Fraulini, N. W., Hancock, G. M., Neigel, A. R., Claypoole, V. L., & Szalma, J. L.
574	(2017). A critical examination of the research and theoretical underpinnings
575	discussed in Thomson, Besner, and Smilek (2016). Psychological Review, 124(4),
576	525-531. https://doi.org/10.1037/rev0000066
577	25. Fried, R., Schettlinger, K., & Borowski, M. (2014). robfilter: Robust Time Series
578	Filters (Version 4.1). Retrieved from https://CRAN.R-
579	project.org/package=robfilter
580	26. Galera, C., Orriols, L., M'Bailara, K., Laborey, M., Contrand, B., Ribereau-
581	Gayon, R., Lagarde, E. (2012). Mind wandering and driving: responsibility
582	case-control study. British Medical Journal, 345(dec13 8), e8105-e8105.
583	https://doi.org/10.1136/bmj.e8105
584	27. Gerbert, K., & Kemmler, R. (1986). The causes of causes: determinants and
585	background variables of human factor incidents and accidents. Ergonomics,
586	29(11), 1439–1453. https://doi.org/10.1080/00140138608967257
587	28. Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil
588	diameter tracks changes in control state predicted by the adaptive gain theory of
589	locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10(2),
590	252-269. https://doi.org/10.3758/CABN.10.2.252

591	29. Golchert, J., Smallwood, J., Jefferies, E., Seli, P., Huntenburg, J. M., Liem, F.,
592	Margulies, D. S. (2016). Individual variation in intentionality in the mind-
593	wandering state is reflected in the integration of the default-mode, fronto-parietal,
594	and limbic networks. NeuroImage, 146, 226-235.
595	https://doi.org/10.1016/j.neuroimage.2016.11.025
596	30. Gouraud, J., Delorme, A., & Berberian, B. (2017). Autopilot, Mind Wandering,
597	and the Out of the Loop Performance Problem. Frontiers in Neuroscience, 11.
598	https://doi.org/10.3389/fnins.2017.00541
599	31. Grandchamp, R., Braboszcz, C., & Delorme, A. (2014). Oculometric variations
600	during mind wandering. Frontiers in Psychology, 5.
601	https://doi.org/10.3389/fpsyg.2014.00031
602	32. Haggard, P. (2017). Sense of agency in the human brain. Nature Reviews
603	Neuroscience, 18(4), 196-207. https://doi.org/10.1038/nrn.2017.14
604	33. Hancock, P. A. (2013). In search of vigilance: The problem of iatrogenically
605	created psychological phenomena. American Psychologist, 68(2), 97-109.
606	https://doi.org/10.1037/a0030214
607	34. Hart, S. G., & Staveland, L. E. (1988). Development of NASA- TLX (Task Load
608	Index): Results of empirical and theoretical research. Advances in Psychology, 52,
609	139–203.
610	35. Head, J., & Helton, W. S. (2016). The troubling science of neurophenomenology.
611	Experimental Brain Research. https://doi.org/10.1007/s00221-016-4623-7
612	36. He, J., Becic, E., Lee, YC., & McCarley, J. S. (2011). Mind Wandering Behind
613	the Wheel: Performance and Oculomotor Correlates. Human Factors: The

