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S.I. EXAMPLES OF SYNTHETIC SCALABLE SIGNALS

We represent below four scalable signals in the time and frequency domains. In the time domain, the synthetic scalable
signals used in this study correspond to the absolute value of a linear combination of non-linear functions (i.e. sine and
exponential functions) (cf. Section III-A.1 of the main manuscript). Moreover, the choice of frequencies and decay rates yields
overlapping contributions to the synthetic scalable signals in the frequency domain, not compatible with a simple separation
of the contributions to the signal in that domain. Note that these signals are real-valued vectors.

Fig. S1. Synthetic scalable signals for different numbers of parameters and SNR levels, in the time (upper row) and in the frequency domain (lower
row). Color curves represent synthetic scalable signals randomly generated with different number of parameters (a) P = 3, (b) P = 4, (c) P = 5, and
(d) P = 7. Black curves represent these signals once noise has been added with (a) SNR = 80, (b) SNR = 50, (c) SNR = 30, and (d) SNR = 10. The
signal oscillation frequencies are ((a) to (d) in Hz): (6.1, 6.4, 5.1), (0.6, 3.5, 2.6, 1.1), (3.8, 4.4, 1.5, 5.1, 7.7) and (5.5, 3.6, 3.5, 6.3, 6.5, 6.0, 6.2).
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S.II. MRI EXPERIMENTS

A. Animals
The study design was approved by the local institutional animal care and use committee. All animal procedures complied

with French government guidelines and were performed under permit 380820 and A3851610008 (for experimental and animal
care facilities) from the French Ministry of Agriculture (Articles R214–117 to R214–127 published on 7 February 2013).
This study complies with the ARRIVE guidelines (Animal Research: Reporting in Vivo Experiments) [1]. Animals 7 weeks
old at the start of the experiments (Charles River, France) were housed in groups of 3-4 in Plexiglas cages under standard
laboratory condition (12 h light/dark cycle with lights off at 7:00 p.m. and controlled temperature in 22± 2 ◦C). Water and
standard laboratory chow were provided ad libitum. All procedures were performed under anesthesia by isoflurane (IsoFlo,
Abbot Laboratories Ltd, Berkshire, UK). 9LGS cells were implanted in the brain of male Fisher rats. One µl of cell suspension
in serum-free RPMI1640 medium containing 104 cells were inoculated. MRI was performed 10 days after tumor implantation.
C6 cells were implanted in the brain of male Wistar rats. Five µl of cell suspension in serum-free RPMI1640 medium containing
105 cells were inoculated. MRI was performed 20 days after tumor implantation. Animals were euthanized by intra-cardiac
injection of Pentobarbital 200 mg.kg−1 (Dolethal, Vétoquinol Inc, France).

B. Closed-form expression fitting (CEF) method
Parameters BVf and VSI are estimated from the gradient echo sampling of the free induction decay and spin echo according

to [2]. The changes in relaxation rates ∆R∗
2 and ∆R2 induced by the injection of the ultrasmall superparamagnetic iron

oxide particles (USPIO) contrast agent are computed using gradient echo (GE) signal intensities and spin echo (SE) signal
intensities, respectively. The pre-injection and post-injection relaxation times are obtained by fitting the GE signal intensities
to an exponential function. It allows to compute ∆R∗

2. ∆R2 is directly calculated from the two SE signal intensities. BVf and
VSI are computed using:

BVf =
3

4π γ B0 ∆χUSPIO

∆R∗
2 ,

VSI = 0.425

(
ADC

γ B0 ∆χUSPIO

) 1
2
(

∆R∗
2

∆R2

) 3
2

,

where γ = 2.6752× 108 rad.s−1.T−1 is the gyromagnetic ratio, B0 = 4.7 T is the magnetic field, ∆χUSPIO = 3.5 ppm (SI unit) is
the susceptibility difference between blood in the presence and in the absence of USPIO and the apparent diffusion coeficient
for water ADC = 800 µm2.s−1.
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S.III. DB-DL AND DB-SL TUNING

A. Choice of the number of epochs used to learn the DB-DL model
The dictionary-based deep learning approach was implemented using the Deep Learning toolbox in the Matlab environment

(R2019a; The Mathworks Inc., Natick, Ma, USA). One can observe that for 2 000 epochs, the average RMSE across parameters
reaches a plateau, for the number of parameters used in this study (3 to 7).
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Fig. S2. RMSE on parameter estimates as a function of the number of epochs for the dictionary-based deep-learning (DB-DL) method, using
synthetic scalable signals and different numbers of parameters (P = 3, 4, 5 and 7). The network is trained with the ADAM gradient descent algorithm,
the learning rate is set to 0.001 and the loss function defined as the mean square error.

