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Abstract

Standard parameter estimation from vascular magnetic resonance fingerprinting (MRF) data
is based on matching the MRF signals to their best counterparts in a grid of coupled simulated
signals and parameters, referred to as a dictionary. To reach a good accuracy, the matching
requires an informative dictionary whose cost, in terms of design, storage and exploration, is
rapidly prohibitive for even moderate numbers of parameters. In this work, we propose an
alternative dictionary-based learning (DBL) approach made of three steps: 1) a quasi-random
sampling strategy to produce efficiently an informative dictionary, 2) an inverse statistical regres-
sion model to learn from the dictionary a correspondence between fingerprints and parameters,
and 3) the use of this mapping to provide both parameter estimates and their confidence indices.
Our DBL method is first compared to MRF matching on two types of synthetic signals: scalable
and vascular MRF signals. On scalable signals, quasi-random sampling outperforms the grid
when using DBL. Dictionaries up to 100 times smaller than in MRF matching, yield a 12 % de-
creased error on parameter estimates. The confidence indices match the parameter estimation
errors (R2= 0.95). Then, on vascular signals, dictionary-based methods yield more accurate es-
timates than the conventional, closed-form expression fitting method with significantly smaller
errors on vessel size estimates. On real vascular MRF signals acquired from tumor bearing rats,
the DBL method shows less noisy maps than MRF matching. Our DBL proposal effectively re-
duces the number of simulations required and speeds up parameter estimation, while providing
more accurate estimates with their confidence indices.

1 Introduction

Magnetic resonance fingerprinting (MRF) is a novel approach to quantitative magnetic resonance
imaging that allows the estimation of multiple tissue properties in a single acquisition [1, 2]. The
acquisition, which consists in repeating measurements with varying experimental conditions, gen-
erates a signal evolution (or fingerprint) that depends on the parameters of the studied tissue. To
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estimate these parameters, a large database, referred to as a dictionary and containing a large num-
ber of possible signal evolutions, is simulated from biophysical models. A comparison is performed
between an acquired signal and the signals in the dictionary to find the best match according to an
objective function. The tissue parameters are then estimated to the values that generated the best
signal evolution match. In MRF, parameter estimation accuracy therefore depends on the number
of dictionary entries, which increases exponentially with the number of parameters. For applica-
tions with many parameters such as vascular MRF [3], the required memory size and simulation
time as well as the parameter estimation time (or reconstruction time) quickly become a limit.

To compress the dictionary while limiting the loss of information, several authors have used
singular value decomposition to project the dictionary in a well-chosen subspace [4–8]. However,
this compression procedure generally decreases parameter accuracy. It has also been proposed to
directly find a mapping from the fingerprints to the parameter space using kernel regression [9],
maximum likelihood approach [10] or neural network approaches [11–18]. The resulting compact
representation offers the advantage over the discrete MRF grid of a continuous exploration of
parameter values. These approaches significantly reduce the reconstruction time, but not the
simulation time due to the need to span a high dimensional fingerprint space. To limit the simulation
time, Cohen et al. [14] studied a mapping obtained from a sparse set of dictionary entries. The study,
carried out with only two parameters, led to a modest reduction of dictionary entries (up to 60).
Consider a dictionary of 10× 10 entries simulated in 1 hour. If the number of parameters increases
from 2 to 7 parameters, and always considering 10 values per parameter, then the dictionary
computation time increases from 1 hour to more than 11 years. In this case, an approach that greatly
reduces the need for simulation, continuously represents the parameters without loss of precision,
relies on an explainable model and reduces the reconstruction time becomes highly desirable [19].

To reach this goal, we adopt in this work a mapping approach that circumvents the difficulty
of learning a high-to-low mapping from a high dimensional fingerprint space to a low dimensional
parameter space, learning instead the much less problematic low-to-high reverse mapping from
parameters to fingerprints. More specifically, we use the Gaussian locally linear mapping (GLLiM)
model [20], which allows both a tractable learning of the low-to-high mapping and a subsequent
analytical expression of the high-to-low or signal-to-parameter mapping. Furthermore, unlike most
other regression methods that focus on pointwise predictions, GLLiM provides a full posterior
distribution per fingerprint. This distribution can then be used to compute an estimated value and
a confidence index for each parameter, using respectively the posterior expectation and standard
deviation.

In this vascular MRF study, the proposed dictionary-based learning (DBL) method and the
standard dictionary-based matching (DBM) method are compared. Synthetic scalable signals are
first used to assess quantitatively the methods’ performance while increasing the number of param-
eters. Vascular MRF signals are then considered both through simulations and real data acquired
in tumor bearing rats.

2 MRF as an inverse problem

In inverse problems, the overall issue is to provide information on some parameters of interest x
given an observed signal y, using a known direct or forward model that describes how the parameters
x translate into a signal y. Among inverse problems, MRF exhibits the following difficulties: 1)
the direct model is (highly) non-linear, as a (complex) series of equations or simulation tools; 2)
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the y’s are high-dimensional signals and 3) many y’s need to be inverted (one for each voxel in
an image); 4) the vector of parameters x is multidimensional and predicting each component of x
independently is likely to be sub-optimal.

To account for possible sources of uncertainty, we focus on a statistical modeling assuming that
the forward model is described by a likelihood and a prior distribution. The likelihood function
is linking parameter values x to a probability of observing signal y, Lx(y) = p(y|x). A natural
assumption is that Lx(y) is a Gaussian distribution N (y; f(x),Σ) centered at f(x) where f is the
known simulation function that links the physical and physiological parameters to the fingerprint
and Σ is a covariance matrix accounting for measuring or modelling imperfections. The param-
eter prior distribution, denoted by p(x), encodes in turns information on the possible parameter
values. Standard MRF uses a finite grid of values, which corresponds to a very particular discrete
prior. This probabilistic point of view allows, with the Bayesian framework, to derive a posterior
distribution p(x|y) = p(y|x)p(x)/p(y), which provides for any given y, a characterization of x by
a probability density function more informative than a single point prediction of x. It corresponds
to a richer inverse model but is not usually available in closed-form and requires approximations
to be usable in practice.