- 614 *Journal of the Human Factors and Ergonomics Society*, 53(1), 17–21.
- 615 https://doi.org/10.1177/0018720810391530
- 616 37. Hothorn, T., Bretz, F., Westfall, P., Herberger M., R., Schuetzenmeister, A., &
- 617 Schreibe, S. (2017). multComp: Simultaneous Inference in General Parametric
- 618 Models (Version 1.4-8). Retrieved from https://CRAN.R-
- 619 project.org/package=multcomp
- 620 38. Jeroski, J., Miller, M. E., Langhals, B., & Tripp, L. (2014). Impact of Vigilance
- 621 Decrement upon Physiology Measures. In *IIE Annual Conference. Proceedings*
- 622 (p. 1184). Institute of Industrial Engineers-Publisher. Retrieved from
- 623 http://www.xcdsystem.com/iie2014/abstract/finalpapers/I471.pdf
- 624 39. Kam, J. W. Y., Dao, E., Blinn, P., Krigolson, O. E., Boyd, L. A., & Handy, T. C.
- 625 (2012). Mind wandering and motor control: off-task thinking disrupts the online
- 626 adjustment of behavior. *Frontiers in Human Neuroscience*, 6.
- 627 https://doi.org/10.3389/fnhum.2012.00329
- 40. Kam, J. W. Y., Dao, E., Farley, J., Fitzpatrick, K., Smallwood, J., Schooler, J. W.,
- & Handy, T. C. (2011). Slow fluctuations in attentional control of sensory cortex. *Journal of Cognitive Neuroscience*, *23*(2), 460–470.
- 41. Killingsworth, M. A., & Gilbert, D. T. (2010). A Wandering Mind Is an Unhappy
 Mind. *Science*, *330*(6006), 932–932. https://doi.org/10.1126/science.1192439
- 42. K. McIntire, L., P. McIntire, J., Mckinley, R., & Goodyear, C. (2014). Detection
- 634 of vigilance performance with pupillometry. In *Proceedings of the Symposium on*
- *Eye Tracking Research and Applications* (pp. 167–174). Safety Harbor, FL, USA:
- 636 ACM.

637	43. Konishi, M., Brown, K., Battaglini, L., & Smallwood, J. (2017). When attention
638	wanders: Pupillometric signatures of fluctuations in external attention. Cognition,
639	168, 16-26. https://doi.org/10.1016/j.cognition.2017.06.006
640	44. Lawrence, M. A. (2016). ez: Easy Analysis and Visualization of Factorial
641	Experiments (Version 4.4-0). Retrieved from https://CRAN.R-
642	project.org/package=ez
643	45. Lemercier, A. (2014). Développement de la pupillométrie pour la mesure
644	objective des émotions dans le contexte de la consommation alimentaire
645	(Psychologie). Université Paris 8.
646	46. Lerner, N., Baldwin, C., Higgins, J. S., Lee, J., & Schooler, J. (2015). Mind
647	Wandering While Driving: What Does it Mean and What do we do about it?
648	Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
649	59(1), 1686–1690. https://doi.org/10.1177/1541931215591364
650	47. Mackworth, N. H. (1948). The breakdown of vigilance during prolonged visual
651	search. Quaterly Journal of Experimental Psychology, 1, 6-14.
652	https://doi.org/10.1080/17470214808416738
653	48. Mair, P., Schoenbrodt, F., & Wilcox, R. (2017). WRS2: Wilcox robust estimation
654	and testing.
655	49. Manzey, D., Bahner, J. E., & Hüper, AD. (2006). Misuse of automated aids in
656	process control: Complacency, automation bias and possible training
657	interventions. In Proceedings of the Human Factors and Ergonomics Society
658	Annual Meeting (Vol. 50, pp. 220-224). Los Angeles, CA: Sage Publications.

659	Retrieved from
660	http://journals.sagepub.com/doi/abs/10.1177/154193120605000303
661	50. McMillan, R. L., Kaufman, S. B., & Singer, J. L. (2013). Ode to positive
662	constructive daydreaming. Frontiers in Psychology, 4.
663	https://doi.org/10.3389/fpsyg.2013.00626
664	51. McVay, J. C., & Kane, M. J. (2009). Conducting the train of thought: working
665	memory capacity, goal neglect, and mind wandering in an executive-control task.
666	Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1),
667	196.
668	52. Methot, L. L., & Huitema, B. E. (1998). Effects of signal probability on
669	individual differences in vigilance. Human Factors: The Journal of the Human
670	Factors and Ergonomics Society, 40(1), 102–110.
671	53. Mittner, M., Boekel, W., Tucker, A. M., Turner, B. M., Heathcote, A., &
672	Forstmann, B. U. (2014). When the Brain Takes a Break: A Model-Based
673	Analysis of Mind Wandering. Journal of Neuroscience, 34(49), 16286–16295.
674	https://doi.org/10.1523/JNEUROSCI.2062-14.2014
675	54. Moray, N. (1986). Monitoring behavior and supervisory control. In K. Boff (Ed.),
676	Handbook of perception and human performance (Vol. 2, pp. 1–51). New York,
677	NY: Wiley.
678	55. Moray, N., & Inagaki, T. (2000). Attention and complacency. Theoretical Issues
679	in Ergonomics Science, 1(4), 354–365.
680	https://doi.org/10.1080/14639220052399159

