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Bayesian inverse regression for vascular magnetic
resonance fingerprinting

Fabien Boux, Florence Forbes, Julyan Arbel, Benjamin Lemasson and Emmanuel L. Barbier

Abstract— Standard parameter estimation from vascular
magnetic resonance fingerprinting (MRF) data is based on
matching the MRF signals to their best counterparts in a
grid of coupled simulated signals and parameters, referred
to as a dictionary. To reach a good accuracy, the matching
requires an informative dictionary whose cost, in terms of
design, storage and exploration, is rapidly prohibitive for
even moderate numbers of parameters. In this work, we
propose an alternative dictionary-based statistical learning
(DB-SL) approach made of three steps: 1) a quasi-random
sampling strategy to produce efficiently an informative dic-
tionary, 2) an inverse statistical regression model to learn
from the dictionary a correspondence between fingerprints
and parameters, and 3) the use of this mapping to provide
both parameter estimates and their confidence indices.
The proposed DB-SL approach is compared to both the
standard dictionary-based matching (DBM) method and to
a dictionary-based deep learning (DB-DL) method. Perfor-
mance is illustrated first on synthetic signals including
scalable and standard MRF signals with spatial undersam-
pling noise. Then, vascular MRF signals are considered
both through simulations and real data acquired in tumor
bearing rats. Overall, the two learning methods yield more
accurate parameter estimates than matching and to a range
not limited to the dictionary boundaries. DB-SL in particular
resists to higher noise levels and provides in addition
confidence indices on the estimates at no additional cost.
DB-SL appears as a promising method to reduce simulation
needs and computational requirements, while modeling
sources of uncertainty and providing both accurate and
interpretable results.

Index Terms— Quantitative imaging, magnetic resonance
fingerprinting, multiparametric mapping, dictionary learn-
ing, inverse regression, brain vascular structure.

|. INTRODUCTION

Magnetic resonance fingerprinting (MRF) is a novel ap-
proach to quantitative magnetic resonance imaging that allows
the estimation of multiple tissue properties in a single acqui-
sition [1], [2]. The acquisition, which consists in repeating
measurements with varying experimental conditions, generates
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a signal evolution (or fingerprint) that depends on the param-
eters of the studied tissue. To estimate these parameters, a
large database, referred to as a dictionary and containing a
large number of possible signal evolutions, is simulated from
biophysical models. A comparison is performed between an
acquired signal and the signals in the dictionary to find the best
match according to an objective function. The tissue parame-
ters are then estimated to the values that generated the best sig-
nal evolution match. In MRF, parameter estimation accuracy
therefore depends on the number of dictionary entries, which
increases exponentially with the number of parameters. For
applications with many parameters such as vascular MRF [3],
the required memory size and simulation time as well as the
parameter estimation time (or reconstruction time) quickly
become a limit.

To compress the dictionary while limiting the loss of infor-
mation, several authors have used singular value decomposi-
tion to project the dictionary in a well-chosen subspace [4]-
[8]. However, this compression does not allow a reduction in
simulation time. It has also been proposed to directly find a
mapping from the fingerprints to the parameter space using
kernel regression [9], maximum likelihood approach [10] or
neural network approaches [11]-[18]. The resulting compact
representation offers the advantage over the discrete MRF
grid of a continuous exploration of parameter values. These
approaches significantly reduce the reconstruction time, but
not the simulation time due to the need to span a high
dimensional fingerprint space. To limit the simulation time,
Cohen et al. [14] studied a mapping obtained from a sparse
set of dictionary entries. The study, carried out with only two
parameters, led to a modest reduction of dictionary entries
(up to 60-fold). Consider a dictionary of 100x 100 vascular
entries simulated in 1 hour. If the number of parameters
increases from 2 to 4 parameters, and always considering 100
values per parameter, then the dictionary computation time
increases from 1 hour to more than 1 year. As an illustration,
when applying vascular MRF in stroke and brain tumors
models, Lemasson et al. report that the largest dictionary
used (4 parameters and about 30 values per parameter) was
generated on a 30-node cluster in about 24 hours [19]. In
such settings, an approach that greatly reduces the need for
simulation, continuously represents the parameters without
loss of precision, relies on an explainable model and reduces
the reconstruction time becomes highly desirable [20].

To reach this goal, we adopt in this work the Bayesian
framework, which has already been employed with MRF for
multiple tissue components within a single voxel [21] or for
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spatial modeling [22]. More specifically, we use the Gaussian
locally linear mapping (GLLiM) model [23], which allows to
learn a mapping from fingerprints to parameters and provides a
full posterior distribution per fingerprint. This distribution can
then be used to compute an estimated value and a confidence
index for each parameter.

In this vascular MRF study, the proposed approach referred
to as the dictionary-based statistical learning (DB-SL) method
is compared to both the standard dictionary-based matching
(DBM) method and to a dictionary-based deep learning (DB-
DL) method. The comparison is made on various types of
signals including synthetic standard and vascular signals and
real vascular signals acquired in tumor bearing rats.

II. MRF AS AN INVERSE PROBLEM

In inverse problems, the overall issue is to provide infor-
mation on some parameters of interest x given an observed
signal y, using a known direct or forward model that describes
how the parameters x translate into a signal y. Among inverse
problems, MRF exhibits the following difficulties: 1) the direct
model is (highly) non-linear, as a (complex) series of equations
or simulation tools; 2) the y’s are high-dimensional signals
and 3) many y’s need to be inverted (one for each voxel in an
image); 4) the vector of parameters x is multidimensional and
predicting each component of x independently is likely to be
sub-optimal. The last point may be moderated by the degree
to which a joint modeling can be carried out and preferred,
depending on the parameters interactions, on the complexity of
the model and the amount of data available for its estimation.

Most methods to solve inverse problems can be classified
into two main categories, optimization-based and learning-
based methods. In the next section, we refer to standard
MRF as a matching method. We show that it can be seen
as a penalized optimization, which does not require statistical
modeling, while the method we propose belongs to statistical
learning approaches.