More generally, most methods to solve inverse problems can be classified into two main cate-
gories, optimization-based and learning-based methods. In the next section, we refer to standard
MRF as a matching method. We show that it can be seen as a penalized optimization, which does
not require statistical modeling, while the method we propose next belongs to statistical learning
approaches.

2.1 Dictionary-based matching (DBM) method

MRF [1] requires a large database Df , referred to as a dictionary. It is made of N entries of
coupled fingerprint and parameters (x,y). The S-dimensional fingerprints {y1, . . . ,yN} are gen-
erated by running the simulation model f for N different values of the P -dimensional magnetic
and physiological parameters {x1, . . . ,xN}. In the DBM method, a P -dimensional grid is gener-
ated with sampled values in a pre-set interval for each parameter. Then, to invert an observed
yobs, it is compared with the signals in Df to find the best match according to an objective func-
tion d(·, ·), usually a standard distance or dissimilarity measure (e.g. in MRF, the dot product).
With Df = {(xn,yn = f(xn)), n = 1:N}, x is thus estimated as the argument of the following
minimization:

x̂ = arg min
x ∈ Df

d(yobs, f(x)). (1)

Solutions are sought in Df only, while in a non-constrained optimization the minimization is over
the whole continuous space of parameter values. The performance of the method depends directly
on the space discretization i.e. the choice of the number of dictionary entries and the number of
parameters. The larger the number N of entry (xn,yn), the more accurate the estimates but the
larger the simulation time and memory requirement. Even for moderate number of parameters,
the required number of elements in the dictionary renders grid search intractable on a desktop
computer. In addition, each new yobs, requires the computation and comparison of N matching
scores d(yobs,yn), which can be costly if N is very large and if many inversions are desired. The
regression or learning method that we propose in the next section is more efficient with respect to
these aspects.
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2.2 Proposed dictionary-based learning (DBL) method

In contrast to the DBM method, regression and learning methods can adapt to handle massive
inversions of high dimensional data. The main principle is to transfer the computational cost, from
2-signal matchings to the learning of an inverse operator F−1. Equivalently, the goal is to learn a
mapping from the fingerprint space to the parameter space, for any y, with cost-less evaluation of
F−1(y). The dictionary Df can be used to estimate F−1. Learning or regression methods adapted
to high dimensions include inverse regression methods, i.e. sliced inverse regression [21], partial
least squares [22], approaches based on mixtures of regressions with different variants, e.g. Gaussian
locally linear mapping (GLLiM) [20], mixtures of experts [23], cluster weighted models [24], and
kernel methods [9]. Inverse regression methods are flexible in that they reduce the dimension in
a way optimal to the subsequent mapping estimation task that can itself be carried out by any
kind of standard regression tool. In that sense, the inverse regression methods are said to be
non-parametric or semi-parametric. Similarly, in [9], the authors propose a regression with an
appropriate kernel function to learn the non-linear mapping. The procedure has the advantage to
be semi-parametric but a serious limit is that the components of f are optimized in each dimension
separately. As regards application to MRF, the learning strategy has also been proposed by several
groups using deep learning tools [11–18]. A major limitation of these methods is that they require
a large number of training points to learn many model parameters without overfitting.

In the same vein as [9], and in contrast to deep learning approaches, we propose to use the
GLLiM method that exploits Gaussian mixture models [20]. Compared to other regression methods
that focus on providing point-wise estimates, GLLiM provides a full probability distribution selected
in a family of parametric models, e.g. mixture of Gaussian distributions, where the parameters are
denoted by θ. The inversion operator is defined as F−1(y) = p(x|y;θ), where θ is estimated from
the dictionary. More specifically, GLLiM handles the modeling of non-linear relationships with a
piecewise linear model. Each y is seen as the noisy image of x obtained from a K-component
mixture of affine transformations. This is modeled by introducing a latent variable z ∈ {1, . . . ,K}
such that

y =
K∑
k=1

δk(z) (Akx + bk + εk), (2)

where δk(z) indicates membership in the region k of x, having the value 1 if it belongs to the region
and the value 0 otherwise. Ak is a P × S matrix and bk a vector in RP that characterize an affine
transformation. Variable εk corresponds to an error term in RP which is assumed to be zero-mean
and not correlated with x, capturing both the modelling noise and the reconstruction error due to
the affine approximations. In GLLiM, εk follows a Gaussian distribution N (0,Σk) and x follows a
mixture of K Gaussians defined by p(x|z = k) = N (x; ck,Γk), and p(z = k) = πk. It follows that

p(y|x;θ) =
K∑
k=1

wk(x)N (y;Akx + bk,Σk) (3)

with wk(x) =
πkN (x; ck,Γk)∑K
j=1 πj N (x; cj ,Γj)

and θ = {πk, ck,Γk,Ak, bk,Σk}k=1:K is the set of parameters defining the model. The conditional
probability distribution of interest can be derived as

4



p(x|y;θ) =

K∑
k=1

w∗k(y)N (x;A∗ky + b∗k,Σ
∗
k) (4)

with w∗k(y) =
πkN (y; c∗k,Γ

∗
k)∑K

j=1 π
∗
j N (y; c∗j ,Γ

∗
j )

and a new parameterization θ∗ = {c∗k,Γ∗k,A∗k, b∗k,Σ∗k}k=1:K easily expressed as an analytical func-
tion of θ. The mixture setting provides some guaranties that when choosing K large enough it is
possible to approximate any reasonable relationship [23]. Automatic model selection criteria can
also be used to select K (see [20]).

