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Purpose: To reduce dictionary size and increase parameter esti-
mate accuracy inMR Fingerprinting (MRF).
Methods: Adictionary-based learning (DBL)method is investigated
to bypass inherentMRF limitations in high dimension: reconstruc-
tion time and memory requirement. The DBL method is a 3-step
procedure: (1) a quasi-random sampling strategy to produce the
dictionary, (2) a statistical inverse regressionmodel to learn from
the dictionary a probabilistic mapping between MR fingerprints
and parameters, and (3) this mapping to provide both parameter
estimates and their confidence levels.
Results:Onsynthetic data, experiments showthat thequasi-random
sampling outperforms the grid when designing the dictionary for in-
verse regression. Dictionaries up to 100 times smaller than usually
employed inMRF yield more accurate parameter estimates with a
500 time gain. Estimates are supplied with a confidence index, well
correlated with the estimation bias (r ≥ 0.89). On microvascular
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MRI data, results show that dictionary-based methods (MRF and
DBL) yield more accurate estimates than the conventional, closed-
form equation, method. OnMRI signals from tumor bearing rats,
the DBLmethod shows very little sensitivity to the dictionary size
in contrast to theMRFmethod.
Conclusion: The proposedmethod efficiently reduces the number
of required simulations to produce the dictionary, speeds up param-
eter estimation, and improve estimates accuracy. The DBLmethod
also introduces a confidence index for each parameter estimate.

K E YWORD S
Quantitative imaging, MR Fingerprinting, multiparametric
mapping, dictionary learning, inverse regression, microvascular
structure.

1 | INTRODUCTION

In magnetic resonance fingerprinting (MRF) [1, 2], the accuracy of the reconstruction depends on the dictionary size,
which increases as the power of the number of parameters. For applications with numerous parameters such as
microvascular quantification [3], the requiredmemory size and computational time for dictionary simulation and data
reconstruction quickly become themain limitations to the development ofMRF.

Different approaches have been proposed to compress the signal part of the dictionary while limiting the informa-
tion loss. Several authors used singular value decomposition to project the dictionary in a well chosen subspace [4–8].
However, the lack of consideration of the tissue parameters during this compression proceduremight yield amapping
of the dictionary onto an intermediate low-dimensional space insufficient to correctly recover the true parameters.
It has also been proposed to directly find amapping between the fingerprints and the parameter space using kernel
regression [9] or neural network approaches [10–16]. The resulting compact dictionary offers the advantage, over the
discreteMRF grid, of a continuous representation with regard to parameter values. All approaches significantly reduce
the reconstruction time.
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All previous approaches however rely on the simulation of all fingerprints, a computationally expensive operation,
to build the compressed representation of the dictionary. Cohen et al. [12] investigated a mapping obtained from a
sparse set of dictionary entries to limit simulation time but the studywas not conducted in high dimension andwith
large undersampling factors. To estimate a larger number of parameters withMRF, an approach that reduces the need
for simulation, continuously represents the parameters without accuracy loss, relies on an interpretable model and
reduces the reconstruction time is highly desirable [17].

In this work, we adopt amapping approach but we bypass the difficulty of learning a high-to-lowmapping from a
high dimensional fingerprint space to a low dimensional parameter space, by learning instead themuch less problematic
low-to-high reversemapping from parameters to fingerprints. More specifically, we use for this purpose the so-called
Gaussian locally linear mapping (GLLiM) model [18] that provides both a tractable learning of the low-to-highmapping
and a subsequent analytical expression of the target high-to-low or signal-to-parameter mapping. Furthermore, in
contrast tomost other regressionmethods that focus on providing pointwise predictions, GLLiM provides a full pos-
terior distribution of parameters per fingerprint. This distributionmay then be used to estimate both the value and a
confidence index for each parameter, using the expectation and the standard deviation of the distribution, respectively.

In this MRF study, the proposed dictionary-based learning (DBL) method and the standard dictionary-based
matching (DBM) method are compared. We first use synthetic toy signals to assess quantitatively the method’s
performance. Then, we consider the characterization of brainmicrovascularization using first simulated signals and
second experimental data acquired in tumor bearing rats.

2 | THEORY

2.1 | MRF as an inverse problem

In inverse problems, the overall issue is to provide information on some parameters of interest x given an observed
signal y, using a known direct or forward modelwhich describes how the parameters x translate into a signal y. Among
inverse problems, MRF exhibits the following difficulties: 1) the direct model is (highly) non-linear, as a (complex) series
of equations or simulation tools; 2) the y’s are high-dimensional signals and 3) many such y’s have to be inverted (one
for each voxel of an image); 4) the vector of parameters x is multidimensional and predicting each component of x
independently is likely to be sub-optimal.
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To account for possible sources of uncertainty, we focus on a statistical modeling assuming that the forwardmodel
is described by a likelihood and a prior distribution. The likelihood function is linking parameter values x to a probability
of observing signal y, Lx(y) = p(y ` x). A natural assumption is that Lx(y) is a Gaussian distribution N (y; f (x), Σ)
centered at f (x) where f is the known simulation function that links themagnetic and physiological parameters to the
fingerprint and Σ is a covariance matrix accounting for measuring or modelling imperfections. The parameter prior
distribution, denoted by p(x), encodes in turns information on the possible parameter values. StandardMRF uses a
finite grid of values, which corresponds to a very particular discrete prior. This probabilistic point of view allows, with
the Bayesian framework, to derive a posterior distribution p(x ` y) = p(y ` x) p(x) / p(y), which provides for any given
y, a characterization of x by a probability density function more informative than a single point prediction of x. It
corresponds to a richer inverse model but is not usually available in closed-form and requires approximations to be
usable in practice.