A. Dictionary-based matching (DBM) methods

MRF requires a large database Dy, referred to as a dic-
tionary [1]. It is made of N entries of coupled finger-
print and parameters (x,y). The S-dimensional fingerprints
{y1,...,yn~} are generated by running the simulation model
f for N different values of the P-dimensional magnetic and
physiological parameters {x1,...,xy}. In the DBM method,
a P-dimensional grid is generated with sampled values in a
pre-set interval for each parameter. Then, to invert an observed
Yobs» it is compared with the signals in Dy to find the best
match according to an objective function d(-,-), usually a
standard distance or dissimilarity measure (e.g. in MREF, the
dot product). With Dy = {(xp,,yn = f(x,)), n = 1:N}, x is
thus estimated as the argument of the following minimization:

X = argmin d(yobs, f(x))- (D
X € Df

Solutions are sought in Dy only, while in a non-constrained
optimization the minimization is over the whole continuous
space of parameter values. The performance of the method

depends directly on the space discretization i.e. the choice of
the number of dictionary entries and the number of parameters.
The DBM grid is by essence discontinuous and more likely
to suffer from a sensitivity issue, meaning that two similar
fingerprints may be mapped to not so close parameters values.
This is well explained and illustrated in a very recent review
paper by J. Asslander [24]. The larger the number N of entries
(Xn,yn), the more accurate the estimates but the larger the
simulation time and memory requirement. Even for moderate
number of parameters, the required number of elements in
the dictionary renders grid search intractable on a desktop
computer. In addition, each new ys, requires the computation
and comparison of N matching scores d(yobs,yn), which
can be costly if N is very large and if many inversions are
desired. The regression or learning method that we propose
and describe in the next sections is more efficient with respect
to these aspects.

B. Dictionary-based learning (DBL) methods

In contrast to the DBM method, regression and learning
methods can adapt to handle massive inversions of high dimen-
sional data. The main principle is to transfer the computational
cost, from 2-signal matchings to the learning of an inverse
operator F 1. Equivalently, the goal is to learn a mapping
from the fingerprint space to the parameter space, for any y,
with cost-less evaluation of 7! (y). The dictionary Dy can be
used to estimate F !, Learning or regression methods adapted
to high dimensions include inverse regression methods, i.e.
sliced inverse regression [25], partial least squares [26], ap-
proaches based on mixtures of regressions with different
variants, e.g. Gaussian locally linear mapping (GLLiM) [23],
mixtures of experts [27], cluster weighted models [28] and
kernel methods [9]. Inverse regression methods are flexible
in that they reduce the dimension in a way optimal to the
subsequent mapping estimation task that can itself be carried
out by any kind of standard regression tool. In that sense,
the inverse regression methods are said to be non-parametric
or semi-parametric. Similarly, in [9], the authors propose a
regression with an appropriate kernel function to learn the
non-linear mapping. The procedure has the advantage to be
semi-parametric but a serious limit is that the components of
f are optimized in each dimension separately.

As regards application to MRF, deep learning tools have
also been proposed by several groups [11]-[18]. For compar-
ison purpose, a neural network with an architecture inspired
from the DRONE network of [14] is thus considered. In the
sequel, we use a fully-connected neural network, referred to
as dictionary-based deep learning (DB-DL). The first and last
layers are the S-node input and P-node output layers which
match the sizes of the input signal y and the output parameters
x, respectively. The others are hidden layers. In [14], the
DRONE model has 2 hidden layers of 300 nodes. Here, we
consider instead 6 hidden layers and reduce the number of
nodes to 100 in order to reduce the number of trainable pa-
rameters and limit overfitting issues. For example, considering
S=100 and P =3, the number of trainable parameters of the
neural network is 60903. In addition, the activation functions
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in DRONE, hyperbolic tangents (hidden layers) and sigmoid
functions (output layer), are particularly susceptible to the
vanishing gradient problem as already discussed in [14]. In
our implementation, more robust ReLU activation functions
are used instead.

C. Proposed dictionary-based statistical learning
(DB-SL) method

In the same vein as [9] and in contrast to deep learning ap-
proaches, we propose to use the GLLiM method that exploits
Gaussian mixture models [23]. Compared to other regression
methods that focus on providing point-wise estimates, GLLiM
provides a full probability distribution selected in a family
of parametric models, e.g. mixture of Gaussian distributions,
where the parameters are denoted by 6. The inversion operator
is defined as F~!(y) = p(x|y; @), where 0 is estimated from
the dictionary. More specifically, GLLiM handles the modeling
of non-linear relationships with a piecewise linear model.
Each y is seen as the noisy image of x obtained from a K-
component mixture of affine transformations. This is modeled
by introducing a latent variable z € {1,..., K} such that

K
y = Z 0k (2)
k=1

where 0y(z) indicates membership in the region k of x,
having the value 1 if it belongs to the region and the value 0
otherwise. A, is a P x S matrix and by, a vector in RY that
characterize an affine transformation. Variable € corresponds
to an error term in R”” which is assumed to be zero-mean and
not correlated with x, capturing both the modelling noise and
the reconstruction error due to the affine approximations. In
GLLiM, €, follows a zero-mean Gaussian distribution with
covariance matrix 3j, whose density function is denoted
by N(.;0,X). Then, x follows a mixture of K Gaussian
distributions defined by p(x|z = k) = N(x;¢x,Tx) and
p(z = k) = m, where m, € [0,1], ¢, € R and
I, € REXL are respectively the weight, the mean vector
and covariance matrix of the k" Gaussian distribution. It
follows that 8 = {my,ck, Tk, Ak, b, Xk }i=1.x is the set
of parameters defining the model. The conditional probability
distribution of interest can then be derived as

Zwk
WkN(y,C;::,FZ)
Z] 17Tj N(ch;arj)

with a parameterization 0* = {r},c;, T}, A}, b}, 27 =1k
easily expressed as an analytical function of #. The mixture
setting provides some guaranties that when choosing K large
enough it is possible to approximate any reasonable relation-
ship [27]. Automatic model selection criteria can also be used
to select K (see [23]).