The p(x|y;θ) distribution provides both estimates of the parameters x and information about
the confidence to be placed in these estimates. In this work, estimates are defined through the
expectation and the confidence indices as the square root of the covariance matrix diagonal element
vector:

x̂ = E [x|y;θ] , (5)

CI =
√

diag (Var [x|y;θ]), (6)

with E [x|y;θ] =
∑K

k=1w
∗
k(y)(A∗ky + b∗k), and

Var [x|y;θ] =

K∑
k=1

w∗k(y)
[
Σ∗k + (A∗ky + b∗k)(A

∗
ky + b∗k)

T
]

−
(

K∑
k=1

w∗k(y)(A∗ky + b∗k)

)(
K∑
k=1

w∗k(y)(A∗ky + b∗k)

)T
,

where diag(·) denotes the function returning the diagonal elements of a matrix. For the CI, com-
puted from the estimated posterior p(x|y;θ), to be a good indicator of the parameter estimation
error, it is required that the inverted y follows the same model used to computed θ. The use of a
unique θ parameter for all inversions provides a great gain when massive inversions are required
but it also assumes that the same model is valid for all fingerprints and that the dictionary Df
is a good representation of them. In practice, acquired fingerprints may come with different noise
levels. An interesting feature of GLLiM is to adapt to this case at a very low cost. When the
observed y comes with some covariance matrix Ση corresponding to a centered Gaussian noise
variable η, the initial dictionary Df may not be fully adapted if it has not been generated with this
same additional measurement error. Another training set should be simulated and used instead,
with a corrected likelihood corresponding to N (y; f(x),Σ+Ση). Fortunately, it is straightforward
to check that the structure of the Gaussian mixture approximation avoid the re-learning of the
GLLiM model. Indeed, it suffices to change the estimated Σk’s into Σk + Ση and to report this
change when computing θ∗.

Because S is much larger than P in MRF applications, it is important that the model (3)
involving θ is estimated first and then used to derive model (4) that has a similar structure. The
number of model parameters θ can be drastically reduced by choosing constraints on covariance
matrices Σk without inducing oversimplifications on the target model (4). In this work, equal
diagonal covariance matrices are used as they yield the best results: for 1 ≤ k ≤ K, Σk = DS ,
where DS ∈ RS×S is a diagonal matrix. For example, with S= 100, P = 3 and K = 50, the number
of parameters θ is equal to 20 600 while a direct estimation of θ∗ would involve 272 703 parameters
(see [20] for more details).
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2.3 Dictionary sampling strategy

The dictionary design depends on the sampling strategy of the parameter space. In MRF, regular
grids of P -dimensional parameter values are generally considered. In [16], authors show that in
a regression context, the random sampling strategy provides better estimation of the parameters
than the use of a regular grid. However, this strategy entails a risk of imperfectly covering the
parameter space coverage.

Fig. 1a shows a two-dimensional projection of N = 1 000 points from a uniform grid in the 3D-
hypercube (P = 3). Each parameter is described by 10 separate values. Note that with 1 000 points
in 3D, only 100 distinct combinations appear in the 2D projection plane, each representing 10
different values of the third variable. This sampling scheme is not optimal in terms of information
content. A significant improvement over the grid can be achieved by scrambled nets [25, 26]. In
this paper, the Sobol sequence is generated [27] and scrambled [28]. We show the projection of
N = 1 000 points from the scrambled Sobol sequence (fig. 1c) referred to as quasi-random in the
remainder of the manuscript.

3 Analysis framework

3.1 Signals

3.1.1 Synthetic scalable signals

The sensitivity of the MRF signals to each parameter is variable. In addition, parameters cannot
readily be added to the simulation tool that produces the MRF or the vascular MRF signals. To
produce signals that are equally sensitive to each parameter and dependent on a variable number
of parameters (i.e. P may be set to any value), scalable signals that mimic MRF signals are
introduced in equation (7). The parameters of the synthetic scalable signal have physical units to
help understand their structure but no physical meaning,

y =

∣∣∣∣∣
P∑
i=1

sin (50φi t) exp

(
− t

xi

)∣∣∣∣∣ , (7)

where xi are the elements of x, t varies from 10 to 1 000 ms in 10 ms steps (S= 100), the φi values
are between 0.1 and 1 and | · | is the absolute value function. The values of parameters x are in the
range of 10 to 1 000 ms. The vector φ is defined randomly such that none of the terms are equal.
This makes the parameters xi non-exchangeable: permutations of the x elements cannot lead to
the same signal y. Note that the relationship between x and y is non-linear. Examples of synthetic
scalable signals are given in Supporting Information, fig. S2.

To create a noisy signal, a Gaussian zero-mean random variable with standard deviation σnoise
is added to the complex signal y. The absolute value of the noisy signal is then considered. The
signal-to-noise ratio is defined as: SNR = Imax/σnoise, where Imax is the maximum signal intensity.
The same procedure is used to add noise to the following signals.