681	56. Mosier, K. L., Skitka, L. J., & Korte, K. J. (1994). Cognitive and social
682	psychological issues in flight crew/automation interaction. In M. Mouloua & R.
683	Parasuraman (Eds.), Human performance in automated systems: current research
684	and trends (pp. 191-197). Cambridge: University Press.
685	57. Naujoks, F., Purucker, C., & Neukum, A. (2016). Secondary task engagement and
686	vehicle automation – Comparing the effects of different automation levels in an
687	on-road experiment. Transportation Research Part F: Traffic Psychology and
688	Behaviour, 38, 67-82. https://doi.org/10.1016/j.trf.2016.01.011
689	58. Nishiyama, J., Tanida, K., Kusumi, M., & Hirata, Y. (2007). The pupil as a
690	possible premonitor of drowsiness. In 29th Annual International Conference of
691	the IEEE (pp. 1586–1589). Lyon, France: IEEE.
692	https://doi.org/10.1016/j.neuron.2015.09.012
693	59. Parasuraman, R. (1987). Human-computer monitoring. Human Factors: The
694	Journal of the Human Factors and Ergonomics Society, 29(6), 695–706.
695	60. Parasuraman, R., Molloy, R., & Singh, I. L. (1993). Performance Consequences
696	of Automation-Induced "Complacency." The International Journal of Aviation
697	<i>Psychology</i> , <i>3</i> (1), 1–23.
698	61. Pattyn, N., Neyt, X., Henderickx, D., & Soetens, E. (2008). Psychophysiological
699	investigation of vigilance decrement: Boredom or cognitive fatigue? Physiology
700	& Behavior, 93(1-2), 369-378. https://doi.org/10.1016/j.physbeh.2007.09.016
701	62. R Core Team. (2016). R: A language and environment for statistical computing.
702	Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
703	https://www.R-project.org/

704	63. Reichle, E. D., Reineberg, A. E., & Schooler, J. W. (2010). Eye Movements
705	During Mindless Reading. Psychological Science, 21(9), 1300–1310.
706	https://doi.org/10.1177/0956797610378686
707	64. Revelle, W. (2017). psych: Procedures for Personality and Psychological
708	Research (Version 1.7.5). Evanston, Illinois, USA: Northwestern University.
709	Retrieved from https://CRAN.R-project.org/package=psych
710	65. Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997).
711	"Oops!": Performance correlates of everyday attentional failures in traumatic
712	brain injured and normal subjects. Neuropsychologia, 35(6), 747-758.
713	66. RStudio Team. (2015). RStudio: Integrated Development for R (Version 1.0.143).
714	Boston, MA, USA: RStudio Inc. Retrieved from http://www.rstudio.com/
715	67. Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation
716	of intrinsic motivation, social development, and well-being. American
717	Psychologist, 55(1), 68.
718	68. Sarter, N. B., Woods, D. D., & Billings, C. E. (1997). Automation surprises.
719	Handbook of Human Factors and Ergonomics, 2, 1926–1943.
720	69. Schooler, J. W., Smallwood, J., Christoff, K., Handy, T. C., Reichle, E. D., &
721	Sayette, M. A. (2011). Meta-awareness, perceptual decoupling and the wandering
722	mind. Trends in Cognitive Sciences, 5, 319-326.
723	https://doi.org/10.1016/j.tics.2011.05.006
724	70. Seli, P., Carriere, J. S. A., & Smilek, D. (2015). Not all mind wandering is created
725	equal: dissociating deliberate from spontaneous mind wandering. Psychological
726	Research, 79(5), 750-758. https://doi.org/10.1007/s00426-014-0617-x