The p(x|y; @) distribution provides both estimates of the
parameters x and information about the confidence to be
placed in these estimates. In this work, estimates are defined
through the expectation and the confidence indices as the

(Ak-X + by, + Ek), )

p(xly;0) N Apy +0;,%5) ()

with w; (y) =

square root of the covariance matrix diagonal element vector:

X =E[xly: 6], @
CI = \/diag (Var [x]y; 6]), ®)

with E [x]y; 0] = Zszl wi(y)(ALy + bj), and

Var [x]y; 0] Zwk ) [Zk + (ALy + by)(Ary + b)) ]

k=1 T
(Zwk )(ALy + by) ) (Zwk AkY+bk)> ;

where diag(-) denotes the function returning the diagonal
elements of a matrix. For the CI, computed from the es-
timated posterior p(x|y; @), to be a good indicator of the
parameter estimation error, it is required that the inverted y
follows the same model used to computed 6. The use of a
unique @ parameter for all inversions provides a great gain
when massive inversions are required but it also assumes
that the same model is valid for all fingerprints and that the
dictionary Dy is a good representation of them. In practice,
acquired fingerprints may come with different noise levels.
An interesting feature of GLLiM is to adapt to this case at
a very low cost. When the observed y comes with some
covariance matrix 3, corresponding to a centered Gaussian
noise variable 7, the initial dictionary Dy may not be fully
adapted if it has not been generated with this same additional
measurement error. Another training set should be simulated
and used instead, with a corrected likelihood corresponding
o N(y; f(x),X + X,)). Fortunately, it is straightforward to
check that the structure of the Gaussian mixture approximation
avoid the re-learning of the GLLiM model. Indeed, it suffices
to change the estimated X, ’s into X3, + X, and to report this
change when computing 6*.

Because S is much larger than P in MRF applications, it is
important that the model (2) involving @ is estimated first and
then used to derive model (3) that has a similar structure. The
number of model parameters @ can be drastically reduced by
choosing constraints on covariance matrices 3, without induc-
ing oversimplifications on the target model (3). In this work,
equal diagonal covariance matrices are used as they yield the
best results: for 1 <k <K, X, =Dg, where Dg € RS*5 is a
diagonal matrix. For example, with S=100, P=3 and K =50,
the number of parameters 6 is equal to 20599 while a direct
estimation of 8" would involve 272999 parameters (see [23]
for more details). The complexity of this GLLiM model is
more generally in O(K PS).

D. Dictionary sampling strategy

The dictionary design depends on the sampling strategy of
the parameter space. In MRF, regular grids of P-dimensional
parameter values are generally considered. In [16], authors
show that in a regression context, the random sampling
strategy provides better estimation of the parameters than the
use of a regular grid. However, this strategy entails a risk of
imperfectly covering the parameter space coverage.

Fig. la shows a two-dimensional projection of N =1000
points from a uniform grid in the 3D-hypercube (P =3). Each
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parameter is described by 10 different values. Note that with
1000 points in 3D, only 100 distinct combinations appear in
the 2D projection plane, each representing 10 different values
of the third variable. This sampling scheme is not optimal
in terms of information content. A significant improvement
over the grid can be achieved by scrambled nets [29], [30].
In this paper, the Sobol sequence is generated [31] and
scrambled [32]. We show the projection of N =1000 points
from the scrambled Sobol sequence (Fig. 1c) referred to as
quasi-random in the remainder of the manuscript.

(a) Reg

(b) Rand

(¢) qRand
Y ok,

0
S

2" parameter (s)
|

05 1

parameter (s)

10 05

parameter (s) 1 parameter (s)

0 0.5

lst lst

Fig. 1. lllustration of the dictionary sampling strategies. Plots show
the 2-dimensional projections of IN = 1000 dictionary entries of the 3-
dimensional parameter space (P = 3) obtained from (a) a regular grid
sampling (Reg), (b) a random sampling (Rand) and (c) a quasi-random
sampling (qRand) obtained from a scrambled Sobol sequence.

[1l. ANALYSIS FRAMEWORK
A. Signals

1) Synthetic scalable signals: The sensitivity of the stan-
dard MRF signals to each parameter is variable. In addition,
parameters cannot readily be added to the simulation tool
that produces the MRF or the vascular MRF signals. To
produce signals that are equally sensitive to each parameter
and dependent on a variable number of parameters (i.e. P
may be set to any value), scalable signals that mimic MRF
signals are introduced in equation (6). The parameters of the
synthetic scalable signal have physical units to help understand
their structure but no physical meaning,

& t
; sin (50 ¢; t) exp <$Z>

where x; are the elements of x, ¢ varies from 10 to 1 000 ms
in 10ms steps (S=100), the ¢, values are between 0.1 and
1 and |-| is the absolute value function. The values of
parameters X are in the range of 10 to 1000 ms. The vector
¢ is defined randomly such that none of the terms are equal.
This makes the parameters x; non-exchangeable: permutations
of the x elements cannot lead to the same signal y. Note that
the relationship between x and y is non-linear. Examples of
synthetic scalable signals are given in Supp. Fig. S1.

To create a noisy signal, a Gaussian zero-mean random
variable with standard deviation oise is added to the signal y.
The absolute value of the noisy signal is then considered. The
signal-to-noise ratio is defined as: SNR = Ijyux/0noise, Where
Inax is the maximum signal intensity. The same procedure is
used to add noise to the following signals.

Yt = ) (6)

2) Synthetic standard MRF signals: Although the focus of
our work is on vascular MRF, the proposed approach is
applicable to other fingerprinting settings. We therefore evalu-
ate the methods on standard MRF signals and in particular
assess the impact of aliasing noise that might result from
highly undersampled images. Using the aliasing noise model
proposed by [33] and a simulated brain phantom with variable
T, T2 and off-resonance values, we produce signals similar
to those introduced in [1]. Supp. S.VIII details the MRF
signals simulated from the relaxation times T;, T2 and the
off-resonance Af parameters (P =3).

3) Synthetic vascular MRF signals: Vascular MRF signals
are ratio of the gradient echo sampling of the free induction
decay and spin echo (GESFIDSE) signals measured pre-
and post-injection of ultrasmall superparamagnetic iron oxide
particles (USPIO) [3]. Eight sampled time points are obtained
after the 90-degree pulse and 24 sampled time points after the
180-degree pulse (S =32). These signals mainly depend on
the vascular properties of the tissues, which in our applica-
tion are specified by three parameters (P =3): blood volume
fraction (BVf), vessel size index (VSI) and tissue oxygen
saturation (StO3). The simulation tool [34] takes into account
intrinsic relaxations, magnetic field perturbations induced by
susceptibility interfaces (vessels), water proton diffusion and
compartmentalization of the contrast agent in the vessels. Due
to the complexity of the tool, simulations are extremely time-
consuming. In our setting, simulation of a single synthetic
vascular MRF signal takes about 10 seconds and a dictionary
of 100000 signals is generated on a 32-core high-performance
computer (Intel Xeon Gold 6130, 2.1 GHz) in about 67 hours
(different from [19]).