More generally, most methods to solve inverse problems can be classified into twomain categories, optimization-
based or learning-basedmethods. In the next section, we refer to standardMRF as amatchingmethod. We show that it
can be seen as a penalized optimization, which does not require statistical modeling, while themethodwe propose next
belongs to statistical learning approaches.

2.2 | Dictionary-basedmatching (DBM)method

InMRF [1], a large database Df , referred to as a dictionary, of N S -dimensional fingerprints {y1, . . . , yN }, is generated
by running the simulationmodel f forN different values of the P -dimensional magnetic and physiological parameters
{x1, . . . , xN } . In the standardMRF approach, a P -dimensional grid is generatedwith sampled values in a pre-set interval
for each parameter. Then, to invert an observed yobs, it is compared with the signals in Df to find the best match
according to an objective function d , usually a standard distance or dissimilarity measure (e.g. inMRF, the dot product).
With Df = {(xn , yn = f (xn )), n = 1:N }, x is thus estimated as the argument of the followingminimization:

x̂ = argminx ∈Df
d (yobs, f (x)). (1)

Solutions are sought in Df only, while in a non-penalized optimization the minimization is over the whole continu-
ous space of parameter values. The speed gain is significant in comparison to traditional (without the penalty term)
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optimizationmethods, as retrieving a value frommemory is often faster than undergoing an expensive computation.
However, the performance of themethod depends directly on the choice of the sampling density and the number of
parameters. The larger the number N of couples (xn , yn ), themore accurate the estimates but the larger the simulation
time and memory requirement. Even for moderate number of parameters, the required number of elements in the
dictionary renders grid search intractable on a desktop computer. In addition, each new yobs, requires the computation
and comparison ofN matching scores d (yobs, yn ), which can be costly ifN is very large and ifmany inversions are desired.
The regression or learningmethod that we propose in the next section is more efficient in that sense.

2.3 | Proposed dictionary-based learning (DBL) method

In contrast to the DBM method, regression and learning methods can adapt to handle massive inversions of high
dimensional data. Themain principle is to transfer the computational cost, from 2-signal matchings to the learning of an
inverse operator F −1. Equivalently, the goal is to learn amapping from the fingerprint space to the parameter space,
for any y, with cost-less evaluation of F −1(y). The dictionary Df can be used to estimate F −1. Learning or regression
methods adapted to high dimensions include inverse regression methods, i.e. sliced inverse regression [19], partial
least square [20], approaches based on mixtures of regressions with different variants, e.g. Gaussian locally linear
mapping (GLLiM) [18],mixtures of experts [21], clusterweightedmodels [22], and kernelmethods [9]. Inverse regression
methods are flexible in that they reduce the dimension in a way optimal to the subsequent mapping estimation task that
can itself be carried out by any kind of standard regression tool. In that sense, the inverse regressionmethods are said
to be non-parametric or semi-parametric. Similarly, in [9], the authors propose a regression with an appropriate kernel
function to learn the non-linear mapping. The procedure has the advantage to be semi-parametric but a serious limit
is that the components of f are optimized in each dimension separately. As regards application toMRF, the learning
strategy has also been proposed by several groups using deep learning tools [10–16]. A major limitation of these
methods is that they require a large number of training points to learnmanymodel parameters without overfitting.

In the same vein as [9], and in contrast to deep learning approaches, we propose to use the GLLiMmethod that
exploits Gaussian mixture models [18]. Compared to other regression methods that focus on providing point wise
estimates, GLLiM provides a full probability distribution selected in a family of parametric models {p(x ` y; θ),θ ∈ Θ},
e.g. mixture of Gaussians, where the parameters are denoted by θ. The dictionary can be used to estimate θ and defines
the inversion operator as F −1(y) = p(x ` y; θ). More specifically, GLLiM handles themodeling of non-linear relationships
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with a piecewise linearmodel. Each y is seen as the noisy image of x obtained from a K -componentmixture of affine
transformations. This is modeled by introducing a latent variable z ∈ {1, . . . ,K } such that

y =
K∑
k=1

δk (z ) (Ak x + bk + εk ) , (2)

where δk (z ) indicates membership in the region k of x, having the value 1 if it belongs to the region and the value 0
otherwise.Ak is a P ×S matrix andbk a vector inÒP that characterize an affine transformation. Variable εk corresponds
to an error term inÒP which is assumed to be zero-mean and not correlated with x, capturing both themodelling noise
and the reconstruction error due to the affine approximations. In GLLiM, εk follows a Gaussian distribution N (0, Σk )
and x follows amixture of K Gaussians defined by p(x ` z = k ) = N (x; ck , Γk ), and p(z = k ) = πk . It follows that

p(y ` x; θ) =
K∑
k=1

wk (x)N (y;Ak x + bk , Σk ) (3)

withwk (x) = πkN (x; ck , Γk )∑K
j=1 πjN (x; cj , Γj )

and θ = {πk , ck , Γk ,Ak , bk , Σk }k=1:K is the set of parameters defining themodel. The conditional probability distribu-
tion of interest can be derived as

p(x ` y; θ) =
K∑
k=1

w ∗k (y)N (x;A∗k y + b∗k , Σ∗k ) (4)

withw ∗k (y) =
πkN (y; c∗k , Γ∗k )∑K
j=1 π

∗
j
N (y; c∗

j
, Γ∗j )

,

with a new parameterization θ∗ = {c∗
k
, Γ∗k ,A

∗
k
, b∗
k
, Σ∗k }k=1:K easily expressed as an analytical function of θ. Themixture

setting provides some guaranties that when choosing K large enough it is possible to approximate any reasonable
relationship [21]. Automatic model selection criteria can also be used to select K (see [18]) but in practice we observed
that the precise value of K is not critical and different values provide similar results so that for the rest of the paper K is
fixed to 50 (unless otherwise specified).