B. Choice of the number of Gaussian distributions used to learn the DB-SL model
GLLiM handles the modeling of non-linear relationships with a piecewise linear model [3]. In this approach, there is only

one parameter to tune: the number of pieces, i.e. the number K of Gaussian distributions used to represent the function to
learn. Here, using synthetic scalable signals, we evaluate the influence of K on the average RMSE across parameter estimates
and considering P = 3 to P = 7 parameters. One can observe that beyond K = 40, the average RMSE plateaus. For P = 7
and for K > 100, the RMSE begins to slowly increase, suggesting that the number of dictionary entries is not sufficient to
properly approximate the GLLiM model since the size of the model increases with K (complexity in O(KPS)).
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Fig. S3. Impact of the number K of Gaussian distributions on dictionary-based statistical learning (DB-SL) method performance, using synthetic
scalable signals. The plot shows the RMSE (overM = 10 000 test signals) with respect toK varying from 3 to 200. Four dictionaries with the same
number of entries (N = 10 000) but different number of parameters (P = 3, 4, 5 and 7) are used.



BOUX et al.: SUPPORTING INFORMATION (FEBRUARY 2021) 5

C. Addition of noise to the training signals for DB-DL and DB-SL
Considering a learning set (dictionary) of synthetic scalable signals simulated from a quasi-random sampling of the param-

eters, we evaluate the impact of adding noise to these signals on the estimation of the DB-DL and DB-SL models. For each
parameter number (P = 5 and 7), two dictionary sizes (N ) are considered. The signal-to-noise ratio (SNR) on the learning
signals is denoted SNRdico. The RMSE of the parameter estimates is then evaluated as a function of the SNR on the M = 1 000
test signals. One can observe that the addition of noise to the dictionary signals generally improves the RMSE averaged across
parameter estimates, except when the SNR on the test signals is high (here, above 65 to 80, depending on the number of
parameters).
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Fig. S4. Impact of the dictionary signal SNR on the estimates provided by the dictionary-based learning methods (DB-DL and DB-SL). Using
synthetic scalable signals, average RMSE (M = 10 000) are given as a function of the test signal SNR for different dictionary sizes N (for P = 5,
N = 45=1 024 and N = 55= 3 125; for P = 7, N = 47 = 16 384 and N = 57 = 78 125). The first row (a-d) shows the average RMSE of the
DB-SL method and the second row (e-h) shows the average RMSE of the DB-DL method. Figures (a, b) and (e, f) show results obtained with 5
parameters; Figures (c, d) and (g, h) results with 7 parameters. The SNRdico refers to the noise level added to the dictionary signals used to learn
the model. In the insert, SNRdico = 10-100 corresponds to the addition of noise with an SNR randomly varying between 10 and 100.
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S.IV. ADDITIONAL COMPARISONS OF THE 3 PARAMETER SAMPLING STRATEGIES FOR DIFFERENT DICTIONARY SIZES
(DBM AND DB-SL)

We evaluate the average RMSE across parameter estimates obtained with DBM and DB-SL for three parameter sampling
strategies (regular (i.e. a grid), random and a quasi-random), different values of P , and different dictionary sizes. Whatever the
simulation condition, the DBM approach yields the smallest RMSE when a regular sampling is used to build the dictionary.
Conversely, for the DB-SL model, the RMSE is minimal when a quasi-random sampling is chosen to build the dictionary used
to learn the model.
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Fig. S5. Effect of parameter sampling strategies on the dictionary-based methods (DBM and DB-SL), using synthetic scalable signals. Distributions
of average RMSE (M = 1 000) for regular grid (Regular), random (Rand) and quasi-random (QRand) dictionary samplings. For each box, the central
red or green mark indicates the median; the bottom and top edges indicate the 25th and 75th percentiles, respectively. The whiskers extend to the
minimum and maximum values (dashed lines). Note that no noise is added on dictionary signals in this initial experiment.
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S.V. IMPACT OF SCALING-UP THE DICTIONARY ON ESTIMATION ACCURACY (DBM, DB-DL AND DB-SL)
The average RMSE across parameter estimates obtained with DBM, DB-DL and DB-SL as a function of the SNR on the