4) Acquired vascular MRF signals: Experimental data are
acquired at 4.7 T (Bruker, Ettlingen, Germany) and have been
introduced in [19]. The field of view was 30 x 30 mm? and
the voxel size was 234 x 234 x 800 um®. A turbo spin-echo
sequence is acquired to identify anatomical structures and
tumor tissues. Then, two GESFIDSE sequences (S =32) are
acquired, before and after UPSIO injection. See Supp. S.II-A
for details on animal preparation and data acquisition.

B. Analysis pipeline

For the DB-SL method, the simulated and acquired data
are processed using custom code developed in the Matlab
environment (The MathWorks Inc., Natick, Ma, USA). This
code and the numerical experiment scripts are available'. The
DB-DL approach is implemented using the Deep Learning
toolbox in the Matlab environment (R2019a; The Mathworks
Inc., Natick, Ma, USA). Data from tumor bearing rats are
processed using the Medical software for Processing multi-
Parametric images Pipelines® [35].

1) Dictionary design: The dictionary is generated in two
steps. First, combinations of parameter values in the parameter
space are sampled using one of the sampling strategies in
section II-D. Then, for each combination of parameter values,
the associated fingerprint is simulated using either equation (6)

Thttps://github.com/nifm-gin/DB-qMRI
Zhttps://github.com/nifm-gin/MP3



BOUX et al.

for synthetic scalable signals, the method described in Supp.
S.VIII-A for synthetic MRF signals, or the simulation tool de-
scribed in section I1I-A.3 for vascular MRF signals. For DBL
methods, a low level, zero-mean Gaussian noise (typically
SNR =60) is added to the dictionary signals to promote robust
learning [16] (see section IV-A.1). Note that in this work, we
use magnitude signals since both scalable and vascular MRF
signals are real-valued vectors. An evaluation using complex-
valued signal is proposed for standard MRF signals (Supp.
S.VIII).

2) Dictionary-based analysis: The dictionary is fully stored
for the DBM method or summarized by a neural network
or a parametric model 6 for the DBL methods. To obtain
these models, we use a neural network architecture described
in section II-B for the DB-DL and the GLLiM regression
described in section II-C for the DB-SL. The model learning, a
potentially time-consuming step, is performed only once, after
the production of the dictionary.

In DBM, given an observed signal y.s, an estimate X of
the true Xops is calculated as the minimization argument of
equation (1) among the couples (x,y) in the dictionary. The
observed signal and the signals in the dictionary are previously
normalized to have unit Euclidean norm. The parameters
are normalized to have zero mean and unit variance using
scaling and translating factors that are then used to rescale the
estimates.

In DB-DL, the trained neural network is used to compute
an estimate X of Xyps. The network is trained with the ADAM
gradient descent algorithm, the learning rate is set to 0.001
and the loss function defined as the mean square error. To
ensure convergence, the maximum number of epochs is set to
2000 (Supp. Fig. S2). The proposed neural network design
provided better results than the initial design of [14] when
using synthetic scalable signals (not shown).

In DB-SL, the estimate X of X, iS computed using
equation (4) and a confidence index (CI) using equation (5).
To obtain an accurate CI, an estimation of the signal noise
variance is required. This estimate can be derived from the
data SNR and then used as explained in section II-C to update
0 adequately. For DB-SL, the model requires only the setting
of the calibration value K. In our study, the precise K value
is not critical and different K values give similar results as
long as they are sufficiently large (K > 50 in our study), see
Supp. Fig. S3 for an illustration.

3) Closed-form expression fitting (CEF) analysis: Vascular
MREF signals can also be analyzed by fitting of a non lin-
ear biophysical model [3], [36]. The closed-form expression
fitting (CEF) analysis method refers to this multiple-operation
procedure. First, relaxation rates are extracted by fitting the
intensities of MRI signals (synthetic or acquired). Then, these
relaxation rates are used to compute the BVf, VSI and StO.
parameters using two equations, described in Supp. S.II-B.

4) Performance evaluation: To compare the methods per-
formance in terms of parameter estimation, a set of M test
signals is generated in the same way as for the dictionaries.
The parameters values are randomly sampled in the parameter
space and then the associated signals are computed. For each
parameter, we compute the root mean square error (RMSE)

as the square root of the quadratic mean of the differences
between the estimated and the true parameter values.

IV. RESULTS
A. Synthetic scalable signals

1) Effect of sampling strategy on parameter accuracy: To
promote robust learning, we first evaluate the addition of
noise to the training signals, as proposed in [16]. Results are
reported in Supp. Fig.S4a-d for DB-SL and Fig. S4e-h for
DB-DL. The use of training signals with a SNR of 60 appears
optimal for the two DBL methods. We then investigate the
impact of three parameter sampling strategies, regular, random
and quasi-random, using synthetic scalable signals and the
DBM, DB-DL and DB-SL methods. We consider successively
P=3,5 and 7 and the corresponding numbers of entries
in the dictionary N =216, 1024 and 2 187, respectively. For
each value of P, M =1000 test signals are generated from
parameters randomly sampled in the parameter space. The
RMSE between the estimated and the true parameter values is
then computed (see section III-B.4) and divided by the number
of parameters to obtain the average RMSE. To characterize
the distribution of the average RMSE, the whole procedure is
repeated 100 times (Table I).

RMSE (ms)
Method | P Regular Random gRandom
3 44.8+1.0 569+13 | 51.2+1.1
DBM | 5 884+13 | 103.0£1.2 | 99.0+1.4
7| 115.6+13 | 120.6£1.0 | 129.5+1.3
Mean 82.9 93.5 93.2
3 120+ 1.5 10.0+1.8 9.1+1.8
DB-DL | 5 39.3£3.0 221+1.7 | 204=£1.6
7 63.3+3.1 327+£12 | 322+1.6
Mean 38.2 21.6 20.6
3 172+£3.0 124+£0.7 | 11.0£0.5
DB-SL | 5 | 100.0+17.8 | 35.1+1.1 | 33.0+1.0
7 | 1504+£10.7 | 504+13 | 494+12
Mean 89.2 32.6 31.1
TABLE |

IMPACT OF THE PARAMETER SAMPLING STRATEGY ON ACCURACY.
AVERAGE RMSE (M =1 000 TEST SYNTHETIC SCALABLE SIGNALS)
ACROSS THE PARAMETER ESTIMATES FOR THE THREE SAMPLING
STRATEGIES AND P =3, 5 AND 7 PARAMETERS (MEAN == STANDARD
DEVIATION; BEST VALUE PER LINE IS IN BOLD).