The p(x ` y; θ) distribution allows us to evaluate both estimates of the parameters x and information about the
confidence to be placed in these estimates. In this work, the estimates are defined as the expectation and the confidence
indices from the covariancematrix of p(x ` y; θ). For each parameter, the standard deviation is used as confidence index
and is computed as the square root of the corresponding diagonal element in the covariancematrix:
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x̂ = Å [x ` y; θ] (5)

with Å [x ` y; θ] =
K∑
k=1

w ∗k (y)(A∗k y + b∗k ) ,

Var [x ` y; θ] =
K∑
k=1

w ∗k (y)
[
Σ∗k + (A∗k y + b∗k )(A∗k y + b∗k )T

]

− *
,

K∑
k=1

w ∗k (y)(A∗k y + b∗k )+
-

*
,

K∑
k=1

w ∗k (y)(A∗k y + b∗k )+
-

T

.

Because S is much larger than P , it is important that themodel (3) involving θ is estimated first and then used to
derivemodel (4) that has a similar structure. The number of model parameters θ can be drastically reduced by choosing
constraints on covariancematrices Σk without inducing oversimplifications on the target model (4). In this work, equal
diagonal covariance matrices are used as they yield the best results: for 1 ≤ k ≤ K , Σk = DS , whereDS ∈ ÒS×S is a
diagonal matrix. For example, with S = 100, P = 3 and K = 50, the number of parameters θ is equal to 20600while a
direct estimation of θ∗ would involve 272703 parameters (see [18] for more details).

2.4 | Dictionary sampling

The dictionary design depends on the sampling strategy of the parameter space. Regular grids of P -dimensional values
of parameters are usually considered as varying only one parameter at a timewould not capture important interactions
between the parameters and important aspects of themapping. For each parameter, a set of different values is chosen
and P -dimensional combinations are deduced from the Cartesian product of the P sets. This approachworks well for
small numbers of parameters, typically two or three, but for larger numbers, it becomes impractical because the number
of required runs grows exponentially. In [14], authors show that in a regression context, the random sampling strategy
provides better estimation. However, this strategy involves a risk of a lack in parameter space coverage, especially when
seeking sparsity.

Figure 1(a) shows a projection in two dimensions of 1 000 points from a uniform grid in the 3D-hypercube. Notice
that with 1000 points in 3D, only 100 distinct combinations appear in the 2D-projection plane, each representing 10
different values of the other third variable. Each parameter is actually described by only 10 distinct values. In addition,
in situations where fingerprints depend only on one or two of the parameters, such a grid designmay contain a lot of
useless duplications. A significant improvement on grids may be obtained by scrambled nets [23, 24]. In this paper, the
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F IGURE 1 2-dimensional projections of 3-dimensional samples obtained from 3 different sampling strategies.
Subfigures represent the 2D-projection of 1 000 points of the 3D-hypercube obtained from (a) regular sampling, (b) random uni-
form sampling and (c) quasi-random (scrambled Sobol sequence), respectively.

Sobol sequence is generated [25] and scrambled [26]. We show the projection of 1 000 points from the scrambled Sobol
sequence (figure 1(c)) referred to as quasi-random in the next sections.

3 | METHODS

3.1 | Synthetic toy signals

To obtain a large set of signals with no simulation limitations, toy signals that mimicMRI signals are introduced:

ytoy (xtoy, t ) =
������

N∑
i=1

sin (φi · f0 · t ) · exp
(
−
t

xi

) ������
, (6)

where xtoy = (x1, x2, . . . , xP ) ∈ [0, 1]P sP is the parameter vector, f0 = 50Hz is the sinus function frequency,φ ∈ [0.1, 1]P

is a scaling factor vector on frequency and ` · ` is the absolute value function.
To challenge regression, the dependency between xtoy and ytoy is non-linear. Signals are sampled between 5ms

and 1 s every 10ms yielding a 100-dimensional signal. The frequency factor vector φ makes the parameters non-
exchangeable. It means that permutations of the ytoy elements cannot lead to the same signal xtoy.

According to [27], the noise distribution ofMRI signals can be assumed Rician. In this work, the noise is defined
by its signal-to-noise ratio: SNR = Smax/σnoise, where Smax is themaximum signal intensity and σnoise is the standard
deviation of the noise. A vector n ∈ ÒS is generated from a zero-mean Gaussian distribution with a standard deviation
σnoise and added to the original signal ytoy to create the noisy signal ynoisy following:
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ynoisy = � ytoy + n �
. (7)

Examples of synthetic toy signals are presented in Supporting Information figure S1.

3.2 | MRI experiments

3.2.1 | SyntheticMRI signals

SyntheticMRI signals are designed as the ratio between the gradient echo sampling of the free induction decay and
spin echo (GESFIDSE) signals obtained post- and pre-injection of the ultrasmall superparamagnetic iron oxide particles
(USPIO) [3]. To agree with acquisitions, the simulation tool employed [28] allows to take into account the intrinsic
relaxations, themagnetic field perturbations induced by susceptibility interfaces (vessels), the diffusion of the water
protons and the constrained diffusion of the contrast agent within the voxel. Because of the complexity of the tool,
simulations are extremely time-consuming. A single signal simulation took about 10 seconds and a 100000-signal
dictionary was generated on 32-node high-performance computer (Intel Xeon Gold 6130, 2.1GHz) in about 67 hours.