727	71. Seli, P., Risko, E. F., & Smilek, D. (2016). On the necessity of distinguishing
728	between unintentional and intentional mind wandering. Psychological Science,
729	27(5), 685-691. https://doi.org/10.1177/0956797616634068
730	72. Sheridan, T. B. (1992). Telerobotics, automation, and human supervisory control.
731	Cambridge: MIT Press.
732	73. Smallwood, J. (2013). Distinguishing how from why the mind wanders: A
733	process-occurrence framework for self-generated mental activity. Psychological
734	Bulletin, 139(3), 519-535. https://doi.org/10.1037/a0030010
735	74. Smallwood, J., Baracaia, S. F., Lowe, M., & Obonsawin, M. (2003). Task
736	unrelated thought whilst encoding information. Consciousness and Cognition,
737	12(3), 452-484. https://doi.org/10.1016/S1053-8100(03)00018-7
738	75. Smallwood, J., Brown, K. S., Tipper, C., Giesbrecht, B., Franklin, M. S., Mrazek,
739	M. D., Schooler, J. W. (2011). Pupillometric Evidence for the Decoupling of
740	Attention from Perceptual Input during Offline Thought. PLoS ONE, 6(3),
741	e18298. https://doi.org/10.1371/journal.pone.0018298
742	76. Smallwood, J., Riby, L., Heim, D., & Davies, J. B. (2006). Encoding during the
743	attentional lapse: Accuracy of encoding during the semantic sustained attention to
744	response task. Consciousness and Cognition, 15(1), 218-231.
745	https://doi.org/10.1016/j.concog.2005.03.003
746	77. Smallwood, J., & Schooler, J. W. (2006). The restless mind. Psychological
747	Bulletin, 132(6), 946-958. https://doi.org/10.1037/0033-2909.132.6.946
748	78. Smallwood, J., & Schooler, J. W. (2015). The Science of Mind Wandering:
749	Empirically Navigating the Stream of Consciousness. Annual Review of

750	Psychology, 66(1), 487-518. https://doi.org/10.1146/annurev-psych-010814-
751	015331
752	79. Smilek, D., Carriere, J. S. A., & Cheyne, J. A. (2010a). Failures of sustained
753	attention in life, lab, and brain: Ecological validity of the SART.
754	Neuropsychologia, 48(9), 2564–2570.
755	https://doi.org/10.1016/j.neuropsychologia.2010.05.002
756	80. Smilek, D., Carriere, J. S. A., & Cheyne, J. A. (2010b). Out of Mind, Out of
757	Sight: Eye Blinking as Indicator and Embodiment of Mind Wandering.
758	Psychological Science, 21(6), 786–789.
759	https://doi.org/10.1177/0956797610368063
760	81. Szalma, J. L. (2014). On the Application of Motivation Theory to Human
761	Factors/Ergonomics: Motivational Design Principles for Human–Technology
762	Interaction. Human Factors, 56(8), pp. 1453–1471.
763	https://doi.org/10.1177/0018720814553471
764	82. Szalma, J. L., & Matthews, G. (2015). Motivation and Emotion in Sustained
765	Attention.
766	83. Szalma, J. L., Warm, J. S., Matthews, G., Dember, W. N., Weiler, E. M., Meier,
767	A., & Eggemeier, F. T. (2004). Effects of sensory modality and task duration on
768	performance, workload, and stress in sustained attention. Human Factors: The
769	Journal of the Human Factors and Ergonomics Society, 46(2), 219–233.
770	84. Thomson, D. R., Besner, D., & Smilek, D. (2016). A critical examination of the
771	evidence for sensitivity loss in modern vigilance tasks. Psychological Review,
772	123(1), 70-83. https://doi.org/10.1037/rev0000021