Regardless of the sampling strategy, the average RMSE
increases with P, the number of parameters. For DBM, the
non-regular sampling strategies yield an increased RMSE
(12.8 % for random and 12.4 % for quasi-random), compared
to the regular sampling and across all conditions. As reported
previously, random sampling gives a 53.5% lower average
RMSE than regular sampling, for the two DBL methods and
across all conditions [16]. The quasi-random sampling further
reduces the average RMSE by 4.6 % for the two DBL methods
and across all conditions. These observations are also valid for
other conditions presented in Supp. Fig. S5 for DBM and DB-
SL. For DB-DL, there is a reduction of 18.8 %, 44.0 % and
47.3 % in average RMSE between regular and quasi-random
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sampling for 3, 5 and 7 parameters, respectively. A similar
improvement is observed for the DB-SL method (reduction
in RMSE of 14.4%, 60.3 % and 63.8 %). Therefore, in the
following, a regular sampling is used for DBM and a quasi-
random sampling is used for the DBL methods.

2) Impact of the dictionary size and SNR on parameter
accuracy: To study this impact for DBM and DBL methods,
we generate four scalable signals dictionaries for P=5 and 7
parameters (a total of 8 conditions). The number of dictionary
entries N is chosen so as to keep similar densities, i.e. a
constant number of values per parameter (for P=5: N =3°,
45, 5% and 6° and for P=7: N =37, 47, 57 and 67). For each
condition, we evaluate the average RMSE, using M =10000
signals. To characterize the impact of SNR, the procedure is
repeated for test signals with SNR between 10 and 110 (Fig. 2).
This experiment allows to assess the impact of the dictionary
size and SNR for each method separately (Fig. 2). Comparison
between methods can also be made but is better illustrated in
Supp. Fig. S6.
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Fig. 2. Impact of dictionary size and SNR on DBM and DBL methods,

using synthetic scalable signals. Average RMSE are given with respect
to the SNR for different numbers of parameters and dictionary entries.
Average RMSE (M =10000 test signals) for the (a,d) DBM, (b, e) DB-
DL and (b,d) DB-SL methods. The upper row (a-c) shows the results
for P =5 parameters and the lower row (d-f) for P =7 parameters. The
dashed lines represent the average RMSE in the absence of noise on
the test signals.

As expected for the DBM method, the average RMSE
decreases as the number of entries N increases. The average
RMSE decreases as the SNR increases to about SNR =60 and
then plateaus near the value obtained in absence of noise.
For the DBL methods, the average RMSE also decreases as
the SNR increases. Again, the highest SNR yields an average
RMSE close to that obtained in the absence of noise. For the
DBM method, the average RMSE is comparable between 5
and 7 parameters. N has a lower impact for DBL methods

than for DBM. For P =7 and across SNR values, between the
smallest and the largest dictionary size, the average RMSE
decreases by 29.1+14.9 % for the DBM method, while it
decreases by only 18.34+9.5% for the DB-DL method and
by 13.3+7.0% for the DB-SL method. Moreover, the two
highest [V yield similar average RMSE for the DBL methods
(differences are only 2.6 0.9 % for DB-DL and 0.1 +0.7 %
for DB-SL), suggesting that an increase in the number of
entries would not further improve the average RMSE. In terms
of methods comparison, the average RMSE obtained with
DBL methods are always lower than with DBM in all config-
urations of N and P. In particular, compared to DBM, DB-
SL reduces the average RMSE, for 5 (resp. 7 parameters) by
19.9£11.8 % (resp. 5.8 6.5 %), while reducing the number
of entries by a factor of 8 (resp. 128). Similar conclusions
hold for additional values of P and N as reported in Supp.
Fig. S6, which includes the settings of Fig. 2, also shows that
for SNR <30 (across all simulation conditions), the DB-SL
RMSE are always smaller than the DB-DL RMSE (7.7 £7.0 %
smaller); while for SNR > 60, the DB-DL RMSE are always
smaller than the DB-SL RMSE (22.8 + 6.7 % smaller).

By eliminating the costly dictionary matching operation,
DBL methods can greatly reduce computation time when [N
increases. For 7 parameters and N =78 125, inverting 10000
test signals takes 1.3 s with DBM, 5ms for DB-DL, and 0.9 s
with DB-SL. When N increases to 279936, the estimation
time increases to 4.2s for DBM while it remains stable at
6ms for DB-DL and 0.9s for DB-SL. In terms of memory,
these dictionaries require 66.9 MB (N =78 125) and 239.6 MB
(N =279936) whereas they required only 0.3MB (DB-DL)
and 4.3MB (DB-SL) once summarized by a model. Note
that the differences in estimation time/memory requirement
between DB-DL and DB-SL are not coming from differences
in model complexities but more likely from the methods
implementation (e.g. for S=100 and P=3, 20599 DB-SL
parameters correspond to about 4.2 MB and 60903 DB-DL
parameters to about 0.3 MB). Additional comparisons between
methods in terms of speed and memory are given in Supp.
Table S1. We observe that the number of dictionary entries
has little effect on the estimation time or on the memory size
once the model is learned.

3) Boundary behavior: The DBL methods estimate param-
eter values using a continuous function that is not limited
to the parameter space covered by the dictionary entries. To
investigate the behavior of DBM and DBL methods outside
of the limits of this parameter space, we define a dictionary
(N =10000) composed of two disjoint blocks in the parameter
space, generate M =2000000 test signals and evaluate the
average RMSE for each parameter value. The experiment is
then repeated after the addition of three new dictionary entries,
outside of the two initial blocks.

The three methods yield similar estimation accuracy in the
blocks covered by the dictionary entries (Fig.3a-c). Outside
of these blocks, the average RMSE obtained with the DBM
method increases with the distance to the blocks. For the DB-
DL and DB-SL methods, the average RMSE remains below
100 ms, well beyond the limits of the dictionary blocks. In
particular, the error is reduced in between the two blocks. As
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Fig. 3. Estimation accuracy outside the limits of the parameter space
covered by the dictionary, using synthetic scalable signals. Average
RMSE (M =2000000 test signals) in the parameter space (P =2)
obtained (a, d) with the DBM, (b, e) with the DB-DL and (c, f) with the
DB-SL method. The white dashed lines delimit the blocks covered by
the dictionaryand the 3 white marks in (d-f) are 3 additional dictionary
entries. The average RMSE is computed from signals in a 50 x 50 ms
sliding window, moving in 5 ms steps in the parameter space.

expected, for the DBM method, extra dictionary entries yield
improved estimates near each additional entry. For DBL meth-
ods, these extra entries decrease the RMSE in a much larger
space than the neighborhood of the entries (Fig.3e-f). This
is particularly true for the DB-SL method (RMSE < 100 ms).
However surprisingly, for the DB-DL method, the RMSE
inside of the blocks is altered by the addition of the three
extra entries, while this is not the case for DB-SL. A similar
experiment, using synthetic vascular signals, is reported in
section IV-B.3.