3.1.2 Synthetic vascular MRF signals

Vascular MRF signals are ratio of the gradient echo sampling of the free induction decay and spin
echo (GESFIDSE) signals measured pre- and post-injection of ultrasmall superparamagnetic iron
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oxide particles (USPIO) [3]. Eight sampled time points are obtained after the 90-degree pulse and
24 sampled time points after the 180-degree pulse (S= 32). These signals mainly depend on the
vascular properties of the tissues, which in our application are specified by three parameters (P = 3):
blood volume fraction (BVf), vessel size index (VSI) and tissue oxygen saturation (StO2). The
simulation tool [29] takes into account intrinsic relaxations, magnetic field perturbations induced by
susceptibility interfaces (vessels), water proton diffusion and compartmentalization of the contrast
agent in the vessels. Due to the complexity of the tool, simulations are extremely time-consuming.
Simulation of a single synthetic vascular MRF signal takes about 10 seconds and a dictionary
of 100 000 signals is generated on a 32-node high-performance computer (Intel Xeon Gold 6130,
2.1 GHz) in about 67 hours.

3.1.3 Acquired vascular MRF signals

Experimental data were acquired at 4.7 T (Bruker Biospin, Ettlingen, Germany) and have been
introduced in [30]. The field of view was 30× 30 mm2 and the voxel size was 234× 234× 800 µm3.
A turbo spin-echo sequence was acquired to identify anatomical structures and tumor tissues.
Then, two GESFIDSE sequences (S= 32) were acquired, before and after injection of UPSIO. See
Appendix I for more details on the conditions of animal preparation and data acquisition.

3.2 Analysis pipeline

The simulated and acquired data are processed using custom code developed in the Matlab environ-
ment (The MathWorks Inc., Natick, Ma, USA). This code and the numerical experiment scripts are
available1. Data from tumor bearing rats are processed using the Medical software for Processing
multi-Parametric images Pipelines2.

3.2.1 Dictionary design

The dictionary is generated in two steps. First, combinations of parameter values in the parameter
space are sampled using one of the sampling strategies in section 2.3. Then, for each combination
of parameter values, the associated fingerprint is simulated using either equation (7) for synthetic
scalable signals or the simulation tool described in section 3.1.2 for vascular MRF signals. For the
DBL method, a low level, zero-mean Gaussian noise (typically SNR = 60) is added to the dictionary
signals as this improved our results (see Supporting Information, fig. S3).

3.2.2 Dictionary-based analysis

The dictionary is fully stored for the DBM method or summarized by a parametric model θ for
the DBL method. To obtain this model, we use the GLLiM regression described in section 2.2.
The model learning, a potentially time-consuming step, is performed only once, just after the
production of the dictionary. The model requires only the setting of the K calibration value. In
practice, the precise K value is not critical and different K values give similar results as long as
they are sufficiently large compared to number of dictionary entries (K ≥ 50 in our study).

In DBM, given an observed signal yobs, an estimate x̂ of the true xobs is calculated as the
minimization argument of equation (1) among the couples (x,y) in the dictionary. The observed

1https://github.com/nifm-gin/DBL-qMRI
2https://github.com/nifm-gin/MP3
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signal and the signals in the dictionary are previously normalised to have unit Euclidean norm. The
parameters are normalized to have a mean of zero and unit variance using scaling and translating
factors that are then used to rescale the estimates.

In DBL, an estimate x̂ of xobs is computed using equation (5) and a confidence index (CI) using
equation (6). To obtain an accurate CI, an estimation of the signal noise variance is required. This
estimate can be derived from the data SNR and then used as explained in section 2.2 to update θ
adequately.

3.2.3 Closed-form expression fitting (CEF) analysis

Vascular MRF signals can also be analyzed by fitting of a non linear biophysical model [3,31]. The
closed-form expression fitting (CEF) analysis method refers to this multiple-operation procedure.
First, relaxation rates are extracted by fitting the intensities of MRI signals (synthetic or acquired).
Then, these relaxation rates are used to compute the BVf, VSI and StO2 parameters using two
equations, described in Appendix II.

3.2.4 Performance evaluation

To compare the methods performance in parameter estimation, a set of M test signals is generated
in the same way as for the dictionaries. The parameters values are randomly sampled in the
parameter space and then the associated signals are computed. For each parameter, we compute
the root mean square error (RMSE) as the square root of the quadratic mean of the differences
between the estimated and the true parameter values.

4 Results

4.1 Synthetic scalable signals

4.1.1 Effect of sampling strategy on parameter accuracy

We investigate the impact of three parameter sampling strategies, regular, random and quasi-
random, using synthetic scalable signals and the DBL method. We consider successively P = 3, 5,
and 7, for each sampling strategy, leading to a total of 9 conditions. The numbers of entries in the
dictionary are N = 216, 1 024, and 2 187, respectively. For each value of P , M = 1 000 test signals
are generated from parameters randomly sampled in the parameter space. The RMSE between the
estimated and the true parameter values is then computed (see section 3.2.4) and divided by the
number of parameters to obtain the average RMSE. To characterize the distribution of the average
RMSE, the whole procedure was repeated 500 times (fig. 1).

Regardless of the sampling strategy, the average RMSE increases with P , the number of param-
eters. As reported previously, for the same number of signals in the dictionary, random sampling
gives a lower average RMSE than regular sampling, whatever the number of parameters [16]. This
observation is also valid for other conditions presented in Supporting Information, fig. S4. Note
that when using the DBM approach instead of DBL, regular sampling yields a lower average RMSE
than the random or quasi-random sampling (Supporting Information, fig. S3). The quasi-random
sampling further reduces the average RMSE up to 12.4 %. Altogether, there is a reduction of 12.3 %,
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Figure 1: Effect of sampling strategy on the dictionary-based learning (DBL) method, using syn-
thetic scalable signals: The first row shows the 2-dimensional projection of N = 1 000 dictionary
entries of the 3-dimensional parameter space (P = 3) obtained from (a) a regular grid sampling
(Reg), (b) a random sampling (Rand) and (c) a quasi-random sampling (qRand) obtained from
scrambled Sobol sequence. The second row shows the average RMSE (M = 1 000 test signals) on
the parameter estimates obtained using the DBL method for the three sampling strategies and (d)
P = 3, (e) 5 and (f) 7 parameters. For each box, the red central mark indicates the median; the
lower and upper edges indicate the 25th and 75th percentiles, respectively. The whiskers extend to
the minimum and maximum values.