3.2.2 | AcquiredMRI signals

The data used to validate the method were acquired with a 4.7 T bore and have been introduced in [29]. The field
of view is 30×30mm2 and the voxel size is 234×234×800µm3. A turbo spin-echo was acquired to identify the
anatomical structures and tumor tissues. Then, the changes in relaxation rates induced by the injection of USPIO in the
network of blood vessels were obtained using twoGESFIDSE sequences (32 sampled time points). See Supplementary
Information 1 for more details about animal preparation and acquisition conditions.

3.3 | Framework analysis

3.3.1 | Dictionary design

The dictionary is generated in two steps. First, we select parameter value combinations according to a sampling
strategy (section 2.4). Second, for each parameter value combination, the associated fingerprint is simulated using
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either equation (6), for toy signals or the simulation tool described (section 3.2.1), forMRI synthetic signals.
When generating a dictionary of synthetic toy signals following a regular sampling strategy, the grid step is main-

tained constant along all parameters. In this way, it makes sense to compare the average errors on parameters. This
procedure results in dictionary sizes that are the number of values of each parameter to the power the number of
parameters.

3.3.2 | Data processing

Data were processed on a voxel-by-voxel analysis using custom code developed in the Matlab environment (The
MathWorks Inc., Natick, Ma, USA). The code is included in theMedical software for Processing multi-Parametric images
Pipelines1.

Dictionary-basedmethods.

Both dictionary-based methods, need a precomputed dictionary. Exploited in a different way, the dictionary is fully
stored for DBMor resumed to amodel for DBL. The computation of themodel is carried out in an offline procedure
using the GLLiMmodel. Then, estimates are computed using equations (1) or (5) applying the DBMor the DBLmethod,
respectively.

For the DBMmethod, signals of the dictionary are normalised, each having the same sum squaredmagnitude. For
the DBL method, the parameters are normalized to have zero mean and unit variance using scaling and translating
factors that are then used to rescale on estimates.

Closed-form equationmethod.

The closed-form equation (CFE) method refers to a multiple operations procedure based on equations. First, the
relaxation rates are extracted by fitting theMRI signal intensities (synthetic and acquired). Then, these rates are used
to compute the parameters of interest by relying on equations. In this work, we focus on three parameters: the blood
volume fraction (BVf ), the vessel size index (VSI ) and the tissue oxygen saturation (StO2). The whole procedure is
described in Supplementary Information 2.

1https://github.com/nifm-gin/MP3
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3.3.3 | Performance evaluation: errormetrics

To compare themethods performance in estimating parameters, metrics are used tomeasure the errors between the
estimates and the true values. For test signals, we compute the root mean squared error (RMSE) andmean absolute
error (MAE) of a parameter estimates as:

RMSE =
√√√
1

L

L∑
t=1

(x̂t − xt )2 , (8)

MAE = 1

L

L∑
t=1

`x̂t − xt ` , (9)

where L is the number of estimates x̂t of the known parameter xt .

4 | RESULTS

4.1 | Numerical experiments

4.1.1 | Effect of parameter space sampling

We investigated the impact of three parameter sampling strategies (regular, random and quasi-random) on the accuracy
of parameter estimation, using toys signals. We considered three dictionary dimensions for each sampling strategy
(a total of 9 conditions). The numbers of signals per dictionary are 216, 1 024, and 2187 toy signals in 3, 5, and 7
dimensions, respectively. For each dictionary dimension, 1 000 additional test toy signals were produced based on
a random sampling of the parameter space. One then estimate the parameter values of each test toy signal using
each dictionary (DBLmethod). The errors between the estimated parameters and the parameters used to generate
that toy signal were then computed. The RMSE on parameters was computed using equation (8) and averaged across
the parameter dimension to obtain the average RMSE. To characterize the distribution of the average RMSE, the
entire procedure (from dictionary generation to average RMSE computation) was repeated 500 times for each of the 9
conditions (figure 2). Additional conditions were also evaluated and are presented in Supporting Information figure S2.

Whatever the sampling strategy, the average RMSE increases with dictionary dimension. As previously reported, a
random sampling yields a lower average RMSE than a regular sampling, using the same number of signals to produce the
dictionary andwhatever the dimension [14]. Note that when using the DBMapproach instead of the DBL, the regular
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F IGURE 2 Effect of parameter sampling strategies on the dictionary-based learning (DBL) method.
Distribution of average RMSE for regular, random (Rand) and quasi-random (QRand) dictionary samplings. (a) Dictionary of di-
mension 3 using 216 signals, (b) dictionary of dimension 5 using 1024 signals and (c) dictionary of dimension 7 using 2187 signals.
For each box, the central redmark indicates themedian; the bottom and top edges indicate the 25th and 75th percentiles, respec-
tively. The whiskers extend to the minimum andmaximum values (dashed lines). Asterisks refer to the p=0.001 significance level
Student’s t-test results comparing pairwise sampling strategies average RMSE.

sampling yields lower average RMSE than the random or quasi-random samplings (Supporting Information figure S2).
The quasi-random sampling further reduces the averageRMSEeven if for the dimension 7 it is not significant. Altogether,
there is a 30.6 %, 22.6 % and 22.8 % reduction in average RMSE between regular and quasi-random samplings for
dictionary dimensions 3, 5, and 7, respectively. Therefore, in the following, a regular sampling is used for the application
of the DBMmethod and the quasi-random sampling for the DBLmethod.