4) Confidence index: We investigate the relationship be-
tween the CI, available with the DB-SL method, and
the RMSE. We generate N=10000 dictionary entries and
M =10000 test signals. We then add different noise levels
to the test signals to obtain a SNR =20, 30, 40, 60 and 100.
A single initial regression model is computed. For each SNR,
this model is then updated based on the noise level (denoted
by 1) which corresponds to the SNR values of the test signals
(see section II-C). We compute the RMSE and CI for the initial
model (i.e. without accounting for the noise level) and RMSE,,
and ClI,, using the updated model. For each SNR value, the
experiment is repeated 100 times. Supp. Fig. S7, shows that
the non-updated CI is proportional to but not equal to the
RMSE in the SNR value range. Supp. Fig. S7 also shows that
the scaling factor between RMSE and non-updated CI depends
on the added noise level.

As expected, RMSE,;, and CI,, increase as the SNR de-
creases (Fig.4a). RMSE,, and ClI,, are proportional and com-
parable in the simulated SNR range (slope: 0.99, R?=0.95).
Note that CI,, may slightly under or over-estimate the RMSE,,
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Fig. 4. RMSE,, vs confidence index (Cl,) and RMSE (non-updated

model), using synthetic scalable signals. SNRiest =20 (blue), 30 (or-
ange), 40 (yellow), 60 (purple) and 100 (green). M =10 000 test signals.
(a) The black line represents the proportional regression coefficient a
between RMSE,, and Cl,, for all SNR values. R? is the coefficient of
determination. (b) The dashed black line is the identity function.

(mean difference: 7.8 %). Overall, CI,, appears to be a good
indicator of the RMSE,,. Interestingly, the inclusion of noise
in the model slightly improves the estimation accuracy. On
average, the RMSE,, is 4.11 % lower than the RMSE (Fig. 4b).
In the following, for DB-SL, RMSE and CI refer to RMSE,,
and CI,, (updated model). Outside of the dictionary parameter
space, the CI is underestimated and no longer reliable (Supp.
Fig. S8). This issue is further investigated in section IV-B.3

B. MRF signals

1) Synthetic standard MRF signals: We compare the DBM
and the DBL methods using the standard MRF signals pro-
posed by Ma et al. [1]. These signals are complex-valued vec-
tors (S = 1000). DBM extends straightforwardly to complex
values and DBL methods are performed by concatenating the
real and imaginary parts of the initial signals, as proposed in
other studies [11], [13]. The parameters of interest (P = 3) are
the relaxation times T; (between 200 and 3000 ms) and Ty
(between 20 and 300 ms) and the off-resonance Af (between
-200 and 200Hz). The comparison is carried out for two
dictionary sizes, N =4096 (small) and N =226981 (large).
The average RMSE is computed on A = 10000 test signals,
for SNR values between 10 and 110. More information and
detailed results are provided in Supp. S.VIIL

We observe that each method has its advantages with results
that depend on the parameter of interest (Supp. Fig.S9).
For the small dictionary, DB-SL outperforms DBM in all
conditions and DB-DL at low SNR (SNR < 40) where DB-
DL provides higher RMSE than DB-SL. For the large dictio-
nary, DB-DL is always outperformed except for T at high
SNR (SNR > 70). In all other cases, DBM provides the best
estimations for T;, DB-SL provides the best estimations for
T5 (SNR < 70), while for Af, DB-SL is more accurate at low
SNR (SNR < 30) and DBM at high SNR. For that parameter,
Both methods outperform DB-DL whatever the SNR level.

To gain further insights into the RMSE differences between
the three methods, we carry out an additional bias-variance
analysis keeping the same two dictionary sizes for learning.



WORKING PAPER FEBRUARY 2021

Following a similar analysis to [10], we use a human brain
phantom resulting in M = 7622 test signals with added
noise for a SNR=40 (see details in Supp. S.VIII-B). In
terms of RMSE comparison the same conclusions hold but
the bias-variance decomposition exhibits that lower RMSE
are essentially coming from lower variances. In the small
dictionary case, for T; and Ty, DB-DL yields mean bias
about twice smaller than DB-SL but with larger variances
leading to higher RMSE for DB-DL (see table in Supp. Fig.
S10d). The brain phantom allows the representation of errors
as brain maps from which it is visible that compared to
DBM, DBL methods yield tissue-dependent errors with brain
structures visible in the maps (Supp. Fig. S10). The DBM
bias, variances and RMSE are always higher than the DB-SL
ones for T and Ts. In contrast, DBM improves for the larger
dictionary and provides smaller bias but not always enough
to compensate its higher variances. For Af, DBM provides
the smallest variances and RMSE. We suspect that a better
handling of complex-valued computation could be the reason
for this superior performance.

Keeping the previous setting, the robustness of the methods
to aliasing noise is then assessed using the tool introduced in
[33] (details in Supp. S.VIII-C). Typical undersampled MRF
signals obtained this way are shown in Supp. Fig. S11d-f
while Fig. S11g-i shows the RMSE for Ty, Ty and Af for
increasing levels of aliasing noise. DB-DL appears less robust
than DB-SL. Overall, DB-SL provides good estimate accuracy
even in presence of aliasing noise and is the best performing
method when estimating T; and T, for the strongest aliasing
noise levels used in this study and this for the two dictionary
sizes. However, for Af, the DBM method remains the method
of choice, except for a low aliasing noise level in the small
dictionary case. These results are consistent with the one
obtained using the scalable signals.

2) Synthetic vascular MRF signals: We compare the three
dictionary-based methods and the CEF method. The dictionar-
ies (grid and quasi-random sampling) are simulated with a BVf
between 0.25 and 30 %, a VSI between 0.5 and 50 um and a
StO, between 30 and 95 %. Among the 170 100 combinations,
some signals cannot be produced, due to simulation constraints
(e.g. a very large BVf cannot be produced with distant,
small, vessels or small BVf with large vessels). The obtained
N values reduce then to N =164524 for the grid and to
N =167216 for quasi-random sampling.