test signals is evaluated as the dictionary size scales up, i.e. the number of parameters P and the number of entries N increase.
Whatever the SNR on the test signals, the DBM approach yields always higher average RMSE than at least one of the two
DBL methods and most of the time than the two DBL methods. When the SNR on the test signals is below about 40, DB-SL
yields the smallest RMSE. Above a SNR of about 70, the DB-DL yields the most accurate estimates.
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Fig. S6. Impact of dictionary size and test signal SNR on the RMSE obtained with dictionary-based matching (DBM) and dictionary-based
learning (DB-DL and DB-SL) methods, using synthetic scalable signals. Average RMSE are given as a function of the SNR for different numbers of
parameters (P between 3 and 7) and numbers of entries. N in alphabetical order from (a) to (q) is equal to 53 = 125, 63 = 216, 44 = 256, 54 =
625, 64 = 1 296, 35 = 243, 45 = 1 024, 55 = 3 125, 65 = 7 776, 36 = 729, 46 = 4 096, 56 = 15 625, 66 = 46 656, 37 = 2 187, 47 = 16 384, 57 = 78 125
and 67 = 279 936. The dashed lines represent the average RMSE in the absence of noise on the test signals.
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S.VI. PROCESSING TIME AND MEMORY REQUIREMENTS (DBM, DB-DL AND DB-SL)
The computer footprints of DBM, DB-DL and DB-SL were estimated on the same two computers (a desktop and a high-

performance computer) for different numbers of parameters P from 4 to 7 and increasing values of the dictionary size N .
Measures correspond to the processing of M =10 000 signals. Note that the considered settings here were all tractable on both
a desktop and high performance computer, which may not be the case for more complex settings.

Results are reported in the following table. For DBL methods, estimation times and memory requirements are rather stable.
Estimations times are short (less than 1.6 s) while the learning times increase with N and P up to 4 343.1 s (about 1 hour 13
minutes). In contrast for DBM, estimation times increase moderately and memory requirements significantly with N and P .
In terms of overall performance, DB-DL always shows the smallest memory requirements and often the smallest estimation
times. For the learning times, DB-SL is often competitive with smaller times than for DB-DL. However, a fair comparison
requires comparable methods implementations and optimization. In our settings, the DB-DL method has been implemented
using a commercially available Matlab toolbox (Deep Learning Toolbox) while the DB-SL method uses in-house Matlab code,
without any compiled routines.
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TABLE S1
COMPUTATIONAL TIMES AND MEMORY REQUIREMENTS OF DICTIONARY-BASED MATCHING (DBM), DICTIONARY-BASED DEEP LEARNING (DB-DL)

AND DICTIONARY-BASED STATISTICAL LEARNING (DB-SL) METHODS, USING SYNTHETIC SCALABLE SIGNALS. COMPUTATIONAL ESTIMATION TIMES

OF M = 10 000 SIGNALS AND LEARNING TIMES (DB-DL AND DB-SL ONLY: TIME TO GENERATE THE MODEL) AND MEMORY REQUIREMENTS TO

STORE THE DICTIONARY (DBM) AND TO STORE THE MODEL (DB-DL AND DB-SL). RESULTS ARE GIVEN FOR DIFFERENT COMBINATIONS OF

NUMBER OF PARAMETERS (P BETWEEN 4 AND 7) AND NUMBER OF DICTIONARY ENTRIES (N BETWEEN 625 AND 279 936). THE FIRST PART OF

THE TABLE (THE FIRST 13 LINES) SHOWS RESULTS FOR THE PROCESSING OF DATA ON A 32-NODE HIGH PERFORMANCE COMPUTER (Intel Xeon
Gold 6130, 2.1 GHZ, 384 GB SYSTEM MEMORY) AND THE SECOND PART OF THE TABLE (THE LAST 4 LINES) SHOWS RESULTS FOR THE

PROCESSING ON A 4-NODE DESKTOP COMPUTER (Intel Core I7-4770, 3.4 GHZ, 32 GB SYSTEM MEMORY). THE LEARNING TIME FOR THE NEURAL

NETWORK ALSO CORRESPONDS TO THE CPU IMPLEMENTATION. NOTE THAT USING A GPU IMPLEMENTATION (GPU Nvidia RTX2080 Ti, 4352
CUDA CORES, 11 GB MEMORY), WE OBSERVE A SPEED GAIN ABOUT 10-FOLD FOR THE DEEP LEARNING APPROACH BUT A SPEED GAIN FOR THE

PROPOSED APPROACH WOULD BE PROBABLY ALSO OBSERVED WITH A GPU IMPLEMENTATION.
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S.VII. CONFIDENCE INDEX (DB-SL)
A. Non-updated CI versus RMSE

The non-updated CI (see section II-C in the manuscript for details) is compared to the RMSE computed for different SNR
values (20, 30, 40, 60 and 100). Figure S7 below shows that the CI is always proportional to the RMSE (R2≥ 0.62) but the
proportionality coefficient α differs from one and appears proportional to the SNR. The proposed procedure for updating the
CI addresses this issue (cf. Fig. 4 in the main manuscript and Fig. S8 below).
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Fig. S7. Correlation between the non-corrected confidence index (CI) and the RMSE, using synthetic scalable signals. RMSE (M = 10 000 test
signals) as a function of the CI for SNR = 20 (blue), 30 (orange), 40 (yellow), 60 (purple) and 100 (green). Black lines correspond to the regression
coefficients α between the RMSE and the CI for each SNR values. R2 is the coefficient of determination.

B. CI outside of the parameter space covered by a block dictionary
Using synthetic scalable signals and a block dictionary, the average RMSE and CI are estimated for a parameter range beyond

the one covered by the block dictionary. Fig. S8a reproduces Fig. 3c, but with a different colorbar. Within the dictionary blocks,
the CI and RMSE are in good agreement (Fig. S8c; R2 = 0.964 and p< 0.001). Outside of the blocks, however, the CI remains
low and is only partially related to the RMSE (R2 = 0.384; p< 0.001). We therefore represent CI as missing values when
parameter estimates are obtained outside the learning blocks.
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S.VIII. SYNTHETIC MRF SIGNALS (DBM, DB-DL AND DB-SL)
A. Impact of the signal to noise ratio of test signals

1) Synthetic bSSFP signals: To compare DBM, DB-DL and DB-SL on a standard relaxometry application of magnetic
resonance fingerprinting (MRF) [4], we use an MRF acquisition based on an inversion-recovery balanced steady state free-
precession (bSSFP) sequence to generate synthetic signals. According to [4], after an initial inversion pulse, the flip angle is a
series of repeating sinusoidal curves with a period of 250 repetition times (TR) and alternating maximum flip angles (FA). In
the odd periods, the FA is calculated as FAt = 10 + 50 × sin

(
2π
500 t

)
+ rand(2), where t varies from 1 to 250 and rand(2)

is a function to generate normally distributed random numbers (mean is zero) with a standard deviation of 2. In the even
periods, we divide the previous period’s FA by two. A 50-TR delay is added between each period. The TR pattern is generated
following a procedural noise between 10.5 and 14 ms. We consider S = 1 000 samples. FA and TR patterns as well as example
synthetic MRF signals are shown in Fig. S9a-c. The parameters of interest (P = 3) are the relaxation times T1 (between 200
and 3 000 ms) and T2 (between 20 and 300 ms), and the off-resonance ∆f (between -200 and 200 Hz).

2) Complex-valued signals: In contrast to the synthetic scalable and vascular MRF signals used in the main study, standard
MRF signals are vectors of complex-valued samples. For the DBM method, the scalar product extends to complex data. To
consider these complex samples using the two DBL methods, signals are doubled in size and composed of the real and
imaginary parts of the initial signals as it has been proposed by other works [5], [6].

3) Results: To compare dictionary-based matching (DBM) and dictionary-based learning (DBL) methods on synthetic MRF
signals, we generate two dictionaries of N = 4 096 and N = 226 981 entries. The average root mean square error (RMSE) is
computed over M = 10 000 test signals, for SNR values between 10 and 110 (Fig. S9d-f).

We observe that each method has its advantages with results that depend on the parameter of interest. For the small dictionary,
DB-SL outperforms DBM in all conditions and DB-DL at low SNR (SNR< 40) where DB-DL provides higher RMSE than
DB-SL. For the large dictionary, DB-DL is always outperformed except for T2 at very high SNR (SNR> 70). In all other cases,
DBM provides the best estimations for T1, DB-SL provides the best estimations for T2 (SNR< 70), while for ∆f DB-SL is
more accurate at low SNR (SNR< 30) and DBM at high SNR. For that parameter, both methods outperform DB-DL, whatever
the SNR level.
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Fig. S9. Comparison of dictionary-based matching (DBM) and dictionary-based learning (DB-DL and DB-SL) methods, using synthetic MRF
signals. Figures (a, b) show the acquisition sequence settings: flip angles (FA) and repetition times (TR). Figure (c) shows four synthetic MRF
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B. Bias and variance analysis
1) Bias-variance decomposition: In [7], the authors proposed to investigate the statistical properties of the reconstruction

methods using a bias-variance analysis. We propose to conduct a similar analysis here. M vectors of parameters {xm}m=1:M

are considered and for each vector xm, the corresponding signal is simulated and then perturbed by adding to it successively
I (I = 100) random Gaussian realizations, according to a fixed signal-to-noise ratio (SNR). It follows that the same parameter
vector xm is now associated to I signals ym,i. From each of these I signals, a vector of parameters is estimated using one of
the three methods DBM, DB-SL or DB-DL, which leads to I values x̂m,i to approximate the same xm.

To compare the bias, variance and RMSE, the following empirical quantities are then computed for the mth parameter vector
xm:

Biasm = Ê [xm − x̂m] , (1)

Varm = Ê
[
(x̂m − Ê [x̂m])2

]
, (2)

where Ê [ · ] is the empirical mean for the I = 100 Monte Carlo simulations: we have Ê [x̂m] = I−1
∑I
i x̂m,i. The variance in

equation (2) measures the stability of the estimator x̂m or how much it moves around its mean performance. The variance
depends only on the estimator and is not per se a measure of error as it does not involve the target xm. So in addition to the
biais, another important quantity to measure the performance of an estimator is the Root Mean Square Error (here written in
its empirical version):

RMSEm =

√
Ê [(xm − x̂m)2] . (3)

An important relationship between these quantities is referred to as the bias-variance trade-off or the bias-variance decomposition
which states that:

RMSEm =

√
Bias2m + Varm . (4)

To investigate the statistical properties of the methods, we therefore conduct this bias-variance analysis. A 4-region human
brain phantom is generated with a resolution of 128× 128. In each region, T1 and T2 values are sampled according to a normal
distribution around a central value (1 000, 1 400, 1 800 and 2 200 for T1 and 60, 120, 180 and 240 for T2). An off-resonance
map (∆f) is generated by linear increase following each direction, between -200 and 200 Hz, Fig. S11c. This phantom results
in M = 7 622 test signals. 100 random noises (complex thermal noise) are generated according to SNR = 40 for each test signal.

To produce the parameters estimations x̂m,i, the applied instances of the methods are first the ones corresponding to a
dictionary of N = 4 096 entries. Bias, variance and RMSE are computed according to equations (1), (2) and (3), respectively.
Resulting maps are presented in Fig. S10a-c. Mean values for each map and those obtained with a larger dictionary of
N = 226 981 entries, are given in Fig. S10d.

2) Results: The analysis is similar to the one described in [7] up to some obvious typos therein. The bias-variance analysis
was carried out for DBM, DB-DL and DB-SL using two dictionary sizes N = 4 096 and N = 226 981 and for each parameter,
T1, T2 and ∆f. In the small dictionary case, for T1 and T2, we observed that the DB-DL method was the less biased method
with a mean bias about twice smaller than the one of the DB-SL method, but exhibited larger variances. Consequently, DB-DL
RMSE were higher for both T1 and T2 than DB-SL RMSE, see Fig. S10d. We observed that compared to the DBM method,
DBL methods provided brain region specific errors, i.e. brain structures were visible in the error maps. The DBM bias, variances
and RMSE were always higher than the DB-SL ones for T1 and T2. In contrast, DBM improved when a larger dictionary was
used and provided smaller bias but not always enough to compensate its higher variances.

For the off-resonance ∆f, DBM provided the smallest variances and RMSE. We suspect that a better handling of complex-
valued computation could be the reason for this better performance compared to DBL methods. Interestingly, the grid sampling
of the dictionary could be visualized as diagonal error lines. Black lines (corresponding to a small error) were located at the
dictionary values. DB-SL provided larger error on ∆f.
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Fig. S10. Monte Carlo approach for bias-variance analysis, using synthetic MRF signals. Figures (a-c) represent the absolute bias (|Bias|), the
root variance (Var

1
2 ) and the root mean square error (RMSE) maps computed at each voxel (M = 7 622) using 100 different Gaussian noise draws

according to SNR = 40. The maps are produced using a dictionary with N = 4 096 entries and for T1, T2 and ∆f parameters separately (specified
in the color bars). In each block of maps, the first row corresponds to DBM method, the second row to DB-DL method and third row to DB-SL
method. Table (d) contains global mean bias, variance and RMSE (i.e. mean values across voxels) for 2 dictionary sizes, N = 4 096 (in black) and
for N = 226 981 (in red). On each line, and for each dictionary size, the best value appears in bold.
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C. Impact of aliasing noise
To investigate the estimation accuracy of dictionary-based methods in presence of aliasing noise, we use the two previous

dictionaries (N = 4 096 and N = 226 981) and the previous brain phantom (M = 7 622). Aliasing noise is added to test signals
as described below.

1) Aliasing noise as modulated Gaussian noise: In [8], authors introduced a tool to rapidly assess the efficiency of an MRF
sequence in the presence of both thermal and aliasing noise. In this work, we use this tool to assess the robustness to aliasing
noise of the DBM, DB-DL, and DB-SL methods. In MRI, the acquired signal contains both Gaussian noise ηthermal as the
result of thermal contributions (as considered in the main manuscript), and correlated aliasing noise ηaliasing due to spatial
undersampling artifacts. According to this work [8], the aliasing noise can be modeled as proportional to the signal at each
sample. The aliasing noise is a zero-mean Gaussian noise with standard deviation σaliasing. It results that a noisy signal ynoisy
is computed from an original signal y as:

ynoisy = y + ηthermal + |y|ηaliasing . (5)

In our experiments on aliasing artifacts, we focus on the case where aliasing noise is dominant so that ηthermal = 0. This
procedure provides typical undersampled MRF signals, see examples in Fig. S11d-f below.

2) Results: For the two previous dictionaries (N = 4 096 and N = 226 981) and the previous brain phantom (M = 7 622),
aliasing noise is therefore added to test signals according to equation (5), with σaliasing between 0 and 1.5. Examples of
resulting signals for 3 different values of σaliasing (0.22, 0.46 and 1.42) are shown in Fig. S11d-f.

We observe for all methods (matching and learning) that the RMSE increases significantly with σaliasing. For T1, RMSE
remains below 300 ms (about 10 % of the mean) until aliasing noise levels of 0.3 for DB-DL and 0.6 for DB-SL. For T2,
RMSE remains below 30 ms (about 10 %) until aliasing noise levels of 1.1 for DB-DL and 1.2 for DB-SL. Note that the
impact of the number of dictionary entries is barely visible when the aliasing noise level is above 0.4. For T1 and T2, DBM
is at best equivalent to the best learning method and often worse. The DB-SL method stands between DBM and DB-DL for
low aliasing noise levels and becomes the most accurate for high aliasing noise levels. For ∆f, DBM shows better RMSE for
a large dictionary, but is below DB-DL and DB-SL in the case of small dictionary and low aliasing noise levels. The good
performance of DBM in estimating ∆f might be due to a better handling of complex-valued numbers.
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Fig. S11. Impact of aliasing noise in k-space on estimates, using synthetic MRF signals. Figures (a-c) show parameter maps (P = 3: T1, T2 and
∆f) used for simulating theM = 7 622 test signals. Figures (d-f) show an example of a signal altered by aliasing noise levels of 0.22, 0.46, and 1.42.
Figures (g-i) show RMSE on estimated parameters for the three dictionary-based methods using N = 4 096 and N = 226 981 dictionary entries.
RMSE are given as a function of the aliasing noise level. Note that no thermal noise is added to the test signals in this simulation.
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S.IX. EVALUATION OF A BLOCK-DICTIONARY USING SYNTHETIC VASCULAR MRF SIGNALS (DBM, DB-DL AND
DB-SL)