4.1.2 | Impact of dictionary size

To investigate the impact of dictionary size on the estimation accuracy, we generated four dictionaries with different
sizes and considered the case of 5 and 7 parameters (a total of 8 conditions). Dictionary sizes are chosen to keep similar
densities, i.e. constant number of values per parameter, for 5 and 7 parameters (sizes of 35, 45, 55, and 65 for the 5
parameters case and 37 , 47 , 57 , and 67 for the 7 parameters case). For each condition, we evaluated the average RMSE as
previously described, using 10000 toy signals. To characterize the impact of SNR, the entire procedurewas repeated for
noisy toy signals with SNR between 10 and 110 (equation (7)). Both the DBM and the DBLmethods were characterized
using that approach (figure 3). Supplementary Information figure S3 shows the experiment repeated for additional
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F IGURE 3 Impact of dictionary size and SNR on dictionary-basedmatching (DBM) and dictionary-based learning
(DBL) methods.
Average RMSE are given as a function of the SNR for different dictionary sizes (for the 5 parameters case: 35=243, 45=1024,
55=3125, and 65=7776; for the 7 parameters case: 37=2187, 47=16384, 57=78125, and 67=279936). The left column ((a) and
(c)) is the average RMSE of the DBMmethod, the right column ((b) and (d)) is the average RMSE of the DBL method, the top row
((a) and (b)) provides results estimating 5 parameters, and the bottom row ((c) and (d)) estimating 7 parameters. Dashed lines
represent the average RMSE in the absence of noise on test signals. The regression parameter K (DBL method) is fixed to 50
except for the 243-signal dictionary where K = 20.

number of parameters and number of signals.
As expected for the DBMmethod, the average RMSE decreases while the dictionary size increases. It illustrates

the fact that the accuracy of themethod is closely related to the dictionary size. The average RMSE decreases as SNR
increases up to approximately SNR = 50 and then plateaus close to the value obtained in absence of noise. Similar
profiles are obtained for the 5 and 7 parameters cases, in agreement with our choice to keep the dictionary density
constant. For theDBLmethod, the averageRMSE also decreases as the SNR increases but up to approximately SNR=90.
Again, the highest SNR yields average RMSE close to the ones obtained in absence of noise. For the DBMmethod,
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average RMSE are also comparable between 5 and 7 parameters. For SNR > 20, all average RMSE obtainedwith the
DBLmethod are 1.98± 0.44 for 5 parameters (1.67± 0.37 for 7 parameters) lower than the one obtainedwith the DBM
method, whatever the dictionary size. Note that adding noise to the dictionary signals can improve the accuracy on
parameter estimates for SNRbelow50. Above, the addition of noise deteriorates estimates (Supplementary Information
figure S4). When using the DBMmethod, the dictionary size has a lower impact than for the DBLmethod: between
the smallest and the largest dictionary sizes, the average RMSE decreases by 0.06 for the DBMmethodwhile it only
decreases by 0.02 for the DBLmethod. Moreover, the two highest dictionary sizes yield similar average RMSE for the
DBLmethod, suggesting that an increase in dictionary size would not improve the average RMSE further. Altogether,
compared to the DBM method, the DBL method improves the accuracy by a factor 1.36 (respectively 1.33) while
reducing the dictionary size by a factor of 32 (respectively 128) for 5 parameters (respectively 7 parameters).

By eliminating the time-consuming dictionary matching operation, the DBLmethod drastically reduces the compu-
tation time. For the biggest dictionary size, 10 000 test signals, and 5 parameters, the estimation takes 0.2± 0.0 seconds
for the DBLmethod against 66.6 ± 8.3 seconds for the DBMmethod. For 7 parameters, the estimation takes 6.7 ± 0.2
seconds for the DBLmethod against 3 734.4 ± 275.8 seconds for the DBMmethod.

4.1.3 | Boundary behaviour

TheDBLmethod estimates the parameters using a continuous function that is not restricted to the dictionary parameter
space. We therefore investigated the behaviors of the DBL and DBMmethods outside the boundaries of this space.
Two 2-dimensional parameter subspaces was defined: one to sample the parameters of the dictionary, and a larger one
for the test. For every position in the test space, we evaluated the average RMSE as previously described, using 100 toy
signals (total of 9 000000 toy signals).

The twomethods yield to similar estimate accuracy in the subspace covered by the parameters of the dictionary
(figure 4). Outside of that subspace, the average RMSE obtainedwith the DBMmethod rises with the distance to the
dictionary border. For the DBLmethod, the average RMSE can remain below 0.1, way beyond the boundaries of the
dictionary space. The existence of two dictionary blocks helps reducing the error between these blocks.
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F IGURE 4 Behaviour of estimation accuracy at the boundary of the parameter space covered by the dictionary.
The images represent the average RMSE over the space obtained using the DBL method ((a)) and using the DBM method ((b)).
White dashed lines delimit the parameter space of the dictionary. 100 toy signals were simulated from parameters sampled in a
sliding window of 50ms×50msmoving by steps of 5ms through the parameter space.

4.1.4 | Confidence index

We investigated the relation between the confidence index, available with the DBLmethod (section 2), and the RMSE
on the estimates. To compute the RMSE and the confidence index, we used a 2 500-toy signals dictionary, sampled in the
2-dimensional parameter space and test toy signals with SNR = 100 (200000 signals). Figure 5 represents the results
obtained on two parameters.