36.4 % and 41.7 % in average RMSE between regular and quasi-random sampling for 3, 5, and 7 pa-
rameters, respectively. Therefore, in the following, a regular sampling is used for the DBM method
and a quasi-random sampling is used for the DBL method.

4.1.2 Impact of the dictionary size and SNR on parameter accuracy

To study this impact for DBM and DBL, we generate four scalable signals dictionaries for P = 5
and 7 parameters (a total of 8 conditions). The number of dictionary entries N was chosen so as
to keep similar densities, i.e. a constant number of values per parameter (for P = 5: N = 35, 45, 55,
and 65 and for P = 7: N = 37, 47, 57, and 67). For each condition, we evaluate the average RMSE,
using M = 10 000 signals. To characterize the impact of SNR, the procedure is repeated for test
signals with SNR between 10 and 110 (fig. 2).

As expected for the DBM method, the average RMSE decreases as the number of entries
N increases. The average RMSE decreases as the SNR increases to about SNR = 60 and then
plateaus near the value obtained in absence of noise. For the DBL method, the average RMSE also
decreases as the SNR increases but up to about SNR = 90. Again, the highest SNR yields an average
RMSE close to that obtained in the absence of noise. For the DBM method, the average RMSE is
comparable between 5 and 7 parameters. The average RMSE obtained with the DBL method are
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Figure 2: Impact of dictionary size and SNR on DBM and DBL methods, using synthetic scalable
signals. Average RMSE are given with respect to the SNR for different numbers of parameters and
dictionary entries. Average RMSE (M = 10 000 test signals) for the DBM (a, c) and DBL (b, d)
methods. The upper row (a, b) shows the results for P = 5 parameters, and the lower row (c, d)
for P = 7 parameters. The dashed lines represent the average RMSE in the absence of noise on the
test signals. The calibration value K (DBL method) is set to 50, except for N = 243 where K = 20.

lower than those obtained with the DBM method: 50.0± 10.0 % lower for P = 5 and 38.0± 12.3 %
lower for P = 7, whatever the number of dictionary entries. N has a lower impact for DBL than
for DBM. Between the smallest and the largest dictionary size, the average RMSE decreases by
38.0± 9.5 % for the DBM method, while it decreases by only 18.3± 5.2 % for the DBL method.
Moreover, the two highest N yield similar average RMSE for the DBL method (difference smaller
than 0.5 %), suggesting that an increase in the number of entries would not further improve the
average RMSE. Altogether, compared to the DBM method, the DBL method reduces the average
RMSE by 13.1± 5.2 % (respectively 12.3± 4.3 %) while reducing the number of entries by a factor
of 32 (respectively 128) for 5 parameters (respectively 7 parameters). Supporting Information,
fig. S5 shows the same experiment for additional P and N values . The average RMSE is always
lower for DBL than for DBM (39.2± 15.9 % lower).

By eliminating the costly dictionary matching operation, DBL can greatly reduce computa-
tion time when N increases. For 7 parameters and N = 78 125, inverting 10 000 test signals takes
2.0± 0.1 seconds with DBM and 2.2± 0.4 seconds with DBL. When N increases to 279 936, the esti-
mation time increases to 28.6± 2.6 seconds for DBM while it remains stable at 2.0± 0.2 seconds for
DBL. In terms of memory, these dictionaries require 66.9 (N = 78 125) and 239.6 Mo (N = 279 936)
whereas they required only 4.35 Mo once summarized by a model. A complete comparison of the
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Figure 3: Estimation accuracy outside the limits of the parameter space covered by the dictionary,
using synthetic scalable signals: Average RMSE (M = 2 000 000 test signals) in the parameter space
(P = 2) obtained (a) with the DBM and (b) with the DBL method. The white dashed lines delimit
the subspace covered by the dictionary. The average RMSE is computed from signals in a 50× 50 ms
sliding window, moving in 5 ms steps in the parameter space.

performance of the methods in terms of speed and memory is given in Supporting Information,
fig. S6. We observe that the number of dictionary entries has no effect on the estimation time or
on the memory size once the model is learnt.

4.1.3 Boundary behaviour

The DBL method estimates parameter values using a continuous function that is not limited to the
parameter space covered by the dictionary entries. To investigate the behavior of DBM and DBL
methods outside the limits of this parameter space, we define a dictionary (N = 10 000) composed
of two disjoint patches in the parameter space, generate M = 2 000 000 test signals and evaluate the
average RMSE for each parameter value.

The two methods yield similar estimation accuracy in the subspace covered by the dictionary
entries (fig. 3). Outside that subspace, the average RMSE obtained with the DBM method increases
with the distance to the subspace. For the DBL method, the average RMSE remains below 100 ms,
well beyond the limit of the dictionary subspace.

4.1.4 Confidence index

We investigate the relationship between the CI, available with the DBL method, and the RMSE.
We generate N = 10 000 dictionary entries and M = 10 000 test signals. We then add different noise
levels to the test signals to obtain a SNR = 20, 30, 40, 60 and 100. A single initial regression model
is computed. For each SNR, this model is then updated based on the noise level (denoted by η)
which corresponds to the SNR values of the test signals (see section 2.2). We compute the RMSE
and CI for the initial model (i.e. without accounting for the noise level) and RMSEη and CIη
using the updated model. For each SNR value, the experiment is repeated 100 times. Supporting
Information, fig. S6, shows that the non-updated CI is proportional to but not equal to the RMSE
in the SNR value range. Supporting Information, fig. S7 also shows that the scaling factor between
RMSE and non-updated CI depends on the added noise level.