We investigate the behavior of DBM and DBL methods outside the limits of the parameter space used to produce the
dictionary, using synthetic vascular MRF signals. Two parameters are considered VSI and BVf with values ranging respectively
from 1 to 30 µm and 0 to 30%. M = 100 000 test signals are then generated from these values. The three methods are then
used to recover parameters VSI and Bvf but using a dictionary that does not cover the full parameter ranges.

In a first step, we design a block dictionary, i.e. two regions of the parameter space (two blocks) that are used to produce
the dictionary (first two rows of Fig. S12). In a second step, we add 10 dictionary entries outside of these two blocks (last
two rows of Fig. S12). The RMSE obtained for the two dictionaries are computed and represented using color bars. For each
dictionary, the BVf (1st and 3rd rows) and VSI (2nd and 4th rows) RMSE are shown separately. The different methods DBM,
DB-DL and DB-SL correspond to columns.

With DBM, one can see that the RMSE rapidly increases outside of the blocks. For the DBL methods, the RMSE remains
low further away from the block boundaries. The addition of extra dictionary entries has a greater impact on the RMSE
obtained with the DBL methods than on that obtained with DBM. Moreover, the additional entries reduces the RMSE for low
VSI values whereas their impact on large VSI values remains limited (compare Fig. S12 (d-f) to (j-l)).
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Fig. S12. Estimation accuracy outside of the limits of the parameter space covered by the dictionary. The accuracy is evaluated on two parameters
VSI and BVf using synthetic vascular MRF signals. M = 100 000 test signals are used. The white dashed lines delimit the subspace covered by
the dictionary (first two rows) with 10 additional entries (last two rows). RMSE are computed for BVf (1st and 3rd rows) and VSI (2nd and 4th

rows) separately with the three columns corresponding respectively to DBM, DB-DL and DB-SL. Average RMSE are computed from signals in a
5 µm×3 % sliding window, moving in 0.5 µm and 0.2 % steps in the parameter space.
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S.X. DICTIONARY DESIGN IMPACT ON PARAMETER MAPS FOR ACQUIRED VASCULAR MRF DATA (DB-DL AND
DB-SL)

When using real vascular MRF data, RMSE cannot be computed due to the absence of ground truth parameters. The impact
of the dictionary design is then assessed qualitatively by looking at changes in parameter estimation when going from a large
reference dictionary to a more restricted one. In this section the maps obtained with a large dictionary (N = 167 216) are
compared with two reduced dictionaries (both of size N = 4 373), a block dictionary with 10 additional entries corresponding
to the one used in the previous section and Fig. S12, and a sub-sampled dictionary obtained by reducing the density of the
large dictionary but not its range.

A. Block dictionary
The Figure below shows results for the DBL methods and both the reference dictionary and the block one. The parameter

maps obtained with both dictionaries appear comparable, with some notable differences. The maps reconstructed with the
block dictionary exhibit smaller values (e.g. bottom of the BVf maps) and appear smoother than that obtained with the large
dictionary. With the block dictionary, the range of parameter values appear narrower with DB-DL than with DB-SL. This
suggests that DB-SL is less sensitive to a restriction of the dictionary and more able to recover the large dictionary results.
Note that many values are estimated outside of the blocks, as visible on the CI maps where missing CI values correspond to
such estimates.

Fig. S13. Vascular parameter estimate maps using a block dictionary composed of two parameter sub-spaces and 10 additional entries (see
Fig. S12). The estimated maps for BVf, VSI and StO2 are shown, using DB-DL (first and fourth columns) and DB-SL (second and fifth columns).
The third and sixth columns show the DB-SL confidence index (CI) maps. In the color bars, the black lines represent the parameter ranges covered
by the two dictionaries: the short (resp. long) line for the small block (resp. large) dictionary. The number of large and block dictionary entries is
respectively N = 167 216 and N = 4 373.
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B. Sub-sampled dictionary
The next Figure S13 shows the maps obtained with the large dictionary and with a sub-sampling of this dictionary. This

sub-sampled dictionary has the same number of entries as the block dictionary N = 4 373 but the range of parameter values
is that of the large dictionary. The parameter maps obtained are more similar in particular with DB-SL confirming that the
method is rather robust to a reduction of the number of entries and all the more so as the entries left cover appropriately the
parameter values that can occur in practice. Another conclusion from the comparison is that the parameter values range has
an impact on the CI values. For instance, when focusing on the two large vessels that perfuse the right hemisphere and are
visible in both the BVf and VSI maps, we observe that the CI values are less underestimated in the sub-sampled case than in
the block case. However, there are more missing values in the CI maps than for the large dictionary. In the CI map, a value
is considered missing for all parameters as soon as one parameter value is found outside the simulated parameter range. The
BVf and VSI missing values mainly correspond to high StO2 and low VSI values, outside the simulated range.

Fig. S14. Vascular parameter estimate maps using a dictionary obtained by sub-sampling the large one. The estimated maps for BVf, VSI and
StO2 are shown, using DB-DL (first and fourth columns) and DB-SL (second and fifth columns). The third and sixth columns show the DB-SL
confidence index (CI) maps. In the color bars, the black lines represent the parameter ranges covered by the two dictionaries. Compared to the
previous figure, the two dictionaries covered the same parameter ranges. The number of sub-sampled dictionary entries is N = 4 373 extracted
from the large dictionary.
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S.XI. ADDITIONAL RESULTS ON ACQUIRED VASCULAR MRF DATA (DBM, DB-DL AND DB-SL)
A. Data from a rat bearing a C6 tumor

Data acquired on a rat bearing a C6 tumor and the corresponding parameter maps, obtained with DBM, DB-DL and DB-SL,
are shown in the figure below. As for the data obtained on a rat bearing a 9L tumor, the maps obtained with the two DBL
methods appear more spatially homogeneous than that obtained with the DBM method. Similar conclusions hold.

Fig. S15. Vascular parameter estimate maps of a C6 rat tumor model. The first row shows the anatomical image and regions of interest (left) and
the MGEFIDSE pre and post USPIO injection (right) for the second echo time (6.3 ms). The tumor, cortex and striatum are respectively delineated
with green, yellow and blue lines. The arrows on the post USPIO injection image indicate large vessels. The estimated maps for BVf, VSI and
StO2 are shown below, using DB-DL (first and fourth columns) and DB-SL (second and fifth columns). The third and sixth columns show the DBL
confidence index (CI) maps. In the color bars, the black lines represent the parameter ranges covered by the two dictionaries: the short (resp. long)
line for the small (resp. large) dictionary. Large and small dictionary entries are N = 167 216 and N = 4 119, respectively.
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B. Quantification of parameter estimates in regions of interest
The following figure shows average parameter values for 3 regions of interest and across 8 animals, 4 for each tumor models.

There is an overall agreement between the parameter estimates obtained with the four methods (the three dictionary-based
and the CEF method). For BVf, the two DBL methods are in good agreement and produce values below that of CEF and
DBM. For the VSI parameter, CEF, DBM, and DB-SL are in good agreement, while values produced by DB-DL appear
systematically lower. Finally, for StO2, each method produces a different estimate. CEF generally yields the highest estimates
while DBM yields the lowest ones. The two DBL methods produces StO2 estimates in between the two other methods, with
DB-DL estimates below that of DB-SL.
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Fig. S16. Mean vascular parameter estimates in 3 regions of interest, the tumor (C6 or 9L), striatum and cortex. Four different methods are
compared: the closed-form expression fitting (CEF), the dictionary-based matching (DBM), the dictionary-based deep learning (DB-DL) and the
dictionary-based statistical learning (DB-SL) method. Averaged (a) BVf, (b) VSI and (c) StO2 values across animals (9L and C6 lesions: 4 rats,
cortex and striatum: 8 rats) are computed (mean± standard deviation).
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