We observe good correlation coefficients between RMSE and average CI for both dimensions: 0.90 and 0.89.
However, the average CI yields values 20 times smaller than RMSE. Altogether, CI could be used to report variations in
RMSE.
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4.2 | Synthetic and realMRI signals

4.2.1 | SyntheticMRI signals

In the context of microvascularMRI, we compared the two dictionary-basedmethods and the CFEmethod. For this,
we produced syntheticMRI signals as described section 3.2.1. Dictionaries (grid and quasi-random) were simulated
with BVf between 0.25 and 30% (120 values) andVSI between 0.25 and 50 µm (200 values). The oxygen saturation
was set to 70%. Among the 24000 combinations, only 22 836 signals could be produced, due to simulation constraints
(e.g. a very large BVf can not be produce with distant very small vessels or small BVf with large vessels). Note that
the simulated field of viewwas doubled to reduce these simulations constraints. To agree with the grid dictionary, the
same number of signals is used for the quasi-random dictionary. To evaluate theMAE for eachmethod, 120000-test
syntheticMRI signals without noise were generated. To analyze theMAE on BVf , test data were divided into 3 parts:
small (1 <VSI ≤ 7 µm), medium (7 <VSI ≤ 15 µm) and large (15 <VSI ≤ 30 µm)VSI . To analyse theMAE onVSI , test
data were divided into 3 parts: low (0.5 < BVf ≤ 4%), medium (4 < BVf ≤ 10%) and large (10 < BVf ≤ 20%) BVf .



BOUX ET AL. 17

5 10 15 20
0

2

4

BVf (%)

MA
Eo

nB
V
f
(%)

(a) Small vessels
1 < VSI ≤ 7µm

CFE
DBM
DBL

5 10 15 20

BVf (%)

(b) Medium vessels
7 < VSI ≤ 15µm

5 10 15 20

BVf (%)

(c) Large vessels
15 < VSI ≤ 30µm

10 20 30 40
0

10

20

VSI (µm)

MA
Eo

nV
SI

(µm
)

(d) Low BVf
0.5 < BVf ≤ 4%

10 20 30 40

VSI (µm)

(e) Medium BVf
4 < BVf ≤ 10%

10 20 30 40

VSI (µm)

(f) Large BVf
10 < BVf ≤ 20%

F IGURE 6 MAE on BVf andVSI estimates obtainedwith the two dictionary-basedmethods (DBM andDBL) and
with the closed-form equation (CFE) method.
Curves represent the MAE on BVf for the first row ((a), (b) and (c)) and the MAE onVSI for the second row ((d), (e) and (f)). Data
are represented after 1D sliding window filtering (3 % for BVf and 5 µm forVSI )

For all vessel diameters, theMAE on BVf tends to increase with BVf . DBM and CFEmethods yield similarMAE for
BVf below 12%. For medium and large vessels and high BVf values, the CFEmethod yields the highest errors. The DBL
method always yields the smallest error (MAE: 1.86% for CFE, 1.64% for DBM, and 0.69% for DBL).

ForVSI , the behavior ofMAE is similar across the three BVf groups: the CFEmethod yields larger errors than the
two dictionary-based approaches. ForVSI above 15 µm, theMAE obtained with CFE is linearly correlated with theVSI
value (R 2 ≥ 0.99). This linear behaviour was previously reported [30]. DBM andDBLmethods yields similarMAE, with a
slightly smallerMAE for DBL, on average (MAE: 12.65 µm for CFE, 4.10 µm for DBM, and 3.80 µm for DBL).

4.2.2 | RealMRI signals

The proposed method was then applied on real MRI data collected on rats bearing 9L and C6 tumors (section 4.2).
Note that because of the low SNR, the last 8 echoes ofMRI signals were removed. We quantified BVf ,VSI and StO2
parameters (section 3) with the two dictionary-basedmethods (DBM andDBL) and using two dictionary sizes:
• Large dictionaries: 170100-signal dictionary (grid sampling for the DBMmethod, quasi-random sampling for the

DBLmethod) with 70 values for BVf between 0.25 and 30 %, 90 values forVSI between 0.5 and 50 µm and 27
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values for StO2 between 30 and 95% (real sizes due to simulation constraints: 164524 for grid and 167216 for
quasi-random).

• Small dictionaries: 4 320-signal dictionary with 36 values for BVf between 0.33 and 12 %, 20 values forVSI
between 1 and 20 µm and 6 values for StO2 between 40 and 90%. Note that the parameter intervals are smaller
than that of the large dictionary and the number of signals 40 times smaller (real sizes: 4 218 for grid sampling and
4119 for quasi-random sampling).
At first sight (figure 7), all methods yield similar maps, in which the tumor and the large vessels may readily be

depicted. For large dictionaries, the mean tumorous BVf andVSI obtained with the DBM and DBL methods are
similar but values are significantly more heterogeneous for the DBLmethod (mean values and standard deviations are:
16.60 ± 5.69%, 14.91 ± 5.21 µm for DBM and 15.68 ± 8.29%, 15.87 ± 9.15 µm for DBL). For StO2, as the DBLmethod
could provide values outside of the parameter space, one observes lower and higher StO2 values than for the DBM
method. Moreover, some values seem to fall outside the possible range (> 100%). It should be noted that these outlier
estimates also occur for the other maps, which explains the dark points (especiallyVSI < 0).

For the small dictionaries, the contrasts are similar even though the estimates obtained by the DBMmethod are
restricted to the dictionary space, while the DBLmethod yields estimates out of the dictionary space and close to the
values obtainedwith the large dictionary. In the tumor, the BVf mean value is 14.23%while themaximum value of the
dictionary is 12%. In Supporting Information figure S6, an evaluation per regions of interest was produced (8 animals:
4 from each tumormodel). The DBLmethod and the small dictionary produce on average similar estimates (relative
differences < 7 %) as with the large dictionary, except for theVSI in the 9L tumor when values differ significantly
(relative difference is 11.9 %).