As expected, RMSEη and CIη increase as the SNR decreases (fig. 4a). RMSEη and CIη are
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proportional and comparable in the SNR value range (slope: 0.99, R2 = 0.95). Note that CIη may
slightly under or over-estimate the RMSEη (mean difference: 7.8 %). Overall, CIη appears to be a
good indicator of the RMSEη. Interestingly, the inclusion of noise in the model slightly improves
the estimation accuracy. On average, the RMSEη is 4.11 % lower than the RMSE (fig. 4b). In the
following, for DBL, RMSE and CI refer to RMSEη and CIη (updated model).

4.2 Vascular MRF signals

4.2.1 Synthetic vascular MRF signals

We compare the two dictionary-based methods and the CEF method on synthetic vascular MRF
signals. The dictionaries (grid and quasi-random sampling) are simulated with a BVf between 0.25
and 30 %, a VSI between 0.5 and 50µm and a StO2 between 30 and 95 %. Among the 170 100
combinations, some signals cannot be produced, due to simulation constraints (e.g. a very large
BVf cannot be produced with distant, small, vessels or small BVf with large vessels). The obtained
N values reduce then to N = 164 524 for the grid and to N = 167 216 for quasi-random sampling.

For each method, M = 100 000 test signals (SNR = 100) are generated. To analyze the BVf
RMSE, test signals are divided into three parts: small, medium and large vessel sizes. To analyse
the VSI RMSE, test signals are divided into three parts: low, medium and large blood volumes.

For all vessel diameters, the RMSE on BVf tends to increase with BVf (fig. 5). The DBM and
CEF methods yield similar RMSE for BVf values below 10 %. For medium and large vessels and
large BVf values, the CEF method yields the highest errors. The DBL method always yields the
lowest error with an RMSE of 2.38 % for CEF, 2.68 % for DBM and 1.30 % for DBL.

For VSI values smaller than 15µm, the behavior of the RMSE is similar in all three methods for
the three BVf ranges. Above 15µm, the CEF method yields larger errors than the two dictionary-
based approaches and the RMSE obtained with CEF is linearly correlated with the VSI value
(R2≥ 0.99). This linear behaviour has already been reported in [32]. DBL yields a 25 % smaller
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Figure 4: RMSEη versus confidence index (CIη) and RMSE (non-updated model), using syn-
thetic scalable signals. SNRtest = 20 (blue), 30 (orange), 40 (yellow), 60 (purple) and 100 (green).
M = 10 000 test signals. (a) The black line represents the proportional regression coefficient α be-
tween RMSEη and CIη for all SNR values. R2 is the coefficient of determination. (b) The dashed
black line is the identity function.
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Figure 5: Comparison of the RMSE on BVf and VSI obtained with the two dictionary-based meth-
ods (DBM and DBL) and with the closed-form expression fitting (CEF) method, using synthetic
vascular MRF signals. Figures (a, b, c) show RMSE (M = 100 000 test signals) on BVf for three
ranges of VSI, and figures (d, e, f) show the RMSE on VSI for three ranges of BVf. The dashed
lines represent the average confidence indices (CI) on BVf (first row) and VSI (second row) obtained
with DBL. The data are shown after 1-dimensional sliding window filtering (3 % for BVf and 5µm
for VSI). The dictionary dimensions are P = 3, S= 32, and N = 164 524 for DBM and N = 167 216
for DBL.

RMSE than DBM, on average with an RMSE of 12.46µm for CEF, 6.11µm for DBM, and 4.50µm
for DBL. The CI appears again to be a good indicator of the RMSE, with maximum differences
between CI and RMSE of 1.07 % for BVf and 2.36µm for VSI and average differences of 0.25 %
and 0.75µm.

We also compared DBM and DBL on the standard MRF signals proposed by Ma et al. [1]
(Supporting Information, Synthetic standard MRF signals). Except for the off-resonance parameter
with SNR< 20 and with the largest dictionary, DBL always yields smaller average RMSE than DBM
(Supporting Information, fig. S1).

4.2.2 Acquired vascular MRF signals

The DBL method is then applied to acquired vascular MRF signals collected from rats bearing 9L
and C6 tumors. We quantify BVf, VSI and StO2 with both dictionary-based methods (DBM and
DBL) and using two numbers of dictionary entries. The large dictionary (N = 170 100) is the one
used previously in section 4.2.1. The small dictionary (N = 4 320) is simulated with BVf between

13



Figure 6: Maps of vascular parameter estimates of a 9L rat tumor model. The first row shows the
anatomical image and regions of interest (left) and the MGEFIDSE pre and post USPIO injection
(right) for the second echo time (6.3 ms). The tumor, cortex and striatum are respectively delineated
with green, yellow and blue lines. The arrows on the post-USPIO injection image indicate large
vessels. The estimated maps for BVf, VSI and StO2 are shown below, using DBM (first and
fourth columns) and DBL (second and fifth columns). The third and sixth columns show the DBL
confidence index (CI) maps. In the color bars, the black lines represent the parameter ranges
covered by the two dictionaries: the short (resp. long) line for the small (resp. large) dictionary.
Large dictionary: N = 164 524 for DBM; 70 values for BVf between 0.25 and 30 %, 90 values for
VSI between 0.5 and 50µm and 27 values for StO2 between 30 and 95 % and N = 167 216 for DBL.
Small dictionary: N = 4 218 for DBM; 36 values for BVf between 0.33 and 12 %, 20 values for VSI
between 1 and 20µm and 6 values for StO2 between 40 and 90 % and N = 4 119 for DBL.