773 85. Thomson, D. R., Seli, P., Besner, D., & Smilek, D. (2014). On the link between 774 mind wandering and task performance over time. Consciousness and Cognition, 775 27, 14–26. https://doi.org/10.1016/j.concog.2014.04.001 776 86. Uzzaman, S., & Joordens, S. (2011). The eyes know what you are thinking: Eye 777 movements as an objective measure of mind wandering. Consciousness and 778 Cognition, 20(4), 1882–1886. https://doi.org/10.1016/j.concog.2011.09.010 779 87. Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance Requires Hard 780 Mental Work and Is Stressful. Human Factors: The Journal of the Human 781 Factors and Ergonomics Society, 50(3), 433–441. https://doi.org/10.1518/001872008X312152 782 783 88. Wegner, D. M. (2002). The Illusion of Conscious Will (MA: MIT Press). 784 Cambridge. 89. Wickham, H. (2007). Reshaping data with the reshape package. Journal of 785 786 Statistical Software, 21(12). 787 90. Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-788 Verlag New York. 91. Wiener, E. L. (1988). Cockpit automation. National Aeronautics and Space 789 790 Administration. Retrieved from http://ntrs.nasa.gov/search.jsp?R=19890047073 791 92. Wise, J. A., Tilden, D. S., Abbott, D., Dyck, J., & Guide, P. (1994). Managing 792 automation in the cockpit. In Proceedings of the 24th International Conference of 793 the International Federation of Airworthiness. Lisbon, Portugal. Retrieved from 794 http://www.faa.gov/training_testing/training/media/cfit/volume2/pdf/pages/page5 795 07.pdf

- 796 93. Yanko, M. R., & Spalek, T. M. (2014). Driving With the Wandering Mind: The
- 797 Effect That Mind-Wandering Has on Driving Performance. *Human Factors: The*
- *Journal of the Human Factors and Ergonomics Society*, *56*(2), 260–269.
- 799 https://doi.org/10.1177/0018720813495280
- 800

Figure 1

Figure 1. Screenshot of the LIPS interface and the environment. One of the screen is used for the task and the other one for questionnaire probes. For the task, the plane in the center is static and the surround (yellow and red numbered symbols) are moving. During, left and right avoidance maneuvers, again the plane is static and the background is rotated.

Figure 2

Juste avant que ce questionnaire apparaisse, a quoi pensiez-vous ?

Tâche	
Quelque chose lié à la tâche	
Quelque chose non-lié à la tâche	
Une distraction externe	

Figure 2. Screenshot of the French MW probes. The question is "When this probe appeared, where was your attention directed?" Answers could be "On the task", "Something related to the task", "Something unrelated to the task" or "External distraction"

Figure 3: MW frequency evolution according to the condition. Error bars show the 95% confidence intervals based on bootstrap

Figure 4: Normalized pupil diameter. Evolution during the 30-second interval preceding probes display – the grey part of the signal is used for computation

Table 1

Parameter	MW values		Focus values		Mental State model	
	М	SD	М	SD	$\chi^{2}(1)$	p-value
Pupil size (mm)	4.90	0.97	5.05	0.97	7259	<.001
Saccade frequency (sacc/s)	3.92	2.36	3.89	2.39	0.07	.795
Mean fixation duration (s)	2.87*10-1	6.65*10-1	3.22*10-1	6.52*10-1	0.08	.774
Blink frequency (blink/s)	6.90*10 ⁻²	1.10*10-1	5.43*10-2	9.81*10-2	2.09	.148

Table 1: Comparison of oculometric measures during MW and focus episodes

Table 2

Table 2: Influence of time and level of automation over the difference

Parameter	Time model		Time + C	ondition model	Time*Condition model		
	$\chi^{2}(3)$	p-value	$\chi^{2}(1)$	p-value	$\chi^{2}(3)$	p-value	
Pupil size	1.83	.609	0.40	.528	0.30	.959	