Themean CI in the tumor are: 1.51% for BVf , 4.01 µm forVSI and 13.13% for StO2, while in the cortex themean
CI are: 0.27 % for BVf , 0.77 µm forVSI and 15.48% for StO2. These results are in agreement with previous results that
pointed better estimates on BVf than onVSI and a low sensitivity of the signals to the StO2 parameter. The confidence
on the estimates is therefore on average 5 to 6 times lower in the tumor than in the cortex on BVf andVSI but similar
on StO2.

A second example of a C6 rat tumormodel is given in Supporting Information figure S5.
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F IGURE 7 Microvascular parameter estimatemaps of a 9L rat tumormodel.
Thefirst row represents the rawdata: the anatomical image andROI (left) and theMGEFIDSEpre and postUSPIO injection (right)
for the secondecho time (6.3ms). Then, the estimatesmaps (thefirst row isBVf maps, the second row isVSI maps and the last row
is StO2 maps) computed with the DBMmethod (the first and third columns) or the DBLmethod (the second and fourth columns).
The third and sixth columns are the confidencemaps obtainedwith theDBLmethod. In the color bar, the black lines represent the
parameter space covered by the dictionaries: the short (long) for the small (large) dictionary. On the anatomical image, the green
line delimits the tumor, the yellow line the cortex and the blue line the striatum. The arrows on the post USPIO injection image
indicate large vessels.

5 | DISCUSSION AND CONCLUSIONS

This work introduces amultiparametric, dictionary-based, estimationmethod that preserves themain advantages of
theMRFmethod, i.e. robustness, speed and flexibility andmeets the challenge of maintaining estimates accuracy in high
dimension. These properties arise from twomain features: an efficient design and use of the dictionary to learn the
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relationship between fingerprints and parameters.
Regarding the dictionary design, we observe as [14] that random sampling of the parameter space is a better

strategy when learning via a regression model, and we propose a further improvement by using a quasi-random
sampling. However, when using the DBMmethod, the grid remains themost efficient sampling strategy. Altogether, it
appears that the appropriate choice of dictionary depends on the chosen inversion approach (gridmatching vs statistical
learning). When using the DBLmethod, our results suggest that a new approach to save time in building the dictionaries
could be to use patches of quasi-random distributions in the parameter space (section 4.1.3). This patch approach
might be implemented by combining a range of parameter values corresponding to healthy tissues and one or more
sets corresponding to damaged tissues (e.g., tumorous tissues). When needed, a few additional dictionary entries may
be generated to fill the gaps between the patches (Supplementary Information, figure S7). More generally, optimal
fingerprint inversion should consider both design andmodel aspects and target a trade-off between inversion cost and
inversion quality.

Regarding inversion quality, the regression approach generally involves hyperparameter tuning. In GLLiM, the
number of linear parts K is the only hyperparameter to be adjusted and this can be done automatically using some
standard information criterion such as AIC or BIC [31, 32] as illustrated in [18]. This results in additional learning time
corresponding to the number of values considered for K . In contrast, neural network frameworks [10–16] that propose
to solve the inverse problem are very sensitive to the setting of their numerous hyperparameters: network sizes,
batch sizes, learning rates, among others. The tuning is generally achieved by learning themodel for a large number of
hyperparameter combinations. The search to determine the best combination represent a higher computation cost than
the determination of a single hyperparameter. This difference in tuning cost makes the DBLmethodmore responsive
in case of change in dictionary design (extension of the parameter range, additional parameters, etc.). In addition, the
DBL approachwith GLLiM has the advantage to provide a richer information on the inversion procedure. We propose
tomake use of the full posterior parameter distribution provided by GLLiM to derive a confidence index (CI) for each
estimate. We observe that this CI is well correlated with the average bias on data for which a ground truth is available
(toy signals in this study; section 4.1.4). Interestingly, this CI reports errors from both the signal and themodel (derived
from the dictionary) and therefore reflects the entire DBL procedure.

OnmicrovascularMRI data, we observe that the dictionary size can be divided by 100 using the DBLmethod and
still lead to the accuracy obtainedwith the DBMmethod. Themaps produced are less noisy than those obtainedwith
theDBMmethod and some structures, not observedwithDBM, appear in the lesions. In [33], authors present amethod
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to characterize the different brain tumors by exploiting tissue inhomogeneities present in the lesions. The additional
contrast provided by DBL could therefore help improving tumor characterization.

In conclusion, the first evaluation of theDBLmethod appears promising. It shows a reduction in simulation time and
memory requirement, improves parameter accuracy while speeding-up estimation time, and provides a first confidence
index on parameter estimates. We expect that DBLwill become evenmore efficient when the number of parameters to
estimate increases, something that may occur when one considers all the possible tissue and scanner contributions to
the signal. In addition, the flexibility of the proposed approach opens the way to further improvement. In particular,
interesting future work would include the adaptation and optimisation of the dictionary sampling strategy with respect
to the targeted range of parameters to estimate.
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SUPPORTING INFORMATION

| Supporting Information 1: AcquiredMRI signals

The study design was approved by the local institutional animal care and use committee (COMETHS). All animal
procedures conformed to French government guidelines and were performed under permit 380820 and A3851610008
(for experimental and animal care facilities) from the FrenchMinistry of Agriculture (Articles R214–117 to R214–127
published on 7 February 2013). This study is in compliance with the ARRIVE guidelines (Animal Research: Reporting
in Vivo Experiments) [1]. Animals aged 7 weeks at the start of the experiments were obtained from Charles River,
France and housed in groups of 3 - 4 in Plexiglas cages under standard laboratory condition (12 h light/dark cycle with
lights off at 7:00 p.m. and controlled temperature in 22±2 ◦C).Water and standard laboratory chowwere provided ad
libitum. After theMRI experiment, animals were euthanized by intra-cardiac injection of Pentobarbital 200mg.kg−1

(Dolhethal, Vétoquinol Inc, France) under anesthesia by isoflurane (IsoFlo, Abbot Laboratories Ltd, Berkshire, UK). 9LGS
(respectively C6) cells were implanted in the brain of male Fisher (respectivelyWistar). One (respectively five) µl of
cell suspension in serum-free RPMI1640medium containing 104 (respectively 105) cells were inoculated. MRI was
performed 10 (respectively 20) days after tumor implantation.

The imageswere acquiredwith an horizontal bore 4.7 TBiospec animal imager (Bruker Biospin, Ettlingen, Germany)
with an actively decoupled cross-coil setup (body coil for radio-frequency transmission and quadrature surface coil for
signal reception). The field of view (FOV) is 30×30mm2 and the voxel size is 234×234×800µm3. A turbo spin-echo
was acquired to identify the anatomical structures and tumor tissues. Then, the changes in relaxation rates induced by
the injection of USPIO in the network of blood vessels via the tail vein were obtained using twoGESFIDSE sequences
(32 sampled time points).

| Supporting Information 2: Closed-form equationmethod of data processing

Parameters BVf andVSI are estimated from the GESFIDSE according to [2]. The changes in relaxation rates∆R ∗2 and
∆R2 induced by the injection of the USPIO contrast agent are computed using gradient echo (GE) signal intensities and
spin echo (SE) signal intensities, respectively. The pre-injection and post-injection relaxation times are obtained by
fitting the GE signal intensities to an exponential function. It allows to compute∆R2. While∆R ∗2 is directly calculated
from the SE signal intensities. Then, these changes in relaxation rates allow us to compute the parameters of interest
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following equations:

BVf =
3

4π · γ · B0 · ∆χUSPIO
· ∆R ∗2 ,

VSI = 0.425 ·

(
ADC

γ · B0 · ∆χUSPIO

) 1
2
·

(
∆R ∗2
∆R2

) 3
2

,

where γ = 2.6752 × 108 rad.s−1 .T−1 is the gyromagnetic ratio, B0 = 4.7 T is themagnetic field,∆χUSPIO = 3.5 ppm (SI unit) is
the susceptibility difference between blood in the presence and in the absence of USPIO andADC = 800µm2.s−1 is the
mean of the apparent diffusion coefficients observed in each of three orthogonal directions.
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| Supporting Information Figures
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F IGURE S3 Impact of dictionary size and SNR on dictionary-basedmatching (DBM) and dictionary-based learning
(DBL) methods.
Average RMSE are given as a function of the SNR for different dictionary sizes: the size is the number of parameter values
to each dimension power the number of parameters. Sizes in alphabetical order from subfigure (a) to subfigure (q): 53=125,
63=216, 44=256, 54=625, 64=1296, 35=243, 45=1024, 55=3125, 65=7776, 36=729, 46=4096, 56=15625, 66=46656, 37=2187,
47=16384, 57=78125 and 67=279936. The regression parameter K (DBL method) is fixed to 50 except for the dictionary
sizes < 500 signals where K = 20.
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F IGURE S4 Impact of noise on dictionary signals on the estimates of the dictionary-based learning (DBL) method
for different dictionary sizes and SNR.
Average RMSE are given as a function of the SNR for different dictionary sizes (for the 5 parameters case: 35=243, 45=1024, and
55=3125; for the 7 parameters case: 37=2187, 47=16384, and 57=78125). The left column ((a) and (c)) is the average RMSE of
the DBMmethod, the right column ((b) and (d)) is the average RMSE of the DBLmethod, the top row ((a) and (b)) provides results
estimating 5 parameters, and the bottom row ((c) and (d)) estimating 7 parameters. The SNRdico refers to the noise level added
to the dictionary signals before the model learning. SNRdico = [10, 100] corresponds to the addition of a noise of SNR randomly
selected between 10 and 100 for each dictionary signal. The regression parameter K (DBL method) is fixed to 50 except for the
243-signal dictionary where K = 20.
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F IGURE S5 Microvascular parameter estimatemaps of a C6 rat tumormodel.
Thefirst row represents the rawdata: the anatomical image andROI (left) and theMGEFIDSEpre and postUSPIO injection (right)
for the secondecho time (6.3ms). Then, the estimatesmaps (thefirst row isBVf maps, the second row isVSI maps and the last row
is StO2 maps) computed with the DBMmethod (the first and third columns) or the DBLmethod (the second and fourth columns).
The third and sixth columns are the confidencemaps obtainedwith theDBLmethod. In the color bar, the black lines represent the
parameter space covered by the dictionaries: the short (long) for the small (large) dictionary. On the anatomical image, the green
line delimits the tumor, the yellow line the cortex and the blue line the striatum.
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F IGURE S6 Mean estimates by regions of interest of themicrovascular parameters (BVf ,VSI and StO2) computed
performing 3methods: the closed-form equation (CFE), the dictionary-basedmatching (DBM) and the dictionary-based
learning (DBL) using 2 different dictionary sizes.
The colored bars represent the average values of themeanmicrovascular parameters by regions of interest (9L and C6 lesions: 4
rats, cortex and striatum: 8 rats) and error bars represent the standard deviation positioned on the average values.
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F IGURE S7 Behaviour of estimation accuracy at the boundary of the parameter space covered by the dictionary.
The images represent the average RMSE over the space obtained using the DBL method ((a)) and using the DBM method ((b)).
White dashed lines delimit the parameter space of the dictionary. White points represent additional entries of the dictionary. 100
toy signals were simulated from parameters sampled in a sliding window of 50 ms × 50 ms moving by steps of 5 ms through the
parameter space.