0.33 and 12 %, VSI between 1 and 20µm and StO2 between 40 and 90 %.
All methods yield consistent estimates (fig. 6), in which the tumor and the large vessels can

be easily depicted on BVf and VSI maps. StO2 appears constant in healthy tissues. However, for
DBM, there are many isolated high values, suggesting noisy maps. In [30], the authors proposed to
remove the last 8 signal samples and apply a spatial Gaussian filtering to increase the SNR. Using
the DBM method, these additional steps allowed them to produce less noisy maps. Interestingly,
with the DBL method, these steps are no longer required. Our approach is therefore more likely
to preserve small structure information, which may be otherwise removed by an additional spatial
filtering.

For the large dictionary, the mean BVf and VSI obtained in tumor with the DBM and DBL
methods are similar but with the DBL method, we can differentiate different subregions within
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the lesion. Mean values and standard deviations are 20.20± 6.14 %, 15.90± 7.79µm for DBM and
18.22± 9.34 %, 19.91± 11.76µm for DBL. For StO2, the DBL method provides significantly larger
values, closer to the expected values for healthy tissue [33]. Values for striatum are 62.67± 21.73 %
for DBM and 74.46± 18.96 % for DBL. Overall, DBM and DBL yield comparable values.

For the small dictionary, the contrasts are similar. The estimates obtained by the DBM method
are limited to the space spanned by the dictionary, while the DBL method yields estimates outside
this range and closer to the parameter values obtained with the large dictionary. In the tumor,
the mean BVf is 13.66 % while the maximum dictionary value is 12 %. Supporting Information,
fig. S8, shows an evaluation by region of interest (ROI) (8 animals: 4 from each tumor model).
The DBL method with a small dictionary produces estimates similar to those obtained with a large
dictionary, except for the largest values which are underestimated. This results in a slight reduction
in mean ROI values. The average differences between the mean ROI values obtained by the DBL
method with the large and small dictionaries are 1.17 % for BVf, 3.50µm for VSI and 1.62 % for
StO2.

The mean CIs in the tumor are 2.36 % for BVf, 4.90µm for VSI and 12.22 % for StO2, while in
the cortex the mean CI are 0.81 % for BVf, 1.96µm for VSI and 14.81 % for StO2. These results
are in agreement with previous results that pointed better estimates for BVf than for VSI and low
signal sensitivity to StO2 [30]. Confidence in the estimates is therefore on average 5 to 6 times
lower in the tumor than in the cortex for BVf and VSI but is similar for StO2. This is an interesting
contribution of our DBL method as to our knowledge, it is the first time that such error maps are
provided for BVf, VSI, and StO2.

A second example of a C6 rat tumor model is given in Supporting Information, fig. S9. The
results are similar to those observed for the 9L tumor. DBL and DBM produce comparable phys-
iological parameter values. With DBL, however, parameter maps are less noisy and additional CI
maps can be produced.

5 Discussion

This work presents a method for estimating vascular MRF parameters based on dictionary learn-
ing. It preserves the main advantages of the MRF method, i.e. robustness, speed and flexibility,
and meets the challenge of producing accurate estimates from a small dictionary, even when the
dimension of the parameters is large.

Regarding the design of the dictionary, we observe as [16] that random sampling of the parameter
space gives more accurate estimates than grid sampling, when an inverse regression model is used.
We further show that quasi-random sampling gives even better estimates. However, when the DBM
method is used, the grid remains the most efficient sampling strategy. The appropriate dictionary
design depends thus on the chosen inversion approach (grid matching vs statistical learning). The
results obtained with the DBL method suggest that the simulation of a few patches (with quasi-
random sampling) in the parameter space could save even more time in the construction of the
dictionary (section 4.1.3). This result seems specific to the regression method. Indeed, a study using
neural networks [14] rather reported increased deviations from the true values at the boundaries
of the training dictionary. This is likely due to the vanishing gradient of the activation function
in these regions. This patch approach could be implemented by combining a set of parameter
values corresponding to healthy tissues and one or more sets corresponding to damaged tissues
(e.g., tumorous tissues). If needed, a few additional dictionary entries can be generated to fill gaps
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between patches (Supporting Information, fig. S10).
Regarding the quality of the inversion, the regression approach usually involves calibration. In

GLLiM, the number of Gaussian distributions K is the only calibration value that needs to be
adjusted. This can be done automatically using a standard information criterion such as AIC or
BIC [34,35], as illustrated in [20], but this may result in additional learning time. We have observed
that our results have little dependence on K. In contrast, neural networks [11–18] used to solve
similar inverse problems are very sensitive to their many complex calibration settings: architecture,
batch sizes, learning rates, among others. The adjustment of all these calibration settings is usually
performed by learning the model for a large number of calibration value combinations, which rep-
resents a higher computational cost than determining a single calibration value as in GLLIM. This
difference in calibration cost makes the DBL method more flexible in case of change in dictionary
design (extension of the parameter range, additional parameters, etc.). In addition, GLLiM has
the advantage of providing a richer information. Here, we make use of the full posterior parameter
distribution provided by GLLiM to derive a CI for each estimate. We observe that this CI matches
the RMSE in cases where a ground truth is available (synthetic scalable; section 4.1.4 and synthetic
vascular MRF signals; section 4.2.1). Interestingly, this CI reports both signal and model errors
(derived from the dictionary) and thus reflects the whole DBL procedure.

