M. Stein, Large Sample Properties of Simulations Using Latin Hypercube Sampling, vol.29, p.143, 1987.

C. Cannamela, J. Garnier, and B. Iooss, Controlled stratification for quantile estimation, Ann. Appl. Stat, vol.2, issue.4, pp.1554-1580, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00256644

X. Huang, J. Chen, and H. Zhu, Assessing small failure probabilities by AK-SS: An active learning method combining Kriging and Subset Simulation, Struct. Saf, vol.59, pp.86-95, 2016.

B. Echard, N. Gayton, M. Lemaire, and N. Relun, A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models, Reliab. Eng. Syst. Saf, vol.111, pp.232-240, 2013.

M. Larbi, P. Besnier, and B. Pecqueux, The Adaptive Controlled Stratification Method Applied to the Determination of Extreme Interference Levels in EMC Modeling With Uncertain Input Variables, IEEE Trans. Electromagn. Compat, vol.58, issue.2, pp.543-552, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01288646

C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning, 3. print, 2008.

T. Crestaux, O. L. Ma??tre, and J. Martinez, Polynomial chaos expansion for sensitivity analysis, Reliab. Eng. Syst. Saf, vol.94, issue.7, pp.1161-1172, 2009.

A. J. Smola and B. Schölkopf, A tutorial on support vector regression, Stat. Comput, vol.14, issue.3, pp.199-222, 2004.

M. Nielsen, Neural Network and Deep Learning, 2018.

R. Schobi, B. Sudret, and J. Wiart, POLYNOMIAL-CHAOS-BASED KRIGING, Int. J. Uncertain. Quantif, vol.5, issue.2, pp.171-193, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01432195

R. Trinchero, P. Manfredi, I. S. Stievano, and F. G. Canavero, Machine Learning for the Performance Assessment of High-Speed Links, IEEE Trans. Electromagn. Compat, vol.60, issue.6, pp.1627-1634, 2018.

M. Larbi, I. S. Stievano, F. G. Canavero, and P. Besnier, Variability Impact of Many Design Parameters: The Case of a Realistic Electronic Link, IEEE Trans. Electromagn. Compat, vol.60, issue.1, pp.34-41, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01637412

T. Bdour, C. Guiffaut, and A. Reineix, Use of Adaptive Kriging Metamodeling in Reliability Analysis of Radiated Susceptibility in Coaxial Shielded Cables, IEEE Trans. Electromagn. Compat, vol.58, issue.1, pp.95-102, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01283002

R. Schöbi, S. Marelli, and B. Sudret, UQLab user manual -Support vector machines for regression, 2017.

S. Marelli and B. Sudret, UQLab user manual -Polynomial Chaos Expansions, 2017.

R. Schöbi, S. Marelli, and B. Sudret, UQLab user manual -Kriging (Gaussian process modelling), 2017.

R. Schöbi, S. Marelli, and B. Sudret, UQLab user manual -PCKriging, 2017.

M. T. Hagan and M. B. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Netw, vol.5, issue.6, pp.989-993, 1994.

F. , D. Foresee, and M. T. Hagan, Gauss-Newton approximation to Bayesian learning, Proceedings of International Conference on Neural Networks (ICNN'97), vol.3, pp.1930-1935, 1997.

M. Leone, Closed-Form Expressions for the Electromagnetic Radiation of Microstrip Signal Traces, IEEE Trans. Electromagn. Compat, vol.49, issue.2, pp.322-328, 2007.

G. Blatman and B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probabilistic Eng. Mech, vol.25, issue.2, pp.183-197, 2010.

M. A. Bouhlel, N. Bartoli, A. Otsmane, and J. Morlier, Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction, Struct. Multidiscip. Optim, vol.53, issue.5, pp.935-952, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01232938