For each method, M =100000 test signals (SNR=100) are
generated. To analyze the BVf RMSE, test signals are divided
into three parts: small, medium and large vessel sizes; for VSI
RMSE: low, medium and large blood volumes.

For all vessel diameters, the BVf RMSE increases with BVf
(Fig. 5a-c). The DBM and CEF methods yield similar RMSE
for BVf values below 10 %. The DB-SL method always yields
the lowest error with an RMSE of 3.10 % for CEF, 3.61 % for
DBM, 2.14 % for DB-DL and 1.87 % for DB-SL.

For VSI values smaller than 15um, the behavior of the
RMSE is similar in all methods, except for the large BVf
range. Above 15um, the CEF method yields larger errors
than the three dictionary-based approaches and the RMSE
obtained with CEF is linearly correlated with the VSI value
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Fig. 5. Comparison of the RMSE on BVf and VSI obtained with the

three dictionary-based methods (DBM, DB-DL, and DB-SL) and with the
closed-form expression fitting (CEF) method, using synthetic vascular
MREF signals. (a,b,c) show RMSE (M =100000 test signals) on BVf
for three ranges of VSI and (d, e, f) show the RMSE on VSI for three
ranges of BVf. The dashed lines represent the average confidence
indices (Cl) on BVf (first row) and VSI (second row) obtained with DB-
SL. The data are shown after 1-dimensional sliding window filtering (3 %
for BVf and 5um for VSI). The dictionary dimensions are P =3, S =32
and N =164 524 for DBM, and N =167 216 for the 2 DBL methods.

(R%2>0.99). This linear behavior has already been reported
in [37]. Considering VSI, DB-SL yields a 1.77 um smaller
RMSE than DBM, on average with an RMSE of 12.70 ym for
CEF, 7.55 pm for DBM, 45.76 um for DB-DL, and 5.78 um for
DB-SL. The CI appears again to be a good indicator of the
RMSE, with maximum differences between CI and RMSE of
1.77 % for BVf and 4.60 um for VSI and average differences
of 0.43 % and 1.24 pm.

3) Acquired vascular MRF signals: The DBL methods are
then applied to vascular MRF signals collected from rats
bearing 9L and C6 tumors. We quantify BVf, VSI and StO,
with both DB-DL and DB-SL, using two dictionary sizes. The
large dictionary (/N =170 100) is the one used previously in
section IV-B.2. The small dictionary (/N =4320) is simulated
with BVf between 0.33 and 12 %, VSI between 1 and 20 um
and StO, between 40 and 90 %.

All methods yield consistent estimates (Fig. 6), in which the
tumor and the large vessels can be easily depicted on BVf and
VSI maps. StO2 appears constant in healthy tissues. However,
for DBM, there are many isolated high values that correspond
to estimates at the dictionary boundaries, suggesting non
accurate estimates. In [19], the authors proposed to apply
a spatial Gaussian filtering to increase the SNR. Using the
DBM method, this additional step allowed them to produce
more spatially homogeneous maps. Interestingly, with the
DBL methods, this step is no longer required. DBL is therefore
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Fig. 6. Maps of vascular parameter estimates of a 9L rat tumor model. The first row shows the anatomical image and regions of interest (left) and
the MGEFIDSE pre and post USPIO injection (right) for the second echo time (6.3 ms). The tumor, cortex and striatum are respectively delineated
with green, yellow and blue lines. The arrows on the post USPIO injection image indicate large vessels. The estimated maps for BVf, VSI and StO2
are shown below, using DBM (first column), DB-DL (second and fifth) and DB-SL (third and sixth columns). The fourth and seventh columns show
the DBL confidence index (Cl) maps. In the color bars, the black lines represent the parameter ranges covered by the two dictionaries: the short
(resp. long) line for the small (resp. large) dictionary. Large dictionary: IN = 164 524 for DBM; 70 values for BVf between 0.25 and 30 %, 90 values
for VSI between 0.5 and 50 um and 27 values for StO2 between 30 and 95% and N =167 216 for DBL. Small dictionary: N =4 218 for DBM; 36
values for BVf between 0.33 and 12 %, 20 values for VS| between 1 and 20 um and 6 values for StO2 between 40 and 90 % and N =4 119 for DBL.
Missing values in Cl maps correspond to estimates outside the parameter space covered by the dictionary, where Cl is no longer reliable.

more likely to preserve small structure information, which may
be otherwise removed by spatial filtering.

For the large dictionary, within the tumor, the mean BVf
and VSI obtained with the DBM and DBL methods are
similar, but with the DBL methods, we can distinguish sub-
regions within the lesion. Mean values and standard de-
viations in the tumor are 19.8544.99 %, 14.83 +6.20 um
for DBM, 17.154+6.12%, 12.524+5.16 um for DB-DL, and
18.02£6.31 %, 16.28 £6.21 um for DB-SL. For StOs, the
DBL methods provide significantly larger values than DBM,
closer to the expected values for healthy tissue [38]. Values
for striatum are 55.03 £+ 16.59 % for DBM, 63.11 +10.79 for
DB-DL, and 72.4 +10.4 % for DB-SL.

For the small dictionary, the contrasts are similar. The
estimates obtained by the DBM method are limited to the
space spanned by the dictionary, while the DBL methods yield
estimates outside this range and closer to the parameter values
obtained with the large dictionary. For example with DB-
SL, the mean tumor BVf is 14.30% (18.2% for the large)
while the maximum dictionary value is 12 %. CI values related
to estimates outside of the parameter space covered by the
dictionary are removed from the CI maps, as we suspect that
they are not reliable (Supp. Fig. S8).

The DBL method with a small dictionary produces estimates
similar to those obtained with a large dictionary, except for
the largest values that are underestimated. This results in a
slight reduction in mean ROI values. Another way to reduce

the dictionary size is to use a dictionary made of blocks with
a few additional entries to reduce the RMSE, as presented
in section IV-A.3 or to reduce the number of entries by
subsampling the dictionary without affecting its range (Supp.
Fig. S12 and S13). In these two cases, the DBL methods yield
similar parameter maps as the ones obtained with the large
dictionary (Supp. Fig.S13 and S14), with the maps resulting
from the sub-sampled dictionary being closer. Moreover, the
CI maps obtained with the sub-sampled dictionary exhibit less
missing values in the tumor than that obtained with the block
dictionary and allows to recover more reliable CI values. Note
that DB-SL is the first method to provide error maps for BVf,
VSI and StO,.

A second example of a C6 rat tumor model is given in Supp.
Fig. S15. The results are similar to those observed for the 9L
tumor. DBL and DBM produce comparable parameter maps.
With DBL, however, maps are more spatially homogeneous
and, using DB-SL, CI maps can be produced.

At last, averaging parameter values across 8 animals (4
for each tumor model), Supp. Fig.S16 shows, by regions
of interest (ROI), mean vascular estimates obtained with the
large dictionary. Overall, values obtained with all methods are
comparable, even if some differences may readily be observed.
Further analyses would require a ground truth, which is not
available. The mean Cls in the tumor are 3.14 % for BVT,
5.91 um for VSI and 16.19 % for StO5, while in the cortex the
mean CI are 1.09 % for BVf, 2.29 ym for VSI and 16.54 % for
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StO5. These results are in agreement with previous results that
pointed better estimates for BVf than for VSI and low signal
sensitivity to StO; [19]. The CI is therefore on average 2 to 3
times lower in the tumor than in the cortex for BVf and VSI
but is similar for StOs.

V. DISCUSSION

This work introduces a statistical method for estimating
vascular MRF parameters based on dictionary learning. This
method is compared to the standard matching (DBM) method
and to a deep learning (DB-DL) method. Overall, the two
learning methods yield more accurate estimates than DBM,
whatever the type of synthetic signal and for most noise levels
(thermal and aliasing types). Learning methods also produce
accurate estimates further away from the dictionary boundaries
than DBM. Finally, learning methods compute estimates faster
than DBM and with smaller memory requirements. Among the
learning methods, the DB-SL method appears to perform best
for signals with low SNR (typically below 40) and DB-DL for
signals with high SNR (above 70). The additional confidence
index (CI), provided by DB-SL, appears as a reliable estimate
of the RMSE within the parameter range covered by the
dictionary. When considering acquired vascular MRF signals,
we observe that the number of dictionary entries can be divided
by about 40 using the learning methods and still lead to
accurate maps. The maps produced with the DBL methods
are spatially more homogeneous than those obtained with the
DBM method while preserving structures not observed with
DBM, notably in the lesions. The additional tissue contrast
provided by the DBL methods could therefore contribute to
improved tumor characterization [39].

Regarding the design of the dictionary, we first observe
that a quasi-random sampling of the parameter space gives
more accurate estimates for the two learning methods, in
agreement with [16], and that a regular sampling is more suited
for DBM. We then evaluate two strategies to further reduce
the simulation cost while maintaining estimates accuracy: a
block dictionary, possibly with a few additional entries at
distance from these blocks, and a sub-sampled dictionary.
When DBM is carried out with a block dictionary, the RMSE
quickly increases with the distance to the blocks (Fig. 3,
Supp. Fig.S12). Dictionary undersampling, i.e. reducing the
dictionary density, also increases the RMSE on parameter
estimates (Fig. 2, Supp. Fig.S6). DBM is therefore not the
method of choice to reduce the simulation cost. In contrast,
learning methods maintain low RMSE at larger distances from
the blocks and better exploit additional entries in the dictionary
(Fig. 3, Supp. Fig. S12). Regarding DB-DL, [14] reported
increased deviations from the true values at the boundaries
of the training space, likely due to the vanishing gradient of
the activation function in these regions. In this work, using a
different activation function (i.e. ReLU), we observe that the
DB-DL performance remains good although not as stable as
for DB-SL (Fig. 3, Supp. Fig. S12). Note however that the gain
or loss due to additional entries may depend on the nature and
sensitivity of the relationship between signals and parameters.
For instance, additional entries outside of the blocks degrade

the DB-DL RMSE in the blocks when using synthetic scalable
signals (Fig. 3b,e) but this phenomenon is not observed for
the synthetic vascular signals (Supp. Fig.S12). For DB-SL,
a remaining not satisfying feature in the block setting is the
accuracy loss on CI outside of the blocks. This behavior seems
to be related to the parameter range covered by the dictionary
and can be overcome with the use of a sub-sampled dictionary
(Supp. Fig. S14). With a reduced simulation cost, similar to
that of a block dictionary, CI estimates remain comparable to
that obtained with the reference approach (large dictionary).
This suggests that optimal results could be obtained with
DB-SL by considering at the learning phase (i) parameter
intervals that correspond to the expected ones and (ii) a
variable parameter density, with higher densities where higher
accuracy is desired.

Regarding the inversion, the regression approach usually
involves a calibration. In GLLiM, the number K of Gaussian
distributions is the only calibration value to be adjusted.
This can be done automatically using a standard information
criterion such as AIC or BIC [40], [41], as illustrated in [23],
but at the cost of additional learning time. In contrast, neural
networks [11]-[18] used to solve similar inverse problems are
very sensitive to their many complex calibration settings: ar-
chitecture, batch sizes, learning rates, among others. Moreover,
other networks such as recurrent neural network [13], [42]
have been proposed for MRF and could also be evaluated.
The single parameter calibration of DB-SL appears more
interpretable, more reproducible and less critical (Supp. Fig.
S3). Despite these differences in algorithm architecture, the
learning times of DB-DL and DB-SL are in the same range
(Supp. Tab.S1). A finer comparison of their actual computa-
tional costs would require to put their implementations on an
equal footing, which is out of the scope of this study.

Beyond vascular MRF, the proposed approach could also
benefit standard MRF data. With a small dictionary composed
of synthetic standard MRF signals, we observe that DB-SL
outperforms DB-DL and DBM for high termal noise levels
(SNR below 40) in estimating T; and Ts. Learning methods
also outperform DBM in case of strong aliasing noise and
small dictionary. The results obtained on Af (Supp. Fig. S9,
S10 and S11) suggest that DB-DL and DB-SL estimates could
be more accurate if complex-valued signals were properly
handled, instead of the concatenation approach used in this
study. Further work includes the generalization of GLLiM to
complex Gaussian distributions while complex-valued neural
networks could also be investigated.

In conclusion, this first evaluation of the DB-SL method
appears promising. It reduces the simulation time and the
memory required for dictionary storage, improves parameter
accuracy, reduces the estimation time and provides a first
confidence index on parameter estimates. The DB-SL method
has been tested on different types of MRF signals. It has the
potential to scale efficiently when the number of parameters
increases and to offer the possibility to account for more
physiological and experimental contributions to the signal.
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