Regarding the acquired vascular MRF signals, we observe that the number of dictionary entries
can be divided by ≈ 40 using the DBL method and still lead to accurate maps. The maps produced
with the DBL method are significantly less noisy than those obtained with the DBM method and
some structures, not observed with DBM, appear in the lesions. The additional tissue contrast
provided by DBL could therefore contribute to improved tumor characterization [36].

In conclusion, this first evaluation of the DBL method appears promising. It reduces the
simulation time and the memory required for dictionary storage, improves parameter accuracy,
reduces the estimation time, and provides a first confidence index on parameter estimates. The DBL
method could become even more efficient as the number of parameters to be estimated increases,
which can happen when considering all the possible contributions of the tissues and the scanner
to the signal. In addition, the flexibility of the proposed approach opens the door to further
improvements. In particular, future work should include the adaptation and optimization of the
dictionary sampling strategy with respect to the targeted range of parameters to estimate. In
addition, MRI produces complex-valued data but machine learning methodologies are generally
designed for real-valued data. Dealing with complex-valued data could boost the performance of
DBL [11]. This requires an adjustment of the inverse regression method also left to future work.

Appendix I - Mri experiments

The study design was approved by the local institutional animal care and use committee. All
animal procedures complied with French government guidelines and were performed under permit
380820 and A3851610008 (for experimental and animal care facilities) from the French Ministry of
Agriculture (Articles R214–117 to R214–127 published on 7 February 2013). This study complies
with the ARRIVE guidelines (Animal Research: Reporting in Vivo Experiments) [37]. Animals
7 weeks old at the start of the experiments (Charles River, France) were housed in groups of 3-4
in Plexiglas cages under standard laboratory condition (12 h light/dark cycle with lights off at
7:00 p.m. and controlled temperature in 22± 2 ◦C). Water and standard laboratory chow were
provided ad libitum. All procedures were performed under anesthesia by isoflurane (IsoFlo, Abbot
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Laboratories Ltd, Berkshire, UK). 9LGS cells were implanted in the brain of male Fisher rats. One
µl of cell suspension in serum-free RPMI1640 medium containing 104 cells were inoculated. MRI
was performed 10 days after tumor implantation. C6 cells were implanted in the brain of male
Wistar rats. Five µl of cell suspension in serum-free RPMI1640 medium containing 105 cells were
inoculated. MRI was performed 20 days after tumor implantation. Animals were euthanized by
intra-cardiac injection of Pentobarbital 200 mg.kg−1 (Dolhethal, Vétoquinol Inc, France).

Appendix II - Closed-form expression fitting (cef) method

Parameters BVf and VSI are estimated from the gradient echo sampling of the free induction
decay and spin echo according to [31]. The changes in relaxation rates ∆R∗2 and ∆R2 induced
by the injection of the ultrasmall superparamagnetic iron oxide particles (USPIO) contrast agent
are computed using gradient echo (GE) signal intensities and spin echo (SE) signal intensities,
respectively. The pre-injection and post-injection relaxation times are obtained by fitting the GE
signal intensities to an exponential function. It allows to compute ∆R∗2. ∆R2 is directly calculated
from the two SE signal intensities. BVf and VSI are computed using:

BVf =
3

4π γ B0 ∆χUSPIO

∆R∗2 ,

VSI = 0.425

(
ADC

γ B0 ∆χUSPIO

) 1
2
(

∆R∗2
∆R2

) 3
2

,

where γ= 2.6752× 108 rad.s−1.T−1 is the gyromagnetic ratio, B0 = 4.7 T is the magnetic field,
∆χUSPIO = 3.5 ppm (SI unit) is the susceptibility difference between blood in the presence and in
the absence of USPIO and ADC = 800µm2.s−1.
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[18] M. Golbabaee, D. Chen, P. A. Gómez, M. I. Menzel, and M. E. Davies, “Geometry of deep
learning for magnetic resonance fingerprinting,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 7825–
7829.

[19] F. Boux, F. Forbes, J. Arbel, and E. Barbier, “Dictionary-free MR fingerprinting parameter
estimation via inverse regression,” in 26th Annual Meeting ISMRM, Paris, 2018, p. 4259.

[20] A. Deleforge, F. Forbes, and R. Horaud, “High-dimensional regression with Gaussian mixtures
and partially-latent response variables,” Statistics and Computing, vol. 25, no. 5, pp. 893–911,
2015.

[21] K.-C. Li, “Sliced Inverse Regression for dimension reduction,” Journal of the American Sta-
tistical Association, vol. 86, no. 414, pp. 316–327, 1991.

[22] R. D. Cook and L. Forzani, “Partial least squares prediction in high-dimensional regression,”
Ann. Statist., vol. 47, no. 2, pp. 884–908, 04 2019.

[23] H. D. Nguyen, F. Chamroukhi, and F. Forbes, “Approximation results regarding the multiple-
output Gaussian gated mixture of linear experts model,” Neurocomputing, 2019.

[24] S. Ingrassia, S. C. Minotti, and G. Vittadini, “Local statistical modeling via a cluster-weighted
approach with elliptical distributions,” Journal of Classification, vol. 29, pp. 363–401, 2012.

[25] H. Niederreiter, Random number generation and quasi-Monte Carlo methods. Siam, 1992,
vol. 63.

[26] A. B. Owen, “Randomly permuted (t, m, s)-nets and (t, s)-sequences,” in Monte Carlo and
quasi-Monte Carlo methods in scientific computing. Springer, 1995, pp. 299–317.

[27] P. Bratley and B. L. Fox, “Algorithm 659: Implementing sobol’s quasirandom sequence gen-
erator,” ACM Transactions on Mathematical Software (TOMS), vol. 14, no. 1, pp. 88–100,
1